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This paper presents ongoing work to standardize model-based system engineering as a
complement to point design development in the conceptual design phase of deep space
missions. It summarizes two first steps towards practical application of this capability within
the framework of concurrent engineering design teams and their customers. The first step is
standard generation of system sensitivities models as the output of concurrent engineering
design sessions, representing the local trade space around a point design. A review of the
chosen model development process, and the results of three case study examples,
demonstrate that a simple update to the concurrent engineering design process can easily
capture sensitivities to key requirements. It can serve as a valuable tool to analyze design
drivers and uncover breakpoints in the design. The second step is development of rough­
order-of-magnitude, broad-range-of-validity design models for rapid exploration of the trade
space, before selection of a point design. At least one case study demonstrated the feasibility
to generate such models in a concurrent engineering session. The experiment indicated that
such a capability could yield valid system-level conclusions for a trade space composed of
understood elements. Ongoing efforts are assessing the practicality of developing end-to-end
system-level design models for use before even convening the first concurrent engineering
session, starting with modeling an end-to-end Mars architecture.

I. Introduction

E Ngineering design practices have been experiencing an increasing pressure to change, as more and more
space projects have been suffering from freezing their system-level design too early in their lifecyde. This

paper describes work performed at the Jet Propulsion Laboratory (JPL) under the Model-Based Engineering Design
(MBED) task, by which point designs are complemented by system-level models, allowing trade space exploration
during early stages of development as well as dramatically improved flexibility to customer requirements

Space missions are divided into four phases: conceptual design, formulation, implementation, and operations.
Traditionally, the conceptual phase develops a feasible design, from which requirements are derived. When several
options are possible, trade studies are carried out to select the design that best meets the mission objectives while
meeting cost and programmatic constraints. The formulation phase transforms these requirements into a detailed,
build-able point design to be carried forward into the implementation phase.

These traditional design practices stem from the assumption that high-level requirements are well developed and
fairly stable in the formulation phase; if such is the case, these requirements can be used as a metric for
optimization, and early selection of the "optimal" point design is a cost- and schedule-efficient choice. In practice
however, requirements keep fluctuating for several reasons. First, deeper analysis of the design almost invariably
uncovers issues, some of which involve reconsideration at the system or even requirements level; very high cost
estimates are a typical example. Second, sponsor requirements frequently continue to change due to funds
availability, changes in overall objective, or both. Third, requirements from the science team (or another customer)
may change, due to maturation of the investigations, results from other missions, or changes in the target itself. The
result is a critical need for the capability to keep an evolving design and the evolving user needs in balance with
each other.

The Model-Based Engineering Design (MBED) initiative at the Jet Propulsion Laboratory (MBED) stems from
the belief that early modeling of the design can offer a solution to this problem. The MBED Vision is to complement
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the current textual description of requirements and point designs by end-to-end models that relate requirements.
system design. system performance and project cost.

A number of the tools. processes and teams required to make this Vision a reality already exist or are in
development. Mission design tools. and scenario-driven simulations are in wide use. Concurrent engineering design
teams such as the Advanced Projects Design Team (Team X) have set the standard for fast translation of
requirements into design and trade-offs of requirements versus cost l

. Agile trade space manipulation and
visualization tools have been introduced for easier analysis of trade results2

, Only recently have a few projects
started integrating their subsystem models into system-level "project trade models" with the goal to carry out
systematic exploration of the trade space3

,4 and estimate the partial derivatives of their cost to their requirements5
,6.

The MBED is a research initiative into the tools and processes required to assemble these pieces into a coherent
whole with general applicability. so as to make model-based engineering design a standard practice for projects from
the earliest stages of the formulation phase and throughout the implementation phase. Its vision has been reviewed
in previous papers7

• The first year of this multi-year task focused on developing MBED capabilities for the
conceptual design phase. at the very earliest stages of a project. Two distinct set of capabilities were developed to
address the particular needs of two types of missions: Earth-orbiting satellites and deep-space missions. This paper
will treat only the latter,

Definitions of the words model, tool. model uncertainty. and model error as they are used in this paper are
provided in the Appendix for clarity.

II. Current State of Trade Space Exploration for Deep-Space Missions

A. The Current Conceptual Design Process is Very Efficient at Science-Driven Point Design Development
The design processes. methods and tools used in NASA organizations are geared towards the "ideal" science­

driven requirements flow down. leading to a point design optimized for a set of science requirements:
1) Level 1 requirements are set based on the key mission and program goals.
2) The Science Team develops a Science Traceability matrix tracing the mission goals to key NASA goals,

and tracing them down into qualitative measurement objectives and quantitative measurement requirements
3) The Science and Instruments Teams decide on an instrument suite. and flow measurement requirements

down into quantitative instrument requirements. used to develop the design of the instruments.
4) The Instruments and Engineering Teams translate instrument designs into payload accommodation

requirements. to be used together with Levell requirements as the basis for system design.
5) A mission-level tree of trade options is developed and analyzed mostly qualitatively. taking into account

likely impact on cost, risk, and performance towards meeting the requirements; state of technology,
potential design heritage, and programmatic considerations also play an important role. One or a few
options are retained for further study.

6) A design team is formed, with expert representatives of all subsystems for the mission. The team first
develops a feasible design that meets the mission objectives, and estimates its cost.

7) A - If the design and cost are satisfying. the team uses this baseline architecture and system-level design as
the basis for subsystem-level trades, to finally conclude on a design that is "near optimal", i.e. meeting the
science requirements while minimizing project cost. at an acceptable level of risk.
B - If the cost estimate exceeds the cost cap for the project. the team revisits its architectural trades (5) and
measurement and I or its instruments requirements (3-4). Several cycles through the whole process are
often required to converge on a solution with satisfying design and cost.

