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ABSTRACT

A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear sys-
tems is developed that guarantees the resolvability of the associated finite-horizon optimal control
problem in a receding-horizon implementation. The control consists of two components; (i) feed-
forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-
horizon optimal control problem for the nominal system dynamics. The feedback control policy is
designed off-line based on a bound on the uncertainty in the system model. The entire controller is
shown to be robustly stabilizing with a region of attraction composed of initial states for which the
finite-horizon optimal control problem is feasible. The controller design for this algorithm is demon-
strated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives,
and derivatives in polytopes. An illustrative numerical example is also provided.
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1 Introduction

The incorporation of feedback with open-loop guidance enables the ability to precisely track desired
trajectories, even in the presence of unknown disturbances and nonlinearities in the dynamics used
to compute those open-loop trajectories. The ability to resolve for the open-loop trajectory during
a trajectory maneuver allows for model updates to be incorporated into the problem such that
the open-loop trajectory becomes more optimal. This allows for separate inner- and outer-loop
receding horizon implementations to achieve a degree of robustness.

The existence of an initially feasible open-loop guidance solution provides a framework from
which the feedback control can both be developed and provide information on the invariant ellipsoids
(tubes) that bound the propagation of the actual state about the nominal desired state. With this
knowledge, guarantees are given on both the convergence of the controller trajectory, as well as the
resolvability of the open-loop portion through the technique presented herein. This resolvability
provides a means of implementing receding-horizon on the open-loop guidance to account for real-
time knowledge of model parameters. In addition, the implementation of optimal control for the
guidance and feedback makes the receding-horizon implementation achieve a sense of optimality
otherwise impacted by uncertainty in models and parameters.

2 Description of the System and MPC Control Algorithm

Consider an uncertain nonlinear dynamical system with state x ∈ IRn and control u ∈ IRm as

ẋ = f(x, u, t) (1)

where X ⊆ IRn and U ⊆ IRm are sets defining the state and control constraints, respectively. We
will refer to dynamics in (1) as the real dynamics. Our objective is to obtain a control input u(·)
such that the closed loop system for (1) is asymptotically stable about the origin, x = 0, with a
region of attraction Ra ⊆ X such that

x(t) ∈ X , u(t) ∈ U , ∀ t ≥ t0, when x(t0) ∈ Ra . (2)

We propose a model predictive control (MPC) approach where the control input is composed of
two components:

• Feed-forward control input, uo,

• Feedback control input, uf ,

such that
u(t) = uo(t) + uf (t) . (3)

Suppose that there exist sets Xo, Xf and Uo, Uf , which all contain the origin of the respective
space they belong to, such that2

Xo + Xf ⊆ X ,

Uo + Uf ⊆ U .
(4)

2For sets A and B, C = A + B implies that: If a ∈ A and b ∈ B then a + b ∈ C.
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The feed-forward component of the control input will be determined by online solution of a finite
horizon optimal control problem, and the feedback part will be determined off-line as a control
policy.

For feed-forward control design, knowledge of the following nominal plant model is assumed:

ż = F (z, uo, t) , (5)

where F is an approximate model of f in (1) and z ∈ IRn is the state driven by this control through
the nominal model dynamics. Model (5) is used to solve the following finite-horizon optimal control
problem (FHC):

FHC

min
uo(·)

J(uo; ts, T, z(ts)) =

∫ ts+T

ts

h(z(τ), uo(τ))dτ + V (z(ts + T ))

subject to







ż = F (z, uo, t)
z(t) ∈ Xo , ∀ t ∈ [ts, ts + T ]
uo(t) ∈ Uo , ∀ t ∈ [ts, ts + T ]
z(ts + T ) ∈ Ωo

x(ts) − z(ts) ∈ Xf

where x(ts) is the state of the real system dynamics (1).

FHC is a typical problem solved in model predictive control except for the last constraint given
by

x(ts) − z(ts) ∈ Xf , (6)

which is a relaxation on the initial state of FHC. This relaxation together with a feedback control
uf will explicitly guarantee resolvability of FHC and lead to a robustly stabilizing controller. �

The following assumptions are instrumental for the stability proof. In Section 3 we present con-
ditions for a class of uncertain nonlinear systems that ensure the satisfaction of these assumptions.

