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Abstract. 
An Autonomous Science Agent has been flying 
onboard the Earth Observing One Spacecraft since 
2003. This software enables the spacecraft to 
autonomously detect and responds to science events 
occurring on the Earth such as volcanoes, flooding, and 
snow melt. The package includes AI-based software 
systems that perform science data analysis, deliberative 
planning, and run-time robust execution. This software 
is in routine use to fly the EO-l mission. In this paper 
we briefly review the agent architecture and discuss 
lessons learned from this multi-year flight effort 
pertinent to deployment of software agents to critical 
applications. 

1 Introduction 
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The Autonomous Sciencecraft Experiment (ASE) is 
currently flying autonomous agent software on the 
Earth Observing One (EO-1) spacecraft [19]. This 
software uses several integrated autonomy 
technologies to enable autonomous science. Multiple 
algorithms to detect the occurrence of science events 
based on remote sensing imagery analyze science data 
onboard. These algorithms are used to downlink 
science data only on change, and detect features of 
scientific interest such as volcanic eruptions, flooding, 
ice breakup, and presence of cloud cover. These 
onboard science algorithms are inputs to onboard 
decision-making algorithms that then modifies the 
spacecraft observation plan to capture high value 
science events. This new observation ~ l a n  is then be 
executed by a robust goal and task oriented execution 
system, able to adjust the plan to succeed despite run- 
time anomalies and uncertainties. Together these 
technologies enable autonomous goal-directed 
exploration and data acquisition to maximize science 
return. This paper describes the Autonomous 
Sciencecraft Experiment (ASE) effort to develop and 
deploy the Autonomous Science Agent on the ~ a r t h  
Observing One spacecraft. 
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The ASE onboard flight software includes several 
autonomy software components: 

Onboard science algorithms that analyze the image 
data to detect trigger conditions such as science 
events, "interesting" features, changes relative to 
previous observations, and cloud detection for 
onboard image masking 
Robust execution management s o h a r e  using the 
Spacecraft Command Language (SCL) [I 0] package 
to enable event-driven processing and low-level 
autonomy 
The Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) [5] software 
that replans activities, including downlink, based on 
science observations in the previous orbit cycles 

The onboard science algorithms analyze the images to 
extract static features and detect changes relative to 
previous observations. The software analyzes EO-1 
Hyperion data to automatically identify regions of 
interest including land, ice, snow, water, and thermally 
hot areas. Repeat imagery using these algorithms can 
detect regions of change (such as flooding and ice 
melt) as well as regions of activity (such as lava 
flows). Using these algorithms onboard enables 
retargeting and search, e.g., retargeting the instrument 
on a subsequent orbit cycle to identify and capture the 
full extent of a flood. On future interplanetary space 
missions, onboard science analysis will enable capture 
of short-lived science phenomena. These can be 
captured at the finest time-scales without 
overwhelming onboard memory or downlink 
capacities by varying the data collection rate on the 
fly. Examples include: eruption of volcanoes on 10, 
formation of jets on comets, and phase transitions in 
ring systems. Generation of derived science products 
(e.g., boundary descriptions, catalogs) and change- 
based triggering will also reduce data volumes to a 
manageable level for extended duration missions that 
study long-term phenomena such as atmospheric 
changes at Jupiter and flexing and cracking of the ice 
crust and resurfacing on Europa. 
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The onboard planner (CASPER) generates mission 
operations plans from goals provided by the onboard 
science analysis module. The model-based planning 
algorithms enables rapid response to a wide range of 
operations scenarios based on a deep model of 
spacecraft constraints, including faster recovery from 
spacecraft anomalies. The onboard planner accepts as 
inputs the science and engineering goals and ensures 
high-level goal-oriented behavior. 

The robust execution system (SCL) accepts the 
CASPER-derived plan as an input and expands the 
plan into low-level commands. SCL monitors the 
execution of the plan and has the flexibility and 
knowledge to perform event-driven commanding to 
enable local improvements in execution as well as 
local responses to anomalies. 
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Figure 1. Autonomous Science Scenario 

A typical ASE scenario involves monitoring of active 
volcano regions such as Mt. Etna in Sicily, Italy. ASE 
has already been used to perform similar 
demonstrations. The ASE concept is described as 
follows: 

I. Initially, ASE has a list of science targets to 
monitor that have been sent as high-level 
goals from the ground. 

2. As part of normal operations, CASPER 
generates a plan to monitor the targets on this 
list by periodically imaging them with the 
Hyperion instrument. For volcanic studies, 
the infra-red and near infra-red bands are 
used. 