The traceability from science objectives down to spacecraft and mission design provides direction for any
spacecraft design trade-offs and optimization. The process has been improved further by the use of concurrent
engineering design teams. By having all subsystem experts working concurrently in the same room with links
between their design tools, system trades and design iterations can be carried out in real time'. At the Jet Propulsion
Laboratory, Steps 1) through 5) are performed by a core dedicated mission study team. including at least a Principal
Investigator (PI), a study lead and a systems engineer, in the span of a few days to a few months. Once the
architecture and requirements for the project are defined, they are very often taken to an Advanced Project Design
Team (typically "Team X") for Step 6) using concurrent engineering, which makes it possible to generate a feasible
design, internally consistent system-wide. in less than two weeks. The converged system-level design is transitioned
back to the study team, which at this point includes all the subsystem experts required to proceed with detailed
subsystem-level trades (Step 8A).

2
American Institute of Aeronautics and Astronautics



For missions with focused science objectives, mature instrument design, and small architectural trade space, this
process is a very efficient way to optimize the end-to-end project design before moving into the implementation
phase.

B. Increasing Need for Wider Trade Space Exploration and Point Design Sensitivities Analysis
For more and more mission study teams however, improvements to the process are needed so as to be able to

explore and understand a larger trade space. Trade-offs of project cost versus performance towards project and
program goals are needed to reach a decision on the appropriate high-level requirements for the mission. Generating
several point designs by repeating the cycle above provides an understanding of these trade-offs, but it very often
too time- and resource-consuming to be considered.

Two additional capabilities can help improve the process:
1) An understanding of the sensitivities of the point design developed by the engineering team, with respect to

its Level 1 requirements, payload accommodation requirements, and key design choices. How much heavier
and how much more expensive does the flight system become for each added kg of instrument mass or
instrument power, with each added km of orbital altitude, or with each added degree of latitude band access
on the surface of the planet, with each added day of operations, or for a combination of the above? Design
and cost sensitivities help discover what combination of requirements and design choices have the most
impact on the design and cost of the project, thus providing invaluable guidance in iterating the requirements
flow-down process.

2) For cases when the trade space is too large to know where to start, the capability to rapidly explore a science
or engineering trade space, with moderate amount of effort, before deciding on the measurement
requirements and key architectural features of the mission. By reducing the effort put into the analysis, the
results for each point in the trade space would be expected to have higher deviation than would a
conventional point design. But if the deviation can be kept small enough that order of magnitude cost and
relative conclusions are accurate, this capability provides a quantitative map of a much larger trade space.
The added value is a smarter choice of requirements and architecture before developing a point design.

Set Science
Objectives

Derive Measurements and
Instrument Requirements

Decide on Architecture

Develop Point
Design and Cost
Estimate for 1-3
Points

OK More Detailed.
Subsystem­
Level Modeling

Iterate with changes based
on intuition

a) Current Process, simplified for the purpose of this discussion. "Shooting in the dark" might lead to
many design iterations. Developing an understanding ofa large trade space is prohibitive.

Science ~ Set of Possible

~.
Rapid (low Choose 1-3

Objectives f- Requirements accuracy) Requirements I
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~ Set of Possible

~
Exploration Set(s)

Architectures

"-Lessons learned- Iterate with changes
Improve based on analysis
tradespace
exploration models Develop Point Design(s) and
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b) Future Process, as envisioned in this paper. Rapid trade space exploration and sensitivities analysis
serve as guide for decision making and improve the quality ofthe design after the first iteration.

Figure 1. Envisioned Improvements in the Conceptual Design Phase Process
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For some design problems, the design team intuitively understands the drivers of the trade space, and quantitative
analysis is not required. But as more and more complex flight system elements and programs are considered, these
capabilities would increase the efficiency of the process and the value of the result, by avoiding any "shooting in the
dark" and setting in on the first feasible result. Figure I compares the current conceptual design phase process with
this new envisioned process.

The rest of the paper will describe recent work for development of two new functions: generating design
sensitivity models as an output of a concurrent engineering design team, and developing models for rapid trade
space exploration before concurrent engineering design sessions. A few case studies are provided to illustrate the
potential offered by both capabilities. Future work will focus on bringing these developments into full operational
status, so that they can become standard practice in the conceptual design phase of deep space missions.

III. Modeling Sensitivities around a Point Design in a Concurrent Engineering Team

A. A Model-Based Approach for a more Efficient Use of the Concurrent Engineering Design Sessions
J. Extracting the Whole Value ofConcurrent Engineering Sessions

JPL's project-level concurrent engineering design team, Team X, typically takes as inputs project-level
requirements (destination, lifetime, mission class, redundancy, measurement requirements) and sometimes payload
accommodation requirements, and generates project-level outputs (project cost, schedule, risk) with component­
level resolution (subsystem mass equipment list, mass, power, cost, block diagrams and configuration drawings).
The outputs reflect a design that is converged at the system-level, and analyzed in sufficient depth at the subsystem­
level to ensure feasibility, adequate choice of subsystem components, and reasonable cost estimate accuracy.
Depending on the complexity of the mission (from simple Earth orbiter, to Mars Sample Return mission, through
solar electric propulsion missions to outer planets), this point design accuracy is the work of ten to twenty senior
engineers, over two to four concurrent engineering design sessions. During the sessions, the engineers use their
expert judgment to tailor their standard design tools for use on the specific mission concept they are developing, and
choose appropriate components from their database. In particular, the relationships between subsystems, which
corresponds to the way system requirements flow down into subsystem requirements, change for each particular
point design. For example, instrument data rate could drive the telecom subsystem data rate capability, which could
drive the telecom antenna beamwidth, which in turn could drive the attitude control subsystem's (ACS) pointing
requirement; alternatively, instrument pointing requirement could drive the ACS pointing capability, which together
with power constraints could drive the choice of telecom antenna beamwidth, in turn driving the maximum telecom
data rate, finally resulting in a minimum duration for the telecom pass.