Assumption 1. Function h in FHC satisfies the following:

h(z, u) ≥ a||z||p + b||u||r , ∀ z, u , (7)

with p ≥ 1, r ≥ 0, and a and b both positive constants, and h(0, 0) = 0. �

Assumption 2. Function V in FHC is positive definite [6] and there exists a feedback control law
u = L(x) and uo = L(z) such that V defines a Lyapunov function for (1) and (5) satisfying

∇V (x)f(x,L(x), t) + h(x,L(x)) ≤ 0 , ∀x ∈ Ωo , (8)

∇V (z)F (x,L(z), t) + h(z,L(z)) ≤ 0 , ∀ z ∈ Ωo , (9)

where Ωo ⊂ Xo contains the origin. Additionally, feedback law L renders Ωo ⊂ IRn invariant for
dynamics (1) and (5), i.e., if x(t0) ∈ Ωo (z(t0) ∈ Ωo) for some t0, then x(t) ∈ Ωo ∀ t ≥ t0
(z(t) ∈ Ωo ∀ t ≥ t0). It is also assumed that

L(x) ∈ Uo , ∀x ∈ Ωo . (10)

�
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Assumption 3. There exist closed balls3 around the origin BR and Br in IRn with radii R > r
such that set Ωo in FHC satisfies the following

Xf ⊆ Br ⊂ BR ⊆ Ωo . (11)

�

Assumption 4. There exists a feedback control law uf = K(x, z) in (3) that renders the set Xf

invariant for η , x − z with dynamics (1) for x and (5) for z, that is, if η(t0) ∈ Xf for some
t0 ≥ 0, then η(t) ∈ Xf ∀ t ≥ t0 and for all uo(·). Additionally, uf = K(x, z) ∈ Uf if η(t) ∈ Xf . �

The following algorithm defines the MPC approach used in this paper:

MPC Algorithm

Begin with k = 0 and iterate the following steps over computation times tk for k ∈ Z
+.

1. Obtain/measure the state x(tk) of the real dynamics (1).

2. Solve FHC at time ts = tk with T = Tk and obtain uo,k with uo(t) = uo,k(t) on
t ∈ [tk, tk + Tk].

3. Apply u = uo,k + uf to the real system (1) and uo to nominal system (5) to obtain x
and zk, with z(t) = zk(t) on [tk, tk+1] , where uf = K(x, z).

4. If z(t̃) ∈ Ωo for some t̃ ≥ 0, then uo = L(z) ,∀ t ≥ t̃.

5. If x(t̄) ∈ Ωo for some t̄ ≥ 0, then u = L(x) , ∀ t ≥ t̄.

Lemma 1 (Resolvability of FHC). Suppose that FHC is feasible at t0 with T0, and let tk for k ∈ Z
+

be the times that a solution of FHC is computed . Then, the feasibility of FHC is guaranteed at tk
with Tk ≥ Tk−1 − δk, ∀k ∈ Z

+, δk = tk − tk−1, 0 ≤ δk < Tk−1 provided assumptions 2, and 4 hold.
�

Proof. Suppose at tk−1 FHC is feasible with Tk−1 and uo,k−1(t) for t ∈ [tk−1, tk−1 + Tk−1], and
zk−1(·) is the corresponding state trajectory of (5). Let tk = tk−1 + δk and resolve FHC. Note,
uo,k(t) = uo,k−1(t) for t ∈ [tk, tk−1 +Tk−1] is one feasible solution of FHC with Tk = Tk−1− δk since
x(tk)− zk−1(tk) ∈ Xf is invariant due to Assumption 4 (i.e. zk(tk) = zk−1(tk) is the initial state of
a feasible trajectory).