3. During execution of this plan, the EO-1 
spacecraft images Mt. Etna with the Hyperion 
instrument. 

4. The onboard science algorithms analyze the 
image and detect a fresh lava flow, or active 
vent. If new activity is detected, a science 
goal is generated to continue monitoring the 
volcanic site. If no activity is observed, the 
image is not downlinked. 

5.  Assuming a new goal is generated, CASPER 
plans to acquire a further image of the 
ongoing volcanic activity. 

6. The SCL software executes the CASPER 
generated plan to re-image the site. 

7. This cycle is then repeated on subsequent 
observations. 

Building autonomy software for space missions has a 
number of challenges. 

1. Limited, intermitlent communications to the 
agent. A typical spacecraft in low earth orbit 
(such as EO-1) has 8 10-minute 
communications opportunities per day. This 
means that the spacecraft must be able to 
operate for long periods of time without 
supervision. For deep space missions the 
spacecraft may be in communications far less 
frequently. Some deep space missions only 
contact the spacecraft once per week, or even 
once every several weeks. 

2. Spacecraft are very complex. A typical 
spacecraft has thousands of components, each 
of which must be carefully engineered to 
survive rigors of space (extreme temperature, 
radiation, physical stresses). Add to this the 
fact that many components are one-of-a-kind 
and thus have behaviors that are hard to 
characterize. 

3 .  Limited observability. Because processing 
telemetry is expensive, onboard storage is 
limited, and downlink bandwidth is limited, 
engineering telemetry is limited. Thus 
onboard software must be able to make 
decisions on limited information and ground 
operations teams must be able to operate the 
spacecraft with even more limited 
information. 

4. Limited computing power. Because of 
limited power onboard, spacecraft computing 
resources are usually very constrained. An 
average spacecraft CPUs offer 25 MIPS and 
128 MB RAM - far less than a typical 
personal computer. Our CPU allocation for 
ASE on EO-I is 4 MIPS and l28MB RAM. 



5. High stakes. A typical space mission costs 
hundreds of millions of dollars, any failure 
has significant economic impact. The total 
EO-1 Mission cost is over $100 million 
dollars. Over financial cost, many launch 
andlor mission opportunities are limited by 
planetary geometries. In these cases, if a 
space mission is lost it may be years before 
another similar mission can be launched. 
Additionally, a space mission can take years 
to plan, construct the spacecraft, and reach 
their targets. This delay can be catastrophic. 

In the remainder of this paper we describe the ASE 
software architecture and components. We then 
discuss how the issues of reliability and performance 
affected the software architecture. For a more in- 
depth discussion of the validation and testing process 
used for ASE see 1171. 

2 The EO-1 Mission 

Earth Observing-l (EO-1) is the first satellite in 
NASA's New Millennium Program Earth Observing 
series. EO-1 was launched on a Delta 7320 from 
Vandenberg Air Force Base on November 21, 2000. 
Its orbit allows for 16-day repeat tracks, with 3 over 
flights per 16-day cycle with a less than 10-degree 
change in viewing angle. 

ASE uses the Hyperion hyper spectral instrument. 
The instrument typically images a 7.5 km by 42 km 
land area at 30m per pixel. 

The EO-1 spacecraft has two Mongoose M5 
processors. The first M5 is used for the EO-1 
command and data handling functions. The other M5 
is part of the WARP (Wideband Advanced Recorder 
Processor), a large mass storage device. Each M5 runs 
at 12 MHz (for -8 MIPS) and has 256 MB RAM. 
Both M5's run the VxWorks operating system. The 
ASE software operates on the WARP M5. This 
provides an added level of safety for the spacecraft 
since the ASE software does not run on the main 
spacecraft processor. 