Although a description of a converged point design and its cost estimate are the final product currently delivered
by concurrent engineering design teams, the development of these subsystem relationships is another critical value­
added component of the design sessions, which could be used more effectively. If the Customer team wants to
consider another option, or discovers that they have to slightly change one of the requirements or instrument design,
they are currently faced with two choices: approximating the effect on the Team X study results with their own
tools; or scheduling a new Team X session.

For small excursions around the point design however, such as small change in instrument mass or power, orbit
altitude or landing site latitude, a lot of the design choices made by the team would remain essentially the same. The
session would consist in incremental design changes for the subsystems directly affected by the change in
requirements, and propagation of these changes through the whole system using the same relationships as were
developed for the original design. Unless new system-level issues are uncovered which require revisiting design
decisions and subsystem relationships, such a mechanical convergence of already-established relationships is clearly
not a good use of the Team's time and the Customer's resources. Nor does it make sense for the Customer team to
try and re-create the subsystem relationships already developed by Team X.

A better use of resources is to extract from the concurrent engineering design team, not only the point design, but
the set-up of subsystem relationships that were arrived at for the point design. Assembled together in an automated
tool, these relationships can form a project-level design model with subsystem-level resolution and local range of
validity around the point design, hereafter called sensitivities model.

Since the Team made a lot of decisions that are specific to the point design they were considering, understanding
the range of validity of each relationship is then critical. Designs that would fall outside of the range of validity
would indicate possible system-level issues, or changes in design choices, which are worth a closer look by the
Team. Only design points that thus represent discrete steps in the trade space, for which the Team's time adds the
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most value, would require a new design session. The new session would result in a second set of relationships, valid
in a separate range of validity.

2. Requesting Equations in addition to Equation Results
A reasonably simple upgrade of the concurrent engineering design toolkit is all that is needed to generate such

sensitivities models.
By the nature of their work, concurrent engineering design teams are equipped with the tools to automatically

exchange design parameters. In the case of Team X, the toolkit consists of:
1) One spreadsheet-based design tool per subsystem. The only common point between all subsystem

spreadsheets is their "send I request" feature by which Inputs from other subsystems can be automatically updated,
and Outputs automatically sent. The rest of the spreadsheet includes the databases, design guidelines and design
models specific to the subsystem.

2) A piece of software (ICEMaker©) that automatically distributes all requested Inputs and Outputs throughout
the subsystem tools.

For each point design, each subsystem decides what portion of its design tool to use: which inputs from other
subsystems will be the design drivers; for continuous design parameters (such as structural mass), which available
model will represent the relationships; and for discrete design parameters (such as the choice of telecom radio),
which component from the database best meets the mission needs. Based on these choices and the inputs received
from other subsystems, the subsystem will output to ICEMaker one set of numbers representing one point design.

We are using the following approach to automate the development of sensitivities models in Team X:
1) Develop a list of types of requirements with respect to which we want to be able to estimate sensitivity. This

includes instrument mass, power, and data rate; mission lifetime; level of redundancy; geographical access (orbital
parameters or landing site latitude band and altitude).

2) Develop a matrix or diagram of the typical interdependencies between subsystems; this matrix is a guide as to
how a change in requirements will propagate through the whole design. Figure 2 provides an example of such an
interdependencies for a Mars Lander mission.

3) For each subsystem, determine the set of possible design drivers and update the interdependencies matrix
accordingly. Extract the design drivers that could be changed through a change in one of the important requirements
identified in (1).

4) For each subsystem, list all the possible subsystem component types. For each component type, determine
which design drivers are most important in component selection and sizing.

5) Discrete component types, such as avionics components, represent possibly complex step functions. For the
purpose of sensitivity analysis, they can be represented by a range of validity for the value of a key design driver, for
in which the component remains the same. For a model with slightly larger range of validity, two additional set of
outputs can be created, representing the components that the subsystem engineer would choose for a design driver
value "below" (with lower bound) or "above" (with upper bound) the baseline range of validity.

6) Continuous component types, such as inert masses, are typically local functions of their design driver(s) with
fixed form, but coefficients (and exponents) varying for each design. Two types of new outputs are sufficient to
capture their sensitivities: the value of the equation coefficients, and the estimated range of validity of the equation.

Customer Inputs rl Mission 04 from EDL Analysis
Design

Launch Constraints
Telecom Lander Design

Req. Latitude Band I GDS
Req. Altitude Access ACS

Payload Power

Payload Mass CDS h
Landing Accu racy ... .. Power

1Data Scenario
Structl
Thermal

. ... J
Propul81 hArchitectural I

on

Choices Landed

Telecom Relay
Mass

~

Term.
Propulsion Style ~ Descent

EDL Style to EDL

Figure 2. Example of Subsystem Interdependencies for a Mars Lander Mission
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M d ISGD' TEcT bl 1 U da e )PI ates to oncurrent nl!:meerml!: eSll!:n 00 S to enerate ensltlvltles o e S
Type of Information Subsystem component with discrete choices Continuous subsystem component
Published before • One set of information (mass, power, • One set of information (mass,

cost, performance) power, cost, performance)
Assumed in sensitivities • Dependent on one key design driver • Dependent on a set of design
model template • Unchanged in small range around the drivers

point design • Sizing relationship do not
change form; coefficients are
unchanged in small range
around the point design

Published in addition • Range of validity (on key design driver) • One set of relationship
-low, high coefficients per key output

• One set of information for component (mass, power, etc)
"below" with range of validity • Range of validity (on most

• One set of information for component important design driver)
"above" with range of validity

7) Based on this information, a sensitivities model template can be created and set up to use the above
information as input, and produce delta-point-designs and validity flags as outputs. In other words, the sensitivities
model template is a tool that, once fed with equation coefficients are inputs, instantiates a model.