Now, we show that we can extend this feasible trajectory on [tk, tk−1 +Tk−1] to [tk, tk +Tk] for
any given Tk ≥ Tk−1 − δk by considering the following control input,

uo,k(t) =

{
u0,k−1(t), t ∈ [tk, tk−1 + Tk−1];
uo,k(t) = L(z(t)), t ∈ [tk−1 + Tk−1, tk + Tk].

(12)

which follows from Assumption 2 by noting that zk(tk−1 + Tk−1) = zk−1(tk−1 + Tk−1) ∈ Ωo.
Consequently (12) defines a feasible trajectory on [tk, tk + Tk], implying that FHC has a feasible
solution at tk with time horizon Tk, once it is feasible at tk−1 with Tk−1. Now, we can conclude the
proof by using induction.

3
Bρ , {v : ‖v‖ ≤ ρ}.
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Lemma 2 (Shrinking Optimal Cost with Receding Horizon). Let tk, k ∈ Z
+ be the computation

times of FHC satisfying infk(tk − tk−1) ≥ ǫ for some ǫ > 0. Suppose that FHC is feasible for some
tk−1 with Tk−1 and an optimal cost of J∗

k−1, and assumptions 1, 2, 3, and 4 hold. Then, FHC is
feasible for tk with Tk ∈ [Tk−1 − δk, Tk−1], and if zk−1(tk−1) /∈ Ωo and zk−1(tk) /∈ Ωo the optimal
cost satisfies

J∗

k − J∗

k−1 ≤ −β , for some β > 0. (13)

�

Proof. Since FHC is feasible at tk−1 with Tk−1 and uo,k−1(·) provides the optimal cost J∗

k−1, uo,k−1(·)
can also be used to provide a feasible solution for FHC at tk with Tk ∈ [Tk−1 − δk, Tk−1] by using
(12) as in the proof of Lemma 1. So, zk(t) = zk−1(t) is a feasible trajectory for t ∈ [tk, tk−1 +Tk−1].
We will show that (13) is satisfied with Tk = Tk−1 which will directly imply that (13) is satisfied
with Tk ∈ [Tk−1 − δk, Tk−1] from the construction of the proof.

The cost with control input (12) and Tk = Tk−1 is

Jk =

tk−1+Tk−1∫

tk

h(zk−1(τ), uo,k−1(τ))dτ +

tk+Tk−1∫

tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ + V (zk(tk + Tk−1)) . (14)

Since

J∗

k−1 =

tk∫

tk−1

h(zk−1(τ), uo,k−1(τ))dτ +

tk−1+Tk−1∫

tk

h(zk−1(τ), uo,k−1(τ))dτ + V (zk−1(tk−1 + Tk−1)), (15)

we have

Jk − J∗

k−1 =

tk+Tk−1∫

tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ −

tk∫

tk−1

h(zk−1(τ), uo,k−1(τ))dτ

+ V (zk(tk + Tk−1)) − V (zk−1(tk−1 + Tk−1)
︸ ︷︷ ︸

=zk(tk−1+Tk−1)

) . (16)

Assumption 2 implies the following with uo,k(t) = L(zk(t)) on t ∈ [tk−1 + Tk−1, tk + Tk−1]

tk+Tk−1∫

tk−1+Tk−1

V̇ (zk(τ))dτ +

tk+Tk−1∫

tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ ≤ 0

implies

V (zk(tk + Tk−1)) − V (zk(tk−1 + Tk−1)) +

tk+Tk−1∫

tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ ≤ 0 (17)

Given assumptions 1 and 3, if ||z|| ≥ R, then h(z, uo) ≥ a||z||p ≥ aRp since p ≥ 1. Since δk ≥ ǫ > 0,
then for t ∈ [tk−1, tk],

tk∫

tk−1

h(zk−1(τ), uo,k−1(τ))dτ ≥ aRpǫ
︸ ︷︷ ︸

β

> 0 (18)
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Combining equations (16)-(18) shows Jk − J∗

k−1 ≤ −β < 0, and since J∗

k ≤ Jk, then

J∗

k − J∗

k−1 ≤ −β < 0. (19)

The following theorem is the main result of this section.