3 The EO-1 Science Agent 

The autonomy software on EO-1 is organized into a 
traditional three-layer architecture (See Figure 2.). At 
the highest level of abstraction, the Continuous 
Activity Scheduling Planning Execution and 
Replanning (CASPER) software is responsible for 
mission planning functions. CASPER schedules 
science activities while respecting spacecraft 
operations and resource constraints. The duration of 
the planning process is on the order of tens of minutes. 
CASPER scheduled activities are inputs to the 
Spacecraft Command Language (SCL) system, which 
generates the detailed sequence commands 
corresponding to CASPER scheduled activities. SCL 
operates on the several second timescale. Below SCL 
the EO-1 flight software is responsible for lower level 

control of the spacecraft and also operates a full layer 
of independent fault protection. The interface from 
SCL to the EO-1 flight software is at the same level as 
ground generated command sequences. The science 
analysis software is scheduled by CASPER and 
executed by SCL in batch mode. The results from the 
science analysis software result in new observation 
requests presented to the CASPER system for 
integration in the mission plan. 

This layered architechue was chosen for two principal 
reasons: 

1. The layered architecture enables separation of 
responses based on timescale and most 
appropriate representation. The flight 
software level must implement control loops 
and fault protection and respond very rapidly 
(within one second) and is thus directly coded 
in C. SCL must respond quickly (in seconds) 
nd perform many procedural actions. Hence 
SCL uses as its core representation scripts, 
rules, and database records. CASPER must 
reason about longer term operations, state, 
and resource constraints. Because of its time 
latency, it can afford to use a mostly 
declarative artificial intelligence 
plannerlscheduler representation. CASPER 
is able to respond within 10s of minutes. 

2. The layered architecture enables redundant 
implementation of critical functions - most 
notable spacecraft safety constraint checking. 
In the design of our spacecraft agent model, 
we implemented spacecraft safety constraints 
in all levels where feasible. 
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Figure 2. Autonomy Software Architecture 

Each of the software modules operates at a separate 
priority level within the VxWorks real-time operating 
system onhoard EO-1. The batch processes (Science) 



have the lowest priority, with CASPER, L2, and SCL 
with increasing priority. 

This agent architecture is designed to scale to 
multiple agents with agents communicating at either 
the planner level (via goals) or the execution level (to 
coordinate execution) (see clement, barren) 

We now describe each of the components of our 
architecture in further detail. 

3.1 Onboa rd  Science Analysis 
The first step in the autonomous science decision cycle 
is detection of interesting science events. We are 
flying several science event detection modules 
including: 

- Thermal anomaly detection - uses infrared spectra 
peaks to detect lava flows and other volcanic 
activity. . Cloud detection [I71 - uses intensities at six 
different spectra and thresholds to identify likely 
clouds in scenes. 
Flood scene classification - uses ratios at several 
spectra to identify signatures of water inundation as 
well as vegetation changes caused by flooding. (see 
Figure 4.) 

. Change detection - uses multiple spectra to identify 
regions changed from one image to another. This 
technique is applicable to many science phenomena 
including lava flows, flooding, freezing and thawing 
and is used in conjunction with cloud detection. 

Onhoard detection of these science events enables 
ASE to monitor targets for extended periods of time 
for activity and automatically retarget when events are 
detected. For example, ASE might be used to monitor 
a dry riverbed acquiring 1 image every 16 days - but 
to increase the observation cadence to 5 images every 

Figure 4. Flood detection timeseries imagery of 
Australia's Diamantina river with visual spectra at left 
and flood detection map at right. 

Of particular interest is the study of Snow-Water- 
Ice-Land (SWIL) events. These algorithms are used to 
detect lake freezeithaw cycles and seasonal sea ice. In 
this area, the ASE science team first manually 
developed classifiers. We later used scientist labeled 
data in conjunction with machine learning techniques 

to automatically develop improved classifiers [ref 
becky]. In particular, Support Vector Machines were 
used to develop classifiers that outperformed the 
scientist derived classifiers. It is these SVM classifiers 
that are currently being used for EO-1 operations. 

3.2 Onboard  Mission Planning 
The CASPER [5] planner enables ASE to 
autonomously replan its future activities based on 
science event detections. CASPER is a deliberative, 
model-based A1 planner which uses a local search 
approach 1151 to develop operations plans. 