As summarized in Table 1, the process change requires additional work from each subsystem engineer to decide
on the validity range within which they are comfortable with their design choice, and in the case of discrete
components, think about what other choices they would make slightly beyond this range. This is work that the
subsystem engineer would have to carry out in any case, if the Customer requests a second option be considered by
the Team. By performing the work ahead of time instead, a variety of "delta-designs" can be automatically
generated for much less extra effort.

3. Model Deviation and Range a/Validity
If applied consistently, this method ensures that the model simulates the design change process that the

concurrent engineering design team would follow if asked to provide a small design variation. The deviation on the
model results is about as small as the deviation on the point design results, as long as the variations remain within
the validity range identified by each subsystem.

As we will know illustrate on a few examples, the sensitivities model thus produced is much more than a series
of partial derivative estimates. Instead, it is a multi-variant design model of the local project trade space.

B. Example 1: Solar Electric Propulsion mission options on the propulsion, power, and mission designs
Figure 3 illustrates the importance of modeling to estimate the value of sensitivities and its value to explore the

local tradespace around a point design. It represents the results of a concurrent engineering study for a deep space
mission using solar electric propulsion. The team developed a point design that, although meeting all mission
requirements, was slightly above the acceptable cost cap. The Customer team agreed to consider trading off three
elements of performance to save cost: dry mass contingency (which would increase the risk that the spacecraft
would not fit on the launch vehicle), solar array technology (using a newer, lighter weight array would decrease
mass, but increase cost and risk), and the use of reaction wheels for precise attitude control (which would reduce the
science value of the measurements).

The trade is driven by the interdependencies between the trajectory, the number of operating electric engines,
and the power available from the solar arrays. The optimum trajectory depends on the available power, number of
operating engines and spacecraft launch mass. It turn, if affects launch energy, which drives launch vehicle
capability; and propellant mass, which affects the number of engines required to meet throughput requirements.
Figure 3 plots the cost savings versus dry mass contingency trade space for four different options relating to number
of engines, solar array technology, and presence of reaction wheels. For each case, several points represent different
levels of solar array power.

For each option, the chart identifies the "maximum" power level over which spending more money on the solar
array doesn't increase the trajectory performance enough to increase launch mass margin. It shows how in the cost /
mass margin space, two options clearly dominate (squares for low cost, triangles for mass performance). However,
none of them carries reaction wheels, which would provide additional science value.
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Figure 3. Example of Sensitivities Study Results for a Solar Electric Propulsion Mission

Instead of defining an "optimal" design based on some overarching value metric, delivering a plot such as Fig. 3
helps the Customer understand the trade space landscape, and make their own decision based on a variety of
important metrics.

The very same sensitivities model could be used by technologists, to evaluate sensitivities of the mission design
and project cost to technology performance parameters, such as the specific impulse of the propulsion system or the
efficiency of the solar array. The sensitivity results would provide an estimate of the value of the technology
improvement to the mission, which could be compared to the cost of technology development.

C. Example 2: Sensitivities Models for Mars Landers
The next examples illustrate how the same process can be used to model mission types with different challenges

and different questions.
Figure 4 shows the sensitivities results for the conceptual study of a small human precursor Lander mission to

Mars, The requirements for such a mission are still immature. Instead of trying to optimize the design for set science
requirements. this time the sensitivities are used to map out the requirements space.

Given all the unknowns, the Customer was interested in sensitivity to launch date (which changes trajectory
characteristics), payload mass and power (which relates to various instrument suite options), and latitude access

Project Cost vs Payload Mass, Power and Cost Lander Mass vs Latitude of Acceslblilly
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Figure 4. Example Sensitivities Model Results for a Mars Human Precursor Lander Study. Model results
are graphed beyond their likely validity range to better illustrate break points.
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requirement. The Cu tomer wa al 0 intere ted in knowing the breakpoints in the design of the entry ystem, over
which heritage systems would not be appropriate.

Figure 4 illustrates how the sensitivitie model re ults improve on what is learnt from the pint de ign. It how
that project co t grows about linearly with payload size. but identifies the breakpoints incurred when a larger launch
vehicle is needed. It also show how in trument ma s and power, mission lifetime, and latitude access band can be
traded-off against each other to reach the same wet mass. launch vehicle choice and project cost. orne less-intuitive
conclu -ions can also be reached; for example, launching in 2011 reduced Lander wet mass because of the more
benign arrival condition (ummer arrival). But above a given payload rna . it increases project cost significantly
because the higher launch energy requires a larger launch vehicle.

Figure 5 displays the results of another Mars human precur or Lander tudy. Lower down the line of human
precursor missions, this study considered demonstrating new entry, descent and landing (EDL) technologie to land
a heavy human precursor payload, such as a long-life drilling platform and subscale in-situ propellant production
and storage plant. With help from John on Space Center and Langley Research Center, the Team considered the use
of a new entry and de cent configuration, a mid-Lift-to-Drag ratio aeroshell and high-Mach parachute configuration
for the mission, as a demonstration of the type of technology required for the eventual human mission to Mars.
Wherea the overall architecture was chosen, the payload mas' was known only very approximately, and the landing
ite requirements remain very uncertain. Understanding sensitivities to the,e parameter was therefore an important

complement to the point design.
Here again, the results of the sen 'iti vitie model (Fig. 5) help quantify a number of valuable results such as the

launch mas increa e sen. itivity payload mas and landing altitude. It also helps identify breakpoints in technology:
a Mach 3 parachute could achieve the same landed mass at a much smaller launch mass than a Mach 2 parachute.
Alternatively, for a given altitude, there is a maximum payload mass that can be delivered by each type of parachute.