Theorem 1. Consider system (1) with a control input described by the MPC Algorithm. Suppose
that assumptions 1-4 are satisfied. Then, the resulting closed loop system is asymptotically stable
with a region of attraction Ra,

Ra = {ξ ∈ IRn : FHC is feasible with x(ts) = ξ} . (20)

�

Proof. Given the MPC Algorithm, and x(t0) such that FHC is feasible with some T0. Suppose
that zk−1(tk−1) /∈ Ωo and zk−1(tk) /∈ Ωo for some k ∈ Z

+. This implies that zk−1(t) /∈ Ωo and (13)
holds true. Since the cost is reduced by at least a finite positive amount, J∗

k → −∞ as k → ∞ if
nominal trajectory z does not enter into Ωo. This implies that there exists a finite time t̃ ≥ 0 for
each trajectory such that z(t) ∈ Ωo, ∀ t ≥ t̃. Consequently, using Assumption 2, the closed loop
nominal system (5) is asymptotically to the origin when x(t0) ∈ Ra. Therefore, there exists some
time t̄ ≥ t̃ ≥ 0 such that ‖z(t)‖ ≤ R − r where R > r > 0 are as defined in Assumption 3. This
leads to

‖x(t)‖ ≤ ‖x(t) − z(t)‖ + ‖z(t)‖ ≤ r + (R− r) = R , ∀ t ≥ t̄ ,

which implies that
x(t) ∈ Ωo , ∀ t ≥ t̄ .

Since we apply Step 5 in MPC Algorithm for t ≥ t̄, using Assumption 2,

lim
t→∞

‖x(t)‖ = 0 .

This proves the convergence of x(t) to the origin. The stability of the origin is a direct implication
of assumptions 2 and 3, which completes the proof.

3 MPC for A Class of Systems with Derivatives in Convex Sets

In this section, we will specialize MPC results to the following class of systems,

ẋ = Ax+Bu+ Eφ(t, q) (21)

q = Cqx+Dqu ,

where φ : IR×IRnq → IRnp is a continuously differentiable function representing uncertain nonlinear
part of the dynamics, i.e. f(x, u, t) = Ax+Bu+Eφ(t, q) in (1). Since we develop explicit solutions
to the existence assumptions 1-4 for (21), this is a particularly important class of systems. Here we
present the following assumption on system in (21) that will be instrumental in our control design.
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Assumption 5. There exists a closed and convex set of matrices Θ ∈ IRnp×nq such that

∂φ

∂q
(t, q) ∈ Θ , ∀ q, t . (22)

�

The nominal system dynamics is assumed to have the following form,

ż = Az +Buo + Eψ(t, qo) (23)

qo = Cqz +Dquo ,

where ψ : IR × IRnq → IRnp is an approximation for φ in the real system (21), i.e. F (z, uo, t) =
Az +Buo + ψ(t, qo) in (5). Here, we assume the following:

Assumption 6. There exists a scalar γ > 0 such that the following holds for all z ∈ Xo and
uo ∈ Uo

‖φ(t, Cqz +Dquo) − ψ(t, Cqz +Dquo)‖ ≤ γ , ∀ t . (24)

�

Remark 1. Assumption 6 is satisfied when Xo and Uo are compact sets, and φ is continuous in
its arguments and it has no dependence on t. �

This class of systems has a subclass that is particularly interesting for MPC applications, namely
when ψ(t, z) = ψ(t). In this case, the nominal system above is an LTI system. Since the dynamics of
the nominal system give a set of equality constraints for the finite-horizon optimal control problem,
having an LTI nominal system is useful when all other state and control constraints define a convex
feasible domain.4 Then, the optimal control problem becomes a convex optimization problem,
which can be numerically solved reliably and autonomously in real-time by using interior point
methods [7]. Therefore, analysis of systems of the form (21) with LTI nominal plants is useful for
real-time autonomous control. This class of systems is also motivated by the research on guidance
and control of a spacecraft in the proximity of small celestial bodies (such as asteroids and comets)
[5].