Because onboard computing resources are scarce, 
CASPER must be very efficient in generating plans. 
While a typical desktop or laptop PC may have 2000- 
3000 MIPS performance, 5-20 MIPS is more typical 
onboard a spacecraft. In the case of EO-1, the 
Mongoose V CPU has approximately 8 MIPS. Of the 
3 software packages, CASPER is by far the most 
computationally intensive. For that reason, our 
optimization efforts were focused on CASPER. 
Careful engineering and modeling were required to 
enable CASPER to build a plan in tens of minutes on 
the relatively slow CPU. 

In the context of ASE, CASPER reasons about the 
majority of spacecraft operations constraints directly 
in its modeling language. However, ground operations 
still perform spacecraft orbit maintenance and 
momentum management. 

3.3 Onboa rd  Robust  Execution 
ASE uses the Spacecraft Command Language (SCL) 
[lo] to provide robust execution. SCL is a software 
package that integrates procedural programming with 
a real-time, forward-chaining, rule-based system. A 
publish/subscribe software bus allows the distribution 
of notification and request messages to integrate SCL 
with other onboard software. This design enables both 
loose or tight coupling between SCL and other flight 
software as appropriate. 

Many aspects of autonomy are implemented in 
SCL. For example, SCL implements many constraint 
checks that are redundant with those in the EO-1 fault 
protection software. Before SCL sends each command 
to the EO-1 command processor, it undergoes a series 
of constraint checks to ensure that it is a valid 
command. Any pre-requisite states required by the 
command are checked (such as the communications 
system being in the correct mode to accept a 
command). Using SCL to check these constraints 
(while included in the CASPER model) provides an 
additional level of safety to the autonomy flight 
software. 

3.4 Model-based Diagnosis 
More recently ASE has teamed with the NASA Ames 
Research Center to fly the Livingstone 2 Mode 
Identification and Diagnosis software [I61 beginning 
in Fa11 2004. Both L2 and CASPER use models of the 



spacecraft separate from the reasoning engine: the 
models are tailored for a particular application without 
the need to change the software, allowing reuse of the 
advanced reasoning software across applications. The 
intent is that a trained subsystem engineer could build 
these models even at the design stage. The diagnostic 
capability of an on-board agent can then use the 
models to monitor the health of the spacecraft and 
detect faults. By reconfiguring the spacecraft, the 
agent may recover functionality and continue on to 
meet its mission goals. Mission operators are promptly 
informed of anomalies, as well as routine state 
transitions of the spacecraft. In any sizable system, 
there are multiple points of failure and ambiguity as to 
the true fault. If a fault occurs, L2 presents several 
hypotheses with their probabilities, rather than the 
minimal single solution as did L1. Common cause 
faults are isolated to their root cause, more likely than 
alternate hypotheses which have multiple independent 
concurrent faults. L2 diagnoses faults that impact 
multiple subsystems (such as power) and localized 
faults (such as a failed subsystem sensor) with equal 
ease, allowing the diagnostic capability to scale with 
increasing system complexity. 
The most significant advances of L2 over previous 
work which were demonstrated are: 

Multiple Hypotheses and Multiple 
Hypotheses with Backtracking - Capability to 
track multiple diagnostic hypotheses and 
revise hypotheses given new evidence 
(backtracking), important in any complex 
system; 
Diagnosis During Transients - Capability to 
monitor the spacecraft state and diagnose 
faults during transients, both under partial 
obse~ability (before telemetry responses are 
seen) and whilst the physical dynamics of the 
system are settling out. 

3.5 Status 

The ASE software has flown in a series of 
increasing tests beginning in March 2003. Full 
autonomous science operations were first 
demonstrated in January 2004. As of February 2005, 
ASE software had been used to successfully acquire 
over 1000 science images and had operated as long as 
three weeks continuously. Our operations have been 
so successfbl the EO-1 flight operations team now 
uses the ASE software for normal operations. 

4. Lessons Learned on ASE 

One of the most important lessons learned in the flight 
of ASE was that the overall architecture and systems 
used were extremely synergistic and key to the success 
of the experiment. The two components that represent 
mission operations and spacecraR constraint 

knowledge (CASPER and SCL) have very different 
representations. CASPER uses an activity centered 
model that represents spacecraft states, resources, and 
timing requirements. SCL easily encodes procedures 
in the form of Do A then Do B then wait for condition 
C, then do E. These varied representations were 
invaluable in representing a wide range of operations 
sirnations and responses (this result is consistent with 
other experiences in automated planning [20,21]). 