IV. Broad Trade Space Exploration Models for Initial Point Design Selection

Models at Varying Levels of Error for Varying Level of Det.ail
The previous examples dealt with local trade space exploration around an existing point de ign. Before reaching

2018 ~-+....._

a) Model result are shown beyond actual validity to b) Only designs that can fi' in the lallnch vehi Ie are
emphasize 'he shape oj'he sensi'ivi'ies srI/face. shown.
Figure S. Example Sen itivitics Model Results for a Mars Heavy Landing Study
HoriZOl1fal axis represents landing al,ill/de. Ow-oj-page axis represellls wtal payload mass. Vertical axis
represel1fs launch mass.

that point howe er, mission objectives and Levell requirements had to be known, and a number of architectural
deci 'ion had to be made. Making the e decisions repre ent slicing through a much larger initial trade pace. but
de iding, for example, what type of platform to use (lander or rover, or both?), what instrument to land, what
landing accuracy to require with what landing style, etc.
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1. The Theoretical Foundations for these Improvements Have Been Laid Out by University Research
Ref. 8 provides an excellent overview of recent research in methods for rapid trade space exploration which can

pave the way for practical applications. The paper describes a method for building Customer-specific trade space
exploration models. The level of resolution is controlled by focusing the modeling effort on a limited number of
attributes that constitute what the Customer really cares about. New multi-attribute utility assessment processes and
tools are proposed to provide an optimization metric representative of the concerns from a variety of stakeholders.
Design variables are selected using methods such as Quality Function Deployment (QFD). The models that translate
a design vector into values for the attributes leverage existing orbit simulation software packages, and the well­
established rules-of-thumb for design of Earth orbiters9

. The result is efficient, value-oriented rapid trade space
exploration, and a modeling of utility that can be brought as added value into the concurrent engineering design
session.

2. Adapting the Theory for Successful Practical Use
The theoretical foundations briefly summarized above require adaptation for successful practical use in the

conceptual design phase of deep space missions. It relies on the assumption that rules-of-thumb exist for the design
of the spacecraft, is the case for Earth orbiters. Before deep space missions can take full advantage of advanced trade
space exploration techniques however, they need to start from "square 1" and develop adequate rules-of-thumb
design models. Given the one-of-a-kind nature of deep space missions, the validity of rules-of-thumb can be
questionable. This raises a number of challenges.

First, the development needs to be complemented by a method to track deviation and validity range, so that
results can be effectively used as decision making aids. Deciding to choose an area of a large trade space for closer
study by a design team, relies on the conclusions that the project cost has an acceptable order-of-magnitude, the
mission an acceptable level of performance; and that the mission showed either lower cost, and/or higher
performance, than a number of alternatives. To know whether this conclusion is valid, estimates of the absolute and
relative deviation of the model are required.

An estimate of the absolute deviation will help determine that the results are "in the right ballpark". This will
typically be sufficient for very early, large trade space exploration, as long as "the model is valid for relative
conclusions". This statement, however, is not obvious. Considering the example of Fig. 6, analysts would agree that
design C is more expensive than design A, but could argue about design B. Some people would conclude that, the
difference between Band C being smaller than the deviation on both, no conclusion can be reached; they are making
the assumptions that the deviations are uncorrelated. Others would argue that although the absolute deviation is
large, trends are well captured, therefore C is more expensive than B; they are making the assumption that the
deviations are fully correlated. Reality probably lies in between these two viewpoints.

For rapid tradespace exploration models to provide useful results, some level of absolute and relative validation
of the model is therefore required. This is a non-trivial problem when modeling new types of flight systems.

Cost
""

/1"
J'

I

/ I
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/ I
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I
I

",,/ B--------
---

Trade Variable

Figure 6. The Need for Relative Deviation Estimates: Is C more expensive than B?
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This leads to the second implementation challenge. Assembling rapid trade space exploration models with
sufficient levels of accuracy requires some analysis by the right combination of experts. For deep space missions in
particular, there is no published work of design rules-of-thumb, such as can be found for Earth orbiters9

• Experts in
their engineering fields are not necessarily expert software developers. Unless an efficient process is developed, the
modeling effort is likely to require too much time from too many experts than is valuable or affordable to
Customers.

A third practical limitation of the theoretical approach is less critical in the short term. Many research efforts are
developing methods for aggregating performance metrics into one, overarching value metric for the mission, on the
basis of which optimal designs can be soughtlO

• Although this goal is noble and attractive, its application is not
always practical, but fortunately not always necessary either. It is indeed very hard to get the required information
(basis for a utility metric) from the Customers and other stakeholders, because of the nature of the information being
requested, but also because of the time the process requires, and how often it would need to be repeated. However,
optimizing the design at early stages of the trade space exploration is not a necessity and could be premature.
Understanding all the dimensions of the trade space, and its bearing on all metrics of interest (or attributes), helps
the Customers as well as the team understand the trade space they are building, the interdependencies between
elements of the mission, the design and cost drivers. This learning experience is one of the key values added of the
trade space exploration, which could be undermined by attempts at reducing the number of dimensions too early.
Once trade space exploration for deep space missions is as well understood as it is for Earth missions, the methods
will prove very valuable. Ongoing research into reducing the interview time will help standardizing their use.