The dynamics between the real state and the nominal state, η , x − z, are called “error
dynamics”, and they are given by

η̇ = Aη +Buf + E [φ(t, q) − ψ(t, qo)] . (25)

This equation is then rewritten as,

η̇ = Aη +Buf + E [φ(t, q) − φ(t, qo)] + E [φ(t, qo) − ψ(t, qo)] . (26)

The following lemma (see [4] for a proof), which is a generalization of mean value theorem, is used
to obtain a linear differential inclusion (LDI) [2] for the error dynamics in (26).

4All equality constraints in a convex optimization problem must be linear equalities.
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Lemma 3. Consider a continuously differentiable function ϕ : IRn → IRm with its Jacobian given
by ∂ϕ/∂q(q). Suppose that there exists a closed convex set Λ ∈ IRn×m such that

∂ϕ

∂q
(q) ∈ Λ , ∀q .

Then, for every q1 and q2 there exists ∆ ∈ Λ such that

ϕ(q2) − ϕ(q1) = ∆(q2 − q1) .

�

Based on Lemma 3, (26) can be written as

η̇ = Aη +Buf + E[π(t, η, uf ) + w(t, z, uo)] , (27)

where π(t, η, uf ) = φ(t, Cqx+Dqu) − φ(t, Cqz +Dquo). Again using Lemma 3,

π(t, η, uf ) = θ(t)(Cqη +Dquf ) , where θ(t) ∈ Θ, ∀ t , (28)

and w(t, z, uo) = φ(t, Cqz +Dquo) − ψ(t, Cqz +Dquo), where w is assumed to satisfy

‖w(t, z, uo)‖ ≤ γ , ∀ z ∈ xo, uo ∈ Uo, t ≥ 0 . (29)

This description of the error dynamics is particularly useful to obtain feedback laws that satisfy
Assumption 4 for a class of uncertain nonlinear systems [1]. Here, we only consider two well known
classes where Jacobian matrices are either norm bounded or exist in polytopes, and we give the
corresponding feedback results.

An additional assumption is an explicit characterization of constraint sets in the FHC in terms
of ellipsoids. Note that, more general convex characterizations are also possible and can easily be
integrated into the design framework.

Assumption 7. The following hold for the constraint sets in FHC,

Xo ={x ∈ IRn : aT
i x ≤ 1, i = 1, . . . ,mo},

Xf ={x ∈ IRn : bTi x ≤ 1, i = 1, . . . ,mf},
Uo ={u ∈ IRm : uT Πou ≤ 1},
Uf ={u ∈ IRm : uT Πfu ≤ 1},

(30)

where Σo, Σf , Πo, Πf are symmetric positive-definite matrices. �

Remark 2. If there exist sets Σo ⊆ Xo and Σf ⊆ Xf satisfying assumptions 2, 3, and 4, then we
can replace Xo and Xf with Σo and Σf in the MPC Algorithm, and the results of Theorem 1 will
still be valid. �

The following is corollary of Theorem 1 that describes a design procedure for system with
norm-bounded derivatives.

Corollary 1. Consider a uncertain nonlinear system (21) with a nominal model given by (23)
satisfying assumptions 5, 6, and 7 with

Θ = {θ ∈ IRnp×nq : ‖θ‖ ≤ 1} . (31)
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Suppose that there exist matrices S = ST > 0, Q = QT > 0, L, Y and positive scalars λ, β, µ, c1,
and c2 satisfying the following matrix inequalities,





SAT+AS+BL+LTBT +S/λ
+(β + λγ2)EET SCT

q +LTDT
q

CqS+DqL −βI



≤0 (32)







QAT+AQ+BY +Y TBT

+µEET QCT+Y TDT QCT
q +Y TDT

q

CQ+DY −I 0
CqQ+DqY 0 −µI






≤0 (33)

[
S LT

L Π−1
f

]

≥ 0 ,

[
Q Y T

Y Π−1
o

]

≥ 0 , (34)

aT
i Qai ≤ 1 , i = 1, . . . ,mo , (35)

bTi Sbi ≤ 1 , i = 1, . . . ,mf , (36)

Q ≥ c1I > c2I ≥ S , (37)

where C and D are matrices satisfying
CTD = 0 .

