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In this paper, we present a space invariant architecture
to enable the Independent Component Analysis (ICA)
to solve chemical detection from two unknown mix-
ing chemical sources. The two sets of unknown paired
mixture sources are collected via JPL 16-ENose sen-
sor array in the unknown environment with, at most,
12 samples data collected.

Our space invariant architecture along with the max-
imum entropy information technique by Bell and Se-
jnowski and natural gradient descent by Amari has
demonstrated that it is effective to separate the two
mixing unknown chemical sources with unknown mix-
ing levels to the array of two original sources under
insufficient sampled data. From separated sources,
they can be identified by projecting them on the 11
known chemical sources to find the best match for de-
tection. We also present the results of our simula-
tions. These simulations have shown that 100% cor-
rect detection could be achieved under the two cases:
a) under-completed case where the number of input
(mixtures) is larger than number of original chemical
sources; and b) regular case where the number of in-
put is as the same as the number of sources while the
time invariant architecture approach may face the ob-
stacles: overcomplete case, insufficient data and cum-
bersome architecture.

Keywords: space invariant independent component anal-
ysis, ENose, chemical detection

1. Introduction

The need for low-power, miniature sensor devices that
can monitor air quality in an enclosed space with multi-
compound capability and minimum human operation has
led to the development of polymer-carbon composite
based electronic nose (ENose) at NASAs Jet Propulsion
Laboratory (JPL) [1-3]. The sensor array in the JPL
ENose consists of 32 conductometric sensors made from
insulating polymer films loaded with carbon. In its current
design, it has the capability to detect 10 common contam-
inants which may be released into the recirculated breath-
ing air of the space shuttle or space station from a spill or a
leak; target concentrations are based on the 1-hour Space-
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Table 1. Target gases and concentrations.

Target Conctr Rang | 1 hr. SMAC | Ref
Compound Tested (ppm) (ppm) Num
Benzene 10-50 30 1
Ethanol 10-130 2000 2
Freon 50-525 50 3
Indole 0.006-0.06 1 4
Methane 3000-7000 5300 5
Methanol 10-300 30 6
Propanol 75-180 400 7
Toluene 30-60 16 8
Ammonia 10-50 30 9
Formaldhyde 50-510 0.4 10
Medical Wipe 500-4000 - 13
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craft Maximum Allowable Concentrations (SMAC) set by
NASA (see Table 1) [4], and are in the parts-per-million
(ppm) range. The ENose was intended to fill the gap be-
tween an alarm which has little or no ability to distin-
guish among chemical compounds causing a response and
an analytical instrument which can distinguish all com-
pounds present but with no real-time or continuous event
monitoring ability.

As in other array-based sensor devices, the individual
sensor films of the ENose are not specific to any one an-
alyte; it is in the use of an array of different sensor films
that gases or gas mixtures can be uniquely identified by
the pattern of measured response. The response pattern
requires software analysis to deconvolute gas compounds
and their concentrations.

An example of a sensor set is shown in Fig. 1, and the
complete device on which the data was used in this study
is shown in Fig. 2.

The specific analysis scenario considered for this de-
velopment effort was one of leaks or spills of specific
compounds. It has been shown in analysis of samples
taken from space shuttle flights that, in general, air is kept
clean by the air revitalization system and contaminants are
present at levels significantly lower than the SMACs [5];
the JPL ENose has been developed to detect target com-
pounds released suddenly into the breathing environment.
A leak or a spill of a solvent or other compound would be
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Fig. 1. JPL ENose sensor substrate on the left with eight
polymer-carbon composite sensors.

Fig. 2. The complete JPL ENose on the right.

an unusual event. Release of mixtures of more than two
or three compounds would be still more unusual; such an
event would require simultaneous leaks or spills to occur
from separate sources. Thus, for this phase of develop-
ment, mixtures of more than two target compounds were
not considered.

In this paper, we consider an approach to analysis of
sensor responses to mixture so that use of the JPL ENose
may by extended to detection of chemical compounds in
an open and changing environment, such as a building or
a geographical area where air exchange is not controlled
and limited.

As such operation in the open environment, the col-
lected sensory data will be a mixing between the unknown
chemicals with the unknown mixing levels (coefficient)
between them. The identification of the chemical com-
pounds among these mixing chemicals is a real challenge
for real world applications.