B. Proof of Concept Example: a New use of Concurrent Engineering Design Teams
In spite of these challenges, there are cases when rough design models for trade space exploration before point

can be successfully put into practice for selection of a point design to develop. A study of a small, Europa lander
mission proved so and provided interesting lessons-learned.
J. The Customer's Problem

The Customer for the study came to the concurrent engineering team with a "reverse" problem: given three
different wet mass allocations, what amount of science can be performed by a Europa lander, as a function of a few
key design choices: landing style, power source technology, and lifetime on the surface?

Such a study is not easily answered by the traditional conceptual design process, which would require
developing more than 27 point designs, with several iterations each time to converge on a science package that fits
the mass allocation. The problem was made even more challenging when discussion with the design team uncovered
several other trade space dimensions: choice of propulsion technology; assumptions on technology development in
lightweight, low power instruments; and assumptions on technology development in radiation-hard components.
The Customer being more interested in a picture of the trade space than in the level of accuracy of any point in the
space, the study was very well suited to a rapid trade space exploration experiment.

2. Approach
The approach taken to solve the Customer's problem is probably representative of a practical rapid trade space

exploration process for missions with no existing rules-of-thumb:
1) Based on discussion with the design team, decide what part of the trade space can be the object of rapid trade

space exploration. Parts of the trade space that represent totally new areas of design, for which the team has no
previous experience, are not suited for rules-of-thumb modeling; any conclusions reached would depend on too
many assumptions. Such was the case of some of the landing methods in the trade space. They were kept for later
closer analysis and detailed mechanical modeling, only method by which the required knowledge could be
generated. Any rules-of-thumb reached after more detailed modeling could be incorporated in the future.

2) Break down the system-level trade into subsystem-level relationships. This work, to be orchestrated by the
system engineer, is very similar to the development of interdependencies matrices described for sensitivity analysis,
only at a lower level of resolution (subsystem-level instead of component-level).

3) Carry out a design session dedicated to development of a trade space exploration model. Based on the system
breakdown, each subsystem is allocated a set of inputs and outputs, and responsible for providing the relationships
between its inputs and its outputs. For example, the power subsystem would be responsible for translating total
spacecraft power requirement, mission duration, and level of technology development. into mass of the power
subsystem. The instruments subsystem would be responsible for translating total instruments mass and power
allocations, and level of instrument technology development into a choice of an instruments suite, which could be
used as a metric for science value.
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4) As relationships come in during the session, the system engineer assembles them into a model of the design
that takes all trade space variables as input, and outputs key metrics. In this case, inputs included: instruments mass
and power, mission duration, choice of power source, choice of propulsion option, state of development of radiation­
hard technologies, and state of development of lightweight instruments. The two main outputs were the choice of an
instrument suite, and the total spacecraft wet mass.

5) After the session, run the model in automated mode to generate outputs on the whole trade space and generate
summary tables and plots to be discussed with the Customer.

6) Hold a meeting with the Customer, and a subset of the design team to analyze the trade space exploration
results and choose a few point designs for further analysis. In this case, only a few cases appeared to fit within one
of the possible mass allocations, because of the challenges to soft-land on Europa, and survive in its high-radiation
environment.

7) Reconvene the whole design team to develop point designs for the chosen point(s). In this case, three point
designs were developed by the team. Design sessions helped uncover more issues, which increased the mass
estimates of some subsystems. But it also provided enough time, mission information and brain power for new ideas
to emerge on how to design and configure the spacecraft based on the specific challenges of the mission at hand.
This reduced the mass of other subsystems.

8) Compare the results of the rapid trade space exploration with the results of the point designs to estimate the
error bar of the trade space exploration model and conclude on the validity of its conclusions.

9) Finally, update the trade space exploration model with the new information generated during the design
session (issues and new ideas). Run the full trade space exploration again to generate a more accurate map of the
mission trade space.

Table 2 summarizes the results of the error bar analysis. They are interesting as representative of the type of
errors to be expected from a system-level design model with subsystem-level resolution. The absolute errors at the
subsystem level can very high, and are higher for the subsystems that were not represented in the modeling session.
However, the subsystem-level errors are independent enough, that they get statistically reduced once added-up, in
spite of the interdependencies of the subsystem designs. The absolute error on the system-level mass is reasonable
for order-of-magnitude conclusions. Even more interestingly, the relative error on the system-level mass is low,
ensuring that the right conclusions where reached when comparing the total mass of one design to another. Some of
the subsystem-level relative error bars are beyond -100%, indicating that the model captured the wrong subsystem­
level trend. This confirms that such a model is not suited for subsystem-level conclusions.
3. Conclusions and Lessons Learned

This study provided a number of lessons-learned.
First, it is feasible to rapidly generate system-level design models with subsystem-level resolution for rapid trade

space exploration and selection of a point design, provided that the right expertise is available, the right process is
followed, and the team works with the right mindset.

Second, that the accuracy to be expected from such models is good for relative system-level conclusions,
adequate for order-of-magnitude system sizing, but inadequate for any subsystem-level conclusion.

Third, that only the part of the trade space for which the team has an existing knowledge-base can be rapidly
modeled. Any design option relying on new concepts would require more detailed analysis.

