Predicting and Measuring System Error Rates for Designs Incorporating Upset Mitigation based on Triple Modular Redundancy

Gary M. Swift and Larry D. Edmonds
Jet Propulsion Laboratory / California Institute of Technology

Introduction and Overview

Upset Mitigation Basics
- Upsets are NOT errors
- Upset-error relation for memories (Hamming codes and the like)

TMR Basics

New "fitting" equation for TMR

Examples of application to real data
Basics of Upset Mitigation

Redundancy -
Extra information (bits) prevents all upsets from yielding system errors.

Scrubbing required –
Accumulation of errors rapidly kills mitigation effectiveness.

Effective –
Most spacecraft now fly large arrays of upset-soft memories with few or no errors.
Typically, uncorrectable errors are detectable.

Basics of Upset Mitigation - cont’d

Common sense says -
At some point, upsets will occur too rapidly and the mitigation will be “overwhelmed.”

In fact, Edmonds approx. equation says –
There’s not really a “cliff.”
The relationships are known; the error rate:
(1) increases with the square of upset rate
(2) decreases linearly with faster scrub rates
(3) is directly proportional to EDAC word size†

† EDAC word size = data bits + check bits ; EDAC=error detection and correction
Basics of Upset Mitigation - Examples

32 data bits + 7 check bits -
Cassini Solid State Recorders with 2+ Gb DRAM array is working well, in spite of architecture "flaw."

128 data bits + 9 check bits -
This hidden EDAC word inside IBM Luna-C 16Mb DRAMs used on RAD6000 boards on many missions requires external accesses to prevent accumulation of upsets.

64 data bits + 16 check bits -
A specially design cyclical parity scheme on the RAD750 board corrects up to 4 upsets, if confined to a nibble, allowing correct operation with a bad DRAM chip.

TMR Basics

TMR = triple-module redundancy
Three independent "legs" or domains performing identical functions
Voters are inserted – typically at feedback points
Voters are triplicated also
 – they are not a single point of failure

Error-free operation with any single upset
Two upsets might cause system failure
Scrubbing is again required to reduce the chance of co-resident upsets.
Triple-module redundancy

Functional Block

Voter

Feedback

Feedback from the voters corrects state errors inside blocks

TMR stops error propagation

Single upsets cannot cause errors

Error propagation requires upsets in two parallel modules.

Even multiple upsets may not cause errors
Model of TMR System

Edmonds TMR Equation – small r approx.

\[R \approx 3M T_C \left(M_2 r \right)^2 \]
Edmonds TMR Equation – small r approx.

$$R \approx 3M T_C \left(M_2 r \right)^2$$

Parameter is really the second moment of the distribution of N's. This is a "cousin" of the standard deviation.

$$M_2 = \left[\frac{1}{M} \sum_{i=1}^{M} N_i^2 \right]^{1/2}$$

Example Application - Multipliers

[Graph showing data points and curves for system errors/second vs. r (bit errors/bit-second).]

Given parameters: \(T = 0.266 \) s, \(M = 900 \)
Fit parameter: \(M_2 = 200 \)
Example Application - Counter Design

Given parameters: $T=0.266$ s, $M=8224$
Fit parameter: $M_2=M_3=M_4=200$

Example Application - BRAM Scrubber

Given parameters: $T=2$ ms, $M=48000$
Fit parameter: $M_2=M_3=M_4=250$
In Review ...

New Edmonds Equation for TMR is

- General (for TMR-ed systems)
- Powerful
 - Works over many orders-of-magnitude
- Based on moments which are
 - Statistically meaningful
 - Of rapidly diminishing importance so only one (or two) adjustable parameters are enough
 - Calculable, in theory anyway; in practice, probably not.
- Useful
 - In predicting system error rates in space
 - In designing appropriate in-beam testing