To search for a chemical compound whether it exits in
the operating environment, one of the most robust tech-
niques is to recover the original chemicals. When done,
the detection can be an easy step by finding the maximum
correlation between the predicted original chemicals and
the target chemicals. More sophisticated way, the neu-
ral network approach [6-10} can be employed to capture
the target chemicals in various conditions through learn-
ing e.g., concentration levels through the parameterized
weight set, then the strongest correlation between param-
eterized weight and the predicted original can be used to
identify the intended chemical.

Recently, Independent Component Analysis (ICA)
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Fig. 3. The system model and set up of the ENose array.

[11-19] has proven that it not only de-correlates the sec-
ond order statistics of the signals but also reduces the
higher order statistical dependencies. ICA transforms an
observed signal vector into a set of signals that are as
statistically independent as possible. Theoretically, ICA
is an information-theoretic approach, which exploits con-
cepts from information theory such as entropy and mutual
information.

The ICA roots in the early work of Herault and Jut-
ten [11] who first introduced an adaptive algorithm in a
simple feedback architecture that was able to separate sev-
eral unknown independent sources. ICA was further de-
veloped by [12-17]. Amari et al. [18] have used natural
gradient descent based on the Riemannian metric tensor
to optimize the curvature of a particular manifold in n di-
mensional space. This technique is employed to apply
to the Infomax [16] to simplify the learning rule that is
used in this paper. ICA has applications for feature ex-
traction in speech recognition systems, in communication
systems, in medical signal processing, and in image pro-
cessing.

2. Technical Approach

In this study, we based on the approximation of the set
up architecture shown in Fig. 3.

In Fig. 3, the collected sensing data x;(¢) consists of
changes in electrical resistance corresponding to sensor

N

response to the unknown mixture Y o;s; of chemical
=]

sources s;(t) and their densities (or concentrations) o; at

the time ¢.

Due to the small spatial separation between the sensors
themselves, the input of chemical exposure on each sensor
is assumed to be uniquely distributed. The sensory data
can be modeled as follows:

x,-(t):ﬁ(alsl(t),...,ochN(t)) A ¢

where f; is the unknown non linear activation function, ¢;
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is the unknown mixing coefficient of chemical source j,
and i i8 the index of sensor number and N as number of
chemical source.

Assume that there exists an operating point V¢ =
{v,. .. Vg }and Vo = ZIJLI 0js5(¢) so that the Eq. (1) can
be approximated by the first order of a Taylor expansion
and it is written:

N
xi:ai“l“Z'}’iij- P (%))
j=1
where
o 0 aﬁ N 0
CliZﬁ(alﬁ(f),---,OCNSN(f))—W a;si  (3)
e j=1
and
dfi
’)/ljzgi:a](él)

and s5;° 1s an operating point of the source s;.

For each sampling data point in time for the same sen-
sor I, x; fluctuates around its bias point g; and it can be
considered as a common bias for x;(¢) with ¢ € [t + kAt].
From this argument, Eq. (2) can be simplified to:

X1 —a

y=| 2% 5)
X — Ay

Y=TS. . . . . . . .. ...

where Y is unbiased mixture data, I" is the unknown mix-
ing matrix and S is the chemical source signal.

The learning rule based on the maximum entropy algo-
rithm [16] is given by:

y=gu)=gWx) . . ... ... ... D

where g is a non linear function e.g. the logistic function
or hyperbolic tangent function. The update weight can be
calculated as:

AW =WTyro@x" . ... ... ... @®

where W~ as an inverse transport of the NXN weight
matrix W, xT as a mixing input vector (observed vector),
and

/

CID(u):[gbi(ui)]:g—i:. Ce e e e e e (9)

To simplify Eq. (7) using a natural gradient descent by
Amari [18], the learning rule can be:

AW = (I+®(u)u" )W .
with u = Wx. The details can be found in [19].

. (10

3. Space Invariant Architecture

The most common ICA approach is that the number of
variables and the number of sources are the same. How-
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Fig. 4. The space invariant ICA architecture (m = 2,...,12).
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Fig. 5. Classes of 11 chemical sources.

ever, in this study we faced two obstacles: 1) there are 12
or less samples (mixing chemical compounds) from each
sensor and the total number of sensor is 16 which it does
not have sufficient data set (at least 16 data samples re-
quired); and 2) the number of variables is 16 as number
of sensors while the number of compounds in a mixture is
2 and it is considered over complete case.