Finally, that the model will not include any creative design the team might invent. Design models assume that
design is deterministic, thus ignoring the large contribution of team creativity to improving the design.

f M d IEI B d T dEEftBT bl 2 Ea e . rror ars SIma es on xample roa ra espace xplOra Ion o e.
Absolute Difference Relative Difference

Mass Element Option 1 Option 2 Option 3 Op311 Op 2/1 Op 1/3
Attitude Control -30% -30% -30% 0% 0% 0%
Command and Data Handling -55% -55% -55% 0% 0% 0%
Power +31% +19% +0% -59% -27% +350%
Propulsion +19% +19% +19% 0% +6% +15%
Structures and Cabling +66% +68% +66% +2% 13% +28%
Telecom +92% +92% +92% 0% 0% 0%
Thermal -7% -1 % +138% -103% +374% -95%
Total Dry +31% +31% +30% -7% -1% 8%
Propellant +25% +25% +25% -7% -1 % 8%
Total Wet +29% +29% +28% -7% -1% 8%
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C. Approach for a More Systematic Capture of General Rules-of-Thumb in the Existing Knowledge Base
The Europa lander case study proved the feasibility of rapid trade space exploration models, but produced a

model of little use beyond the Customer of the study. Its relationships were tailored towards answering the particular
questions asked, and would not constitute a general model. How general a model is it possible to build for deep
space missions?

To answer this question, we chose two classes of deep-space missions that seemed general enough to cover a lot
of potential conceptual design studies; specific enough that they can make the object of one design model; and
conventional enough that there would be an existing knowledge base from which to draw rules-of-thumb design
relationships. If having general system-level design models is feasible at all, this would be the place to start. The
choice was therefore: Planetary Orbiters; and Mars Lander missions, which include models for a Lander, an Entry
System, and a Cruise Stage.
1. Model Development Approach

Under the name "System-level design model of a planetary Orbiter", many models with totally different inputs
and outputs could be envisioned. When developing a design model without a particular trade in mind, one must
decide on the type of questions they would like the model to be able to answer. The level of resolution a design
model needs to go into depends on the type of trades it needs to conclude on. As a principle, the level of resolution
should be kept to a minimum while capturing all the important trades with the right level of accuracy.

Figure 7 summarizes Inputs representative of the type of trade space of importance to conceptual design studies.
As outputs of the model, we need enough information to get a system-level summary of the design, and provide
inputs to a system-level cost model. The list of inputs identified requires subsystem-level resolution. Based on this
list of inputs and outputs, a system engineer can break down the question into subsystem-level inputs and outputs,
and a team of subsystem experts can develop rules-of-thumb based on design experience.

Once system-level models are developed, they can be assembled into a project-level model as graphically
represented on Fig. 8.

Mars Lander Inputs
Requirements Landinq style Propulsion Choice Telecom Choice
Instruments mass, power, data rate Rough Monoprop I Biprop Relay only
Other carried elements (Rover) Airbags Landing only I + Entry I + Cruise Direct-to-Earth only
Landing season Soft, Viking-style

Power Choice
Relay and Direct-to-Earth

Surface lifetime Soft, Skycrane-style
Landing accuracy required Batteries only

Mission class I redundancy Solar (articulated I non-articulated)

Launch date Nuclear

Mars Entry System Inputs
Requirements Aeroshell Type Subsystems
Lander Wet Mass Blunt (cone angle) Propulsion on EDL or Lander
Arrival Velocity, EFPA Ellipsled (Lift/Drag) Avionics on EDL or Lander
Landing Altitude Lander characteristics
Landing Ellipse Parachutes Min I Max thrust, Isp
Launch Vehicle Diameter Mach 2 (for calculation of terminal descent propellant based on
Mission class I redundancy Mach 3 parachute release altitude)
Launch dale

Carrier Stage Inputs
Requirements Subsystems (on Carried Elements I on Cruise)
Carried Elements Mass and Number Altitude Control
Trajectory Correction Maneuvers Command and Data Handling
Cruise duration Telecom
Mission class I redundancy Propulsion
Launch dale

Planetary Orbiter Inputs Propulsion Choices ACS Choices
Requirements Monoprop 3-axis stabilized
Planet Biprop Spin-stabilized
Instruments: mass, power, data rate, pointing accuracy Solid
Desired orbital elements
Delta-V for all required maneuvers Telecom I Operations Options
Mission class I redundancy Frequency band
Launch date Choice of Earth station antenna size
Launch vehicle Choice of Earth pass duration per day

Figure 7. Typical Trade Space Options for Mars Missions
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Architectural Choices lOps Scenario IPower Options I Propulsion Choice EDL Style I
I 1

~ InstrumentsLevel 1 Requirements I

Measurements
Trajectory

LJLaunch Constraints
Rover I

.4Lander

Req. Latitude Band I- Entry

Req. Altitude Access ~
System

Carrier I -Landing Accuracy

I
Orbiter

Desired Orbit f-------.
Launch
Vehicle

Project I
Cost

Figure 8. Mars Project-Level Model Interdependencies

2. On Modularity, and Model Flexibility versus Optimization
When generating models with broad applicability, model flexibility is the number one priority, which the choices

of model architecture, model design and software platform very important.
To ensure maximum re-usability and generality, all models need to be built in a modular fashion. By developing

a suite of compatible modular units, various trade questions can be addressed by assembling various models in
different ways.

For ease of review, re-use, change and improvements, but also to improve the knowledge-gain in understanding
the trade space, it is very important that the model be totally transparent to all. All model assumptions, including all
numerical constants in a sizing rule-of-thumb and all automated logical design decisions need to be visible to the
developer as well as all users and reviewers, and very easy to change. Providing an override function for any
parameter of the model that doesn't result directly from the laws of physics makes it possible to immediately
capitalize on any more accurate result, or on any better expertise found in the room. It also provides a convenient
basis for "what if?" analyses.

To maximize the flexibility in assembling models, the capability to easily change what parameters are inputs and
outputs of a given model is very useful. A simple example would be an orbits model, which could have period as
input and semi-major axis as output, or the opposite, depending on what matters most to the measurement
objectives. Even better flexibility is provided if even unforeseen inputs, or new options, can be added. This
flexibility can be facilitated by a central parameters exchange feature. With direct link between models, all related
models would need to be changed when changing what parameters are inputs and outputs of a model. Instead, there
can be one central repository of design parameters where all models deposit their outputs; they all get their inputs
from this same place as well, no matter where the parameter came from.