Another important theme which was validated by 
flight experience is that encoding information in 
models rather than code yields many benefits. First, 
models are often more readable and directly represent 
the intent. This results in more rapid encoding, easier 
validation, and shared understanding of the overall 
system by larger elements of the team. Second, 
updates to the overall system that only require a model 
change are much easier. Code changes required that 
code patches be generated, uploaded and implemented 
(as patches to the executable binary onboard), a 
process expensive in effort, time, and filled with 
chances for mistakes. In the worst case, extensive 
code changes could require a complete binary image 
upload (see below). In contrast, model changes 
require an upload of a text or binary file and a restart 
of the ASE control software, a much easier process. 

Another major challenge to the experiment was 
validation and versionlupate management. Originally, 
we planned on using a significant simulation 
capability to test out many aspects of the agent 
software, models, and integration with the flight 
software [17]. However, while this was invaluable in 
validating early versions of the software and 
throughout integration, for later versions we found that 
this exhaustive testing took significant effort for little 
payoff. As a result, in later releases we tailored the 
validation and testing to the modifications to the 
software that were being made. This meant that the 
test scenarios were targeted at the specific 
modifications, enhancements, or extensions in the 
release. For example, when various instrument 
calibration activities were added to the ASE model, 
test cases were designed to focus on areas of the model 
that had been changed or added since the last version. 
Another challenge was balancing the release schedule 
against the ongoing flight testing. When flight testing 
revealed that a model or software should be updated, 
almost always an operations workaround existed. This 
meant that we had several options: 1. implement an 
operational workaround, 2, the software (or model) 
could be patched, or 3. wait and incorporate the fix at 
the next release upload. The factors to balance are: 1. 
operational workarounds restrict the capability of the 
mission and/or cause the operations team more work 
andlor increase the possibility of mis-operating the 
spacecraft; 2. software patches take effort and include 
their own risk of introducing errors into the flight load; 
and 3. major releases requires a long time to upload (3 
weeks), required significant mission downtime for 
checkout (days), and required workarounds for 
significant periods of time (we have had only four 
versions uploaded in about 18 months of operation). 



One adjunct to the testinglrelease process is that 
having a high fidelity testbed is invaluable to facilitate 
integration and pre-operational testing. Unfortunately, 
when we began working with the EO-1 mission, 
because of cost constraints they had only a single, 
small memory, not very high fidelity testbed. Because 
of cost constraints, the majority of their testing had 
been done on the spacecraft prior to launch. Because 
of this situation. ASE funded construction of three 
higher fidelity testbeds at significant cost (several 
hundred thousand dollars). However, the construction, 
delivery, debugging, and configuration of these 
testbeds was an extensive process which took 6 
month for the deliverv of the first testbed to 12 
months before the las; one was fully functional. 
Additionally, significant resources were devoted to 
upgrading the testbed simulation capability to make it 
more able to model aspects of flight that ASE would 
require. Even after this process was complete, the 
developed testbeds are far less than typical for a 
mainstream NASA mission such as Odyssey or the 
Mars Exploration rovers. 

Another lesson learned was that infrastructure to 
operate ASE was much more important and greater 
effort than we had originally envisioned. In order to 
track what was going on onboard the spacecraft within 
the ASE software, it required significant engineering 
to figure out what was the minimal information 
necessary [22] ,  how to summarize it appropriately, and 
how to automate getting it down from the spacecraft, 
and how to get it to the ASE team, and how to process, 
visualize, and analyze it. Additionally, as the usage of 
the ASE software has changed from "monitor every 
single aspect of its operations" to "monitor similar to 
conventional operations" to the move to more "lights 
out" operations, the levels of telemetry needed have 
changed and the amount of automation required to 
deliver telemetry has increased significantly. 

One of the major advantages of going to the ASE 
software to operate the spacecraft has been the 
increase in flexibility of operations of the spacecraft. 
In the conventional operations mode, typically 
observation selections were made 6-12 days in 
advance. While observations could be changed at the 
last minute (1-3 days in advance) for targets of 
opportunity, the significant manual re-work required 
limited this to fewer science events. In the automated 
operations mode, nominal targets are selected in 
advance, but automated triggered observations 
replacements and scientist last minute requests 2 days 
in advance do not require major rework and hence 
have becomes commonplace. 