Then, the ellipsoids εQ = {x : xTQ−1x ≤ 1} and εS = {x : xTS−1x ≤ 1} satisfy εQ ⊆ Xo and
εS ⊆ Xf . And, MPC Algorithm with

h(x, u) = ‖Cx‖2 + ‖Du‖2

V (x) = xTQ−1x
(38)

L(x) = Kx , K = Y Q−1 ,
K(x, z) = Kf (x− z) , Kf = LS−1 ,

(39)

and εQ and εS replacing Ωo and Xf results in an asymptotically stable closed loop system for (21)
with a region of attraction Ra given by (20). �

The following corollary establishes the results of Corollary 1 to systems with uncertain nonlinear
terms having derivatives in polytopes.

Corollary 2. Consider a uncertain nonlinear system (21) with a nominal model given by (23)
satisfying all the assumptions of Corollary 1 with the following modification: For (31), assume that
there exists a set of matrices Σ1, . . . ,ΣN such that

Θ =
{
θ ∈ IRnp×nq : θ ∈ Co {Σ1, . . . ,ΣN}

}
. (40)

Then, all the conclusions of Corollary 1 hold if inequalities (32) and (33) are replaced by the
following, for i = 1, . . . , N

AiS+SAT
i +BiL+LTBT

i +S/λ+(β + λγ2)EET ≤0, (41)
[
AiQ+QAT

i +BiY + Y TBT
i QCT+Y TDT

CQ+DY −I

]

≤0, (42)

where
Ai = A+ EΣiCq , Bi = B + EΣiDq .

�
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Remark 3. All the matrix inequalities given in Corollary 1 and 2 are LMIs (linear matrix inequal-
ities) except (32), (33), (41), and (42). But, these are also LMIs for a given λ > 0. Therefore, a
simple line search on λ can be applied to be able to solve the whole system of matrix inequalities in
both corollaries for the design of feedback laws. �

3.1 Computation of Feed-forward Control for Nominally LTI Systems

In this section, we describe a methodology to calculate the feed-forward control for nominally LTI
systems, that is (23) is an LTI system. It is assumed that Xo and Uo are convex sets. The feed-
forward control can be parameterized by a zero-order-hold approach, i.e., uo is piecewise constant
on time intervals of fixed length δt. Then, the resulting sampled-data system can then be written
as,

zk+1 = Adzk +Bduo,k + ξk , (43)

where

Ad = eAδt, Bd =

∫ δt

0
eA(δt−τ)Bdτ,

and

ξk =

∫ tk+1

tk

eA(δt−τ)Eψ(t)dτ .

This allows us to approximate the integral part of the cost J in the FHC with a finite sum,

∫ ts+T

ts

h(z(τ), uo(τ))dτ ≈ δt
N∑

k=1

ek h(zk, uo,k) ,

where ek results from the specific numerical integration technique used, and N = T/δt. Then, the
state and control constraints are only imposed at temporal nodes, i.e.

zk ∈ Xo, uk ∈ Uo, k = 1, . . . , N.

If Xo and Uo are sets that can be described by semidefinite constraints, such as linear, quadratic, or
conic inequalities [3], then the FHC is approximated by a finite-dimensional parameter optimization
problem. Specifically, it becomes a semidefinite programming problem (SDP). SDP problems can
be solved in polynomial time. There exist algorithms and software [7, 9, 8] that compute the global
optimum with a deterministic stopping criteria, and with prescribed level of accuracy. Therefore,
they are very well-suited for real-time, onboard computations.