For the time invariant approach, the data that will flow
perpendicularly (dotted arrow) to the time invariant direc-
tion as shown in Fig. 4 will require 32 outputs (16 chan-
nels for each chemical compound). The architecture is
16 inputs, 32 outputs and 12 or less sample data which
may not be a solvable approach. Instead of using a time
invariant approach, we use the space invariant approach
(Fig. 4 with dashed and dotted arrow)) which allows us
to have more data points and enable the square mapping
matrix (the dimension of mixing sources and sensors are
the same). This approach is feasible due to the mathemat-
ical model based on Egs. (2) and (6). The architectures
are shown in Fig. 4.

In Fig. 4, the unbiased input ¥;(z) (i =1,...,k) is based
on temporal mixture data and the sensory data are spa-
tially invariant.

From laboratory set up, we have collected a set of sin-
gle of spectra of 11 chemicals using 16 elements in the
ENose sensor array; it is averaged and shown in Fig. 5.

In this study, the number of sensors used is 16 and mix-
ing chemical sources is 2; we will examine two sets of
data, as shown in Table 2.
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Table 2. Parameters of chemical mixture.

Data | Num. of | Mixture | Num. Samples
set | Variables Available

1 16 | land7 12

2 16 | 3and 10 9

Fig. 6. The mixture data of chemical 1 and 7.

4. Simulation Results

Based on the data available provided in Table 2, we di-
vided this study into two experiments: 1) Under complete
case: in this case we used complete sample data (see col-
umn 4 in Table 2) as input to the network and the output
size is 2 as two original sources recovered. 2) Squared
case: this is a straight forward with 2 inputs and 2 oui-
puts case when the data was rearranged so that each input
is from the same sensor with non-overlapped consecutive
sampling times: ¢ +iAf and 7 + (i + 1)Az.

4.1. Experiment 1

In this case, we have studied the two data sets in Ta-
ble 2 and we used all data vectors available (The max-
imum number of data vectors is 12), which is less than
the number of sensors (16). For data set 1, there are 12
mixtures of chemical 1 and 7 and the data are shown in

Fig. 6.

4.1.1. Data Set 1

Using the space invariant ICA approach, the recovered
signal sources (chemical 1 and 7 sources) are shown in
Fig. 7 and the average of the single chemical source 1 and
7 are shown in Fig. 8. Figs. 7 and 8, show a strong cor-
relation between the chemical 1 and separated chemical
named 1 (* traces) and chemical 7 and separated signal
named 7 (+). To confirm its performance, we projected
the separated sources 1 and 7 by ICA technique on the
known 11 chemical sources shown in Fig. 3, the results
are provided in Table 3.

From Table 3, it has demonstrated that the single
source of chemical 1 has the greatest overlap (bold face

1200

Fig. 7. Separated signal sources 1 and 7 via space invariant

ICA of 12 inputs.

Fig. 8.
technique.

Original chemical sources 1 and 7 by averaging

Table 3. The Projection of the separated chemical sources
1 and 7 on the original chemical.

Sing. chem. | Separated | Separated
source chemical 1 | chemical 7
1 0.8457 0.9601

2 0.4772 0.6291

3 0.7325 0.9369

4 0.6286 0.5258

5 0.7433 0.6996

6 0.4872 0.4304

7 0.7944 0.9876

8 0.7938 0.9014

9 0.6679 0.5737

10 0.5271 0.6051

13 0.6223 0.7896

Journal of Advanced Computational Intelligence

value) with the separated source, labeled separated chem-
ical 1. Similarly, single source chemical 7 has the greatest
overlap (bold face value) with separated chemical 7 from
the mixture shown in Fig. 6.
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Fig. 9. The mixture data of chemical 3 and 10.
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Fig. 10. Separated signal sources 3 and 10 via space invari-
ant ICA with 9 inputs and 2 outputs.
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Fig. 11. Original chemical sources 3 and 10 by averaging
technique.

4.1.2. Data Set 2

Data set 2, a mixture of chemicals 3 and 10, is shown in
Fig. 9. For the mixture from data set 2, the performance
of space imvariant ICA has demonstrated its effective ca-
pability to separate the mixture of chemical 3 and 10 as
shown in Figs. 10 and 11.