High performance computer languages, together with algorithms tailored to optimize the speed of iterative
calculations in the design, would help build robust, high-precision, high-turnaround models. However, flexibility
considerations, for reasonably simple calculations, led us to choose a spreadsheet-based architecture instead. A good
spreadsheet design has self-documenting assumptions, and editing the documentation immediately updates the
model to reflect the changes. Total user override capabilities are straightforward. Sharing models, and transitioning
models from design teams to customer teams, is made easier by using a software environment familiar to all. Better
software environments that could provide the same features will be interesting to research.

Appendix: Definition of Terms
There is the need for a common language for the model-based engineering community players (modelers,

mission architects and designers, managers, software programmers) to understand each other. We did not attempt to
propose a consensus lexicon. For the sake of clarity however, the following definitions hold within the paper:

Model
The terms "spacecraft model" has a variety of meanings, depending on the type of model it refers to. It could be

a piece of hardware, a subscale version of the physical spacecraft (Physical Model). It could be a diagram
representing the functional relationships between the various subsystems of the spacecraft (Functional Model). It
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could be a dynamic document capturing the relationships between all the system requirements (Requirements
Model). It could be a set of equations that simulate the behavior of the system (Analytical Model).All types of
models are important at one part or another of the design cycle, but this paper focuses on one class of models: for the
purposes of this paper, we use the term Model to mean Analytical Model. In this definition, a Model transforms
information (Inputs into Outputs) using logical relationships and equations that represent the behavior of the system
being modeled. We are interested in two main types of analytical models:

Design Model
Design Models transform system requirements and qualitative design choices into system design parameters. For

example, the solar array area is a function of the total power required for all spacecraft subsystems, and the choice of
solar cell chemistry.

Simulation Model
Simulation Models, or Performance Simulation Models, calculate system performance based on system design

parameters, operational scenario(s), and a chosen set of performance metrics. For example, orbit simulation software
packages calculate the planet coverage statistics of a given spacecraft based on orbital parameters, and
characteristics of the instrument field of view. Similarly, a landing hazard model would calculate the probability of
hazardous landing based on a description of the surface features a Lander is designed to survive, such as maximum
rock size and maximum slope.

Tool
The word Tool is even more general than Model. We will refer to Tools to mean Decision Support Tools, to be

distinguished from models in the following way: Tools organize information in a way that facilitates human
understanding, analysis, and decision making. They do not add informational content. Multi-dimensional plotting
and visualization tools are obvious examples of decision support tools.

With these definitions, a Modeling Tool is a tool that facilitates building, organizing and running Models.

Level of Detail, Level of Resolution
The Level of Detail of a model refers to the depth of its Inputs and Outputs. Since we are concerned with space

mission models, the level of detail will refer to the following hierarchy:
Enterprise ;;;) Program ;;;) Project ;;;) Mission ;;;) Flight & Ground Systems ;;;) Spacecraft ;;;) Subsystem ;;;)

Component
Thus, a Mission Design Model would take requirements at the mission level as inputs, such as destination planet,

launch date, and measurement objectives; and return design parameters at the mission level as main outputs, such as
launch mass, launch vehicle, or mission cost. Such a model can be used to trade off various measurement
requirements against the mission cost. Of course, in order to translate inputs into outputs, the model is likely to
involve sub-models at lower level of details, in this case, probably down to the spacecraft or subsystem level. It
would be able to provide secondary outputs at that lower level. This can be referred to at the Level of Resolution of
the model. We would then speak, for example, of a Mission-Level Design Model at Subsystem-Level Resolution.

Model Uncertainty, Model Error
There are a number of reasons why the results from a model might not match the final parameters of a flown

space mission. When building models, it is important to be aware of these sources of error and their distinction.
Inherent uncertainty in a parameter is uncertainty that no level of modeling can reduce, because the parameter

value can still be changed by future events, or because it relates to a phenomenon that (to our best knowledge) is
stochastic by nature. This is the case, for example, of some spacecraft environment characteristics, such as radiation
hazard caused by solar flares, or the winds in the atmosphere of Mars upon arrival; in most cases, the extent of this
uncertainty is estimated, and can be accounted for with increased design margins. Also, there will usually be
significant inherent uncertainty in project cost, no matter how sophisticated a cost model is used, because ultimate
project cost depends on many human and organizational factors that are independent of the technical description of
the mission, and likely to fluctuate during the course of the project. Cost reserves are held to account for this
uncertainty. Inherent uncertainty is typically systematic; it will affect all model results with about the same
magnitude.

We call study uncertainties, affecting design as well as requirements. the uncertainties that relate to the level of
immaturity of the study, and at what level of detail it stopped. As design studies progress, the details of the design
will be developed, some new system-level effects will be discovered, and new ideas might be found that can result
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in design changes. These uncertainties are reduced by more detailed modeling and analysis on the design, and more
refined decision making on the requirements.

By contrast with these sources of uncertainty, we call model errors the errors resulting from any deliberate
approximation made in the model calculations, for the purpose of simplicity and speed of calculation

Study uncertainties and model errors are related, if only because they together result in the model deviation,
which we can define as the standard deviation of the model results compared to the results that would be obtained
using the most accurate available means (the "actual" numbers but for inherent uncertainties). The distinction
between study uncertainties and model errors is important because it can provide a useful guide as the appropriate
level of approximation for modeling. The model results are only as accurate as their "weakest link".

Finally Relative error and Relative deviation refer to the error in the relative model results using different
outputs. It is the standard deviation of the relative difference between two designs as predicted by the model.
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