
Abstract
A pinpoint landing capability will be a critical component for
many planned NASA missions to Mars and beyond. Implicit in
the requirement is the ability to accurately localize the space-
craft with respect to the terrain during descent. In this paper,
we present evidence that a vision-based solution using craters
as landmarks is both practical and will meet the requirements
of next generation missions. Our emphasis in this paper is on
the feasibility of such a system in terms of (a) localization
accuracy and (b) applicability to Martian terrain. We show that
accuracy of well under 100 meters can be expected under
suitable conditions. We also present a sensitivity analysis that
makes an explicit connection between input data and robust-
ness of our pose estimate. In addition, we present an analysis
of the susceptibility of our technique to inherently ambiguous
configurations of craters. We show that probability of failure
due to such ambiguity is becoming increasingly small.

Introduction
Current planetary landing technology limits spacecraft delivery
accuracies to tens of kilometers at best. For instance, the recent
Mars Exploration Lander (MER) missions had a landing error
ellipse of greater than 30 km � 80 km. Future missions call for
pinpoint delivery of a lander to within 100 meters of a target
pre-selected from orbital imagery. This will require a number
of technological advancements in propulsion, guidance,
navigation, and control (GNC), map generation, and terrain
relative localization. Our work addresses the last of these areas
by allowing for the first time localization accuracy on the order
of tens of meters from the start of image acquisition at altitudes
as high as 8 to 10 km above the surface.

Descent image-based spacecraft localization can be
divided into three parts: (a) identification of landmarks
in imagery, (b) matching of identified 2D landmarks to a
database containing their 3D terrain relative coordinates, and
(c) recovery of terrain relative spacecraft position, attitude
and velocity from the 2D to 3D correspondences. The last
problem is referred to in the Computer Vision community as
pose estimation. The algorithms to solve each part of the
localization problem must be efficient enough to run on a
flight processor with very limited computational power
within the time constraints of the mission. For a landing on
Mars, this may be on the order of two to three seconds from
image acquisition to spacecraft localization using a 100 MIPS
PowerPC 750 processor. For the case of crater landmarks, we
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have demonstrated in Cheng and Ansar (2005) solutions to
the identification and matching problems and have shown
that our spacecraft localization algorithms run within the
time limits for a Mars mission on flight equivalent hard-
ware. Figure 1 shows some example crater matching results
while Figure 2 presents runtimes for various system compo-
nents on a PowerPC 750. The advantages of this crater
landmark based system are:

1. Less sensitivity to illumination conditions and viewpoint
change due to relative invariance of crater rims, hence
centroids, over these changes. This relaxes the requirements
for base map generation since the map can be created from
different orbital sensors and at different times of day and
image scales.

2. Less dependence on onboard spacecraft state estimation
since the crater-matching algorithm uses crater geometry
(shape, size ratio, distance ratio, and perspective invariance
properties) directly to match craters between the descent
image and the base map.

3. Minimal onboard data storage requirement. Each landmark
(elliptical crater) is represented by nine parameters (3D
position, major and minor axes, 2D orientation, and surface
normal) and can be stored in 36 bytes in computer memory.
The landmarks in a heavily cratered landing site can be
stored in less than 100 kilobytes, which is two to three
orders of magnitude smaller than a raster map.

These results are presented in detail in Cheng and Ansar
(2005).

This paper focuses primarily on feasibility of the
technique. It is organized into two parts. The first addresses
localization accuracy given 2D image to 3D map correspon-
dence and presents experiments to show applicability to
future EDL scenarios. In this section, we also present a
parametric analysis of the sensitivity of our method to
general crater configurations. This is an essential tool to
identify near-degenerate cases which can give rise to suspect
pose estimates. The second part of the paper addresses in
detail the likelihood of inherent geometric ambiguity in
detected craters which can defeat pose estimation.

Localization Algorithms and Expected Accuracy
The problem of determining the six degree of freedom pose
(position and attitude) of a calibrated camera from known
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Figure 1. Example of the crater landmark based spacecraft localization system. (a) is Apollo 16
Panoramic Camera image, which serves as the base map, and (b) is a Ranger VII image. Images have
different illumination and viewing angles. However, the system is able to match the craters between
the two images.

correspondence between 3D points and their 2D image
counterparts is classical in both photogrammetry and
computer vision. In the former, it is known as space resec-
tion and in the latter as the n-point pose problem or pose
estimation. Many solutions exist, most depending on non-
linear optimization to minimize some cost function based on
image re-projection error or 3D reconstruction error. Our
approach consists of two steps, initialization and refinement.
The first step uses a non-iterative, direct linear solution to
the pose problem. It has a number of advantages. These
include no need for initialization, no possibility of conver-
gence to a local minimum, applicability to as few as four
correspondences, and a guaranteed correct solution provided
input noise is constrained. The main drawback of this
algorithm is a highly non-linear complexity with respect to

the size of the input data. Thus, we often use only a subset
of the data to initialize. The refinement step consists