In Table 4 it shows the maximum correlation (bold
face values) between the original and separated source of
chemical 3 and 10.

Vol.11 No.10, 2007

Smart ENose for Chemical Detection in an Open Environment

Table 4. The Projection of the separated chemical sources
3 and 10 on the original chemical.

Sing. chem Sep. Sep.

source chem. 3 | chem. 10
1 0.8250 0.7723

2| 04760 0.8282

31 0.9464 0.8254

4 | 0.5235 0.4420

51 06134 0.8935

6| 03414 0.7670

71 0.8681 0.7829

8| 0.8165 0.8887

91 0.6561 0.7803

10 | 0.6125 0.9619

13 | 0.7200 0.9444

Table 5. The mean and standard deviation of its projec-
tion of separated sources C1 and C7 on each single chemical
source.

Sing. Mean | Stand. Mean | Stand.
chem. Sep. dev. Sep. dev.
source | chem. 7 chem. 1
1| 0.8851 | 0.0830 | 0.8959 | 0.0890
2| 0.5893 | 0.1405 | 0.5551 | 0.0792
3| 0.8728 | 0.0784 | 0.8046 | 0.0397
41 04973 0.0723 | 0.5057 | 0.1541
51 0.6611 | 0.0599 | 0.7285 | 0.0742
6 | 0.4161 | 0.0970 | 0.4465 | 0.0903
7 09222 | 0.0765 | 0.8664 | 0.1104
8| 0.8398 | 0.0604 | 0.8141 | 0.1099
91 0.5539 | 0.0460 | 0.5601 | 0.1031
10 | 0.5671 | 0.1103 | 0.5702 | 0.1141
13 | 0.7342 | 0.1096 | 0.6902 | 0.1101

4.2. Experiment 2

In this experiment, we paired data set 1 (16 x 12) in
columns to obtain the data set 96 x 2. From this conver-
sion, data values in a single row are the data from the
same sensor with consecutive sampling times 7 -+ iAr and
t+ (i+1)Ar; this new data set allows the same number of
mixing sources and of original sources. Using this new
data set, space invariant ICA has produced the results that
were validated with the 11 known chemicals. Classifi-
cation was 100% correct, based on the projection on 11
classes shown in Fig. 5. To simplify the results, we tab-
ulated the mean and standard deviation of its projection
(separated sources C1 and C7) on each single chemical
source and the results are summarized Table 5.

Table 5 is compact information to show that the separa-
tion sources from the mixture have successfully identified
the original chemical sources.

Due to limited data set, the distributions based on the
mean and standard deviation in Table 5 are not Gaussian
distributions, according to the Central Limit Theorem.
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5. Discussions

To separate two (2) mixing sources from a sixteen (16)
element sensory data array, known as the over complete
case, poses a challenges for mathematical model and net-
work architecture. The non overlapped pair-wise (i.e. sen-
sor i and sensor i+ 1) or overlapped pair-wise (i.e. (sensor
i and sensor i + 1) and (sensor i+ 1 and sensor i +2) so
on) may face cambersome and ineffective techniques.

As shown above, the mathematical model has demon-
strated space invariant ICA to be an effective architecture
to overcome insufficient data samples and the over com-
plete case. Moreover, the chemical data itself is fuzzy and
inconsistent, and the optimal architecture is not answered
in this study. By simulation we have shown that chemical
source separation problem can be solved effectively with
complete time sampling data (k = 12) (under complete
case) and two consecutive sampling data (k = 2). Optimal
architecture may require a model of noise in order to de-
termine the size of the sampling input. Moreover, space
invariant ICA governed by Eq. (6) is only valid when the
sampling time is sufficiently small. Hence, the sampling
time also plays an important role to ensure that the model
approach holds.

6. Conclusions

We have provided a mathematical model to enable the
space invariant ICA architecture from which Informax
and natural gradient descent technique can be applied and
simulation has confirmed that our modeling is effective
and sufficient to perform chemical source separation to
enable the smart ENose.

Further study will be conducted to validate its useful-
ness for the real world and open environment for chemical
detection. In addition, the miniaturized, compact, light
weight and low power hardware approach is also a driven
force for NASA mission from which System-On-a-Chip
approach will be our next focus based on this modeling
approach.
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