4 An Illustrative Example

In this section, we present an example illustrating the MPC algorithm. In this example, a “stan-
dard” approach to MPC without the relaxation of the initial state constraint in the feed-forward
problem (6) and without the feedback is shown to fail. The same problem is then solved successfully
by the MPC algorithm. The dynamics of the system are given by,

ẋ =

[
0 1
0 0

]

x+

[
0
1

]

u+

[
0

−0.1

]

ω sin (Cqx)
2 (44)

Cq =
[

1 0
]
,

ω ∈ [ 0, 0.5 ] .
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Here ω is an uncertain parameter. We assume that the nominal system is the linear part of (44),
that is ψ(t, q) = 0 and φ(t, q) = ω sin q2 in (23) and (21). This implies that ‖∂φ/∂q‖ ≤ 1, and
Assumption 5 is satisfied with Θ as in (31). The state constraints are given by,

−0.25 ≤ x1 ≤ 5

−1 ≤ x2 ≤ 2

and the control constraint is |u| ≤ 1.4. For the MPC algorithm, we partition the control constraint
into

|uo| ≤ 1.2 , and |uf | ≤ 0.2 .

The integral cost function h(z, u) = ‖Cx‖2 + ‖Du‖2 is determined by,

C =





1 0
0 0.1
0 0



 , D =





0
0
1



 .

Other design parameters needed in Corollary 1 are γ = 0.05, Πo = (1/1.22)I, Πf = (1/0.22)I, and

a1 = [ 0.2 0 ] , b1 = [ 4 0 ]

a2 = [−4 0 ] , b2 = [−4 0 ]

a3 = [ 0 0.5 ] , b3 = [ 0 10 ]

a4 = [ 0 − 1 ] , b4 = [ 0 − 10 ] .

Then, the values of the solution variables obtained by solving the LMIs [9] in Corollary 1 are

Ko =
[
−4.9491 −2.1129

]
, Kf =

[
−4.0868 −3.4005

]

Q =

[
0.0625 −0.0776
−0.0776 0.3431

]

, S =

[
0.0018 −0.0018
−0.0018 0.005

]

.

The invariant ellipsoids εQ and εS are given in Figure 1. A simulation for the standard MPC
implementation is given in Figure 2, where ω = 0.3. In this simulation, the finite horizon optimal
control problem is solved by applying a zero-order-hold discretization with a time increment δt =
0.5 seconds, and constraints are guaranteed at the temporal nodes. The feed-forward solution is
recomputed at every 10 seconds with a finite time horizon of 30 seconds. The trajectory converged
to set Ωo (the ellipsoid around origin in the plot), and the trajectory asymptotically converges to
the origin. However, the state constraint on x1 is violated as depicted by a solid line at x1 = −0.25
that is crossed in Figure 2. The same simulation is repeated with the MPC algorithm of this paper,
and the results are given in Figure 3, which shows that the trajectory asymptotically converges to
the origin without violating any state or control constraints. Figure 4 shows the error between the
nominal and real trajectories also goes to zero.

Actually, one can reduce the time interval between two computations in order to make a standard
MPC solution to give feasible state trajectories, and we observed that reducing the computation
interval from 10 to 5 seconds would have worked for this example. However, this reduction can not
always be pre-computed analytically, and the required reduction may as well be computationally
too demanding for a real-time implementation for a complex system. Therefore, using the MPC
algorithm of this paper can especially be useful when explicit guarantees are needed for feasibility
once an initial feasible solution is computed.
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Figure 1: Invariant Ellipsoids εS ⊂ εQ for the MPC Algorithm
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Figure 2: State Trajectory with Standard MPC
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Figure 3: State Trajectory with the MPC Algorithm
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5 Conclusions

In this paper, we presented a generic MPC algorithm that differs from earlier counterparts in terms
of using a feed-forward and feedback control components, and relaxing the initial state constraint
for the solution of the finite-horizon optimal control problem at each computation. This relaxation
makes it possible to design the feedback control policy off-line, and guarantee the resolvability
and asymptotic stability once an initial feasible solution is obtained by solving the finite-horizon
optimal control problem at the start of a maneuver. This MPC algorithm is robust to system
uncertainties that are explicitly accounted for in the design of feedback portion of the control input.
This explicit characterization of the robustness to the uncertainties (which can easily be extended
to external disturbances) is particularly desirable for real-time autonomous control applications.
Design procedures for a particular class of uncertain nonlinear systems is also given, as well as an
illustrative example demonstrating the approach.
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