One lesson learned is the sheer size and scope of 
operations. From the science selection, to engineering 
activities, to scheduling ground contacts, to the actual 
generation of command loads, and handling of 
anomalies, there is an immense number of small and 
large tasks involved in the spacecraft operations flow. 
Only by extended contact (multi-year coIlaboration) 
has it been possible to understand the operations flow 

enough to be involved in the end to end automation of 
EO-1 operations. 

As a specific example of how the EO-1 mission has 
evolved consider how its staffing and science product 
efficiency have improved steadily over the mission 
lifetime. Originally, the intent was to fly EO-1 
acquiring several images per day. Now, EO-1 is 
operated to acquire many (-16) images per day. In 
some cases, EO-1 acquires "dual collects" in which on 
a single orbit it acquires imagery of two targets, 
without even shutting down elements of the 
instruments in between images. This has enables EO- 
1 to increase its utilization efficiency to where it is 
currently acquiring about 120 scenes per day. This 
evolution is a reflection of the innovativeness and 
excellence of the EO-1 operations team. In some 
sense, this evolution is an indication as to how most of 
the low hanging fruit for automation of EO-1 had 
already been exploited prior to the flight of ASE. 

Very important to the experiment success was long- 
term contact between the JPL A1 and Goddard EO-1 
Flight Operations teams. Throughout the experiment, 
many trips were made to GSFC where multiple JPL 
team members spent long periods of time at GSFC 
observing operations and for every major checkout of 
the software. This enabled the JPL personnel to 
understand in depth the spacecraft and operations 
constraints. This also enabled GSFC uersonnel to 
understand in depth how the A1 software worked. 
This long term learning experience was critical to the 
view of both institutions working as one team (as well 
as the elements at Interface & control). This enabled 
the group to understand the (possibly competing) 
motivations of team members. For example, when 
anomalies occurred it enabled the joint team to agree 
on reasonable steps to investigate. Nowhere was this 
more clearlv illustrated than after anomalies. In two 
cases, where very serious anomalies occurred, the joint 
team was in agreement that if the anomaly could not 
be explained after specific tests that the flight test 
would continue despite the very real chance of 
recurring anomaly. 

Specifically, in November 2003, during a flight test, 
the EO-1 Solid State Recorder (SSR) powered off near 
the end of a data acquisition under ASE control. 
During this image acquisition there was no ground 
contact with the spacecraft. The joint team agreed on 
analyzing the telemetry, re-running in testbed under 
varying conditions, and checking certain fault 
responses. The team also agreed that if all of these 
steps did not uncover the problem and three weeks had 
passed flight experimentation would continue. The 
team concluded that in this case more data would be 
needed to diagnose the problem and a test case was 
devised in which the spacecraft would image a ground 
station so that real-time telemetry would be available 
if the anomaly recurred. Luckily, after 2.5 weeks the 
cause of the anomaly was found. While the ground 
testbed had shown CPU loading during end of 
recording an image at only 80%, flight data showed 
that the CPU was pegged at 100%. Furthermore, it 
was discovered that if the memory scrub task was 



starved for more than 8 seconds a fault response to 
power down the SSR was invoked. This response was 
discovered only by code inspection (e.g. it was not 
present in the available flight software 
documentation). This was suprising because the 
memory scrub task is not time critical in that it must 
cycle through memory some number of times every 24 
hours but short term stoppage is not critical. This 
anomaly was resolved by patching the flight software 
response to log an error message rather than power 
down the SSR. 

In January 2005, with a new release of the software, 
an anomaly was experienced during an apparently idle 
portion of operations. Specifically, the CASPER 
planning software threw an exception, which invoked 
a fault response to restart the secondary processor 
running the ASE software (e.g. EO-1 reverted to 
normal control). Again, the joint operations team 
agreed to: analyze the telemetry, try to reproduce the 
fault in the ground testbed, and also to examine all 
areas of code that were changed or added in the new 
release. However, as the operations team was very 
comfortable with the ASE software, the team 
suggested that if the problem could not be diagnosed 
in two weeks autonomous operations should be 
restarted (note that at this time we had approximately 
1 year of successful autonomous operations and 800 
autonomous image takes). This anomaly was 
particularly vexing as it occurred in an apparently idle 
period of operations (again with no ground contact). 
After analyzing the telemetry and unsuccessfully 
trylng to reproduce the error in the ground testbed, 
prospects for diagnosing the problem were not good. 
However, analysis of the new features added in the 
release revealed that a new onboard science data 
summarization algorithm was writing the science 
summary data to an incorrect address. The 
implemented address corresponded to RAM allocated 
to CASPER data structures, and in flight prior 
generated science summary products overwrote 
CASPER RAM - resulting in the later exception. 

One interesting effect of the prolonged 
intermingling of the operations team is that certain 
members of the technology team acquired a strong risk 
aversion as operations continued. This has progressed 
to the point where for current operations members of 
the EO-1 flight operations team are often more willing 
to aggressively test and utilize the autonomy software. 

10 Related Work, and Conclusions 

In 1999, the Remote Agent experiment (RAX) [13] 
executed for a several days onboard the NASA Deep 
Space One mission. RAX is an example of a classic 
three-tiered architecture [8], as is ASE. RAX 
demonstrated a batch onboard planning capability (as 
opposed to CASPER's continuous planning) and RAX 
did not demonstrate onboard science. PROBA [14] is 
a European Space Agency (ESA) mission 
demonstrates onboard autonomy and launched in 

200 1. However, ASE has more of a focus on model- 
based autonomy than PROBA. 

The Three Comer Sat (3CS) University Nanosat 
mission used CASPER onboard planning software 
integrated with the SCL ground and flight execution 
software [3]. The 3CS mission was launched in 
December 2004 but the spacecraft were lost due to a 
deployment failure. The 3CS autonomy software 
includes onboard science data validation, replanning, 
robust execution, and multiple model-based anomaly 
detection. The 3CS mission is considerably less 
complex than EO-1 but still represents an important 
step in the integration and flight of onboard autonomy 
software. 

More recent work from NASA Ames Research 
Center is focused on building the IDEA planning and 
execution architecture 1121. In IDEA, the planner and 
execution software are combined into a "reactive 
planner" and operate using the same domain model. A 
single planning and execution model can simplify 
validation, which is a difficult problem for 
autonomous systems. For EO-1, the CASPER planner 
and SCL executive use separate models. While this 
has the advantage of the flexibility of both procedural 
and declarative representations, a single model would 
be easier to validate. We have designed the CASPER 
modeling language to be used by domain experts, thus 
not requiring planning experts. Our use of SCL is 
similar to the "plan runner" in IDEA but SCL encodes 
more intelligence. The EO-1 science analysis software 
is defmed as one of the "controlling systems" in 
IDEA. In the IDEA architecture, a communications 
wrapper is used to send messages between the agents, 
similar to the software bus in EO- 1. In the description 
of IDEA there is no information about the deployment 
of IDEA to any domains, so a comparison of the 
performance or capabilities is not possible at this time. 
In many ways IDEA represents a more AI-centric 
architecture with declarative modeling at its core and 
ASE represents more of an evolutionary engineered 
solution. 

ASE was originally scheduled for flight on the 
Techsat-21 mission [18]. However this mission was 
cancelled and the software was adapted for flight on 
EO-1. The principal changes from the Techsat-21 to 
EO-1 are that the science payload was changed from a 
synthetic aperture radar (SAR) to a hyperspectral 
imaging device (Hyperion). This change requires 
significant alteration to the science targets and analysis 
algorithms. The basic sofmare architecture and 
components (e.g. CASPER and SCL) have remained 
the same. This paper also reports on some of our 
experiences in getting the software to flight and 
operations. 

ASE on EO-1 demonstrates an integrated 
autonomous mission using onboard science analysis, 
replanning, and robust execution. The ASE performs 
intelligent science data selection that will lead to a 
reduction in data downlink. In addition, the ASE will 
increase science return through autonomous 
retargetmg. Demonstration of these capabilities 
onboard EO-1 will enable radically different missions 



with significant onboard decision-making leading to 
novel science opportumties. The paradigm shift 
toward hghly autonomous spacecraft will enable 
future NASA missions to achieve significantly greater 
science returns with reduced risk and reduced 
operations cost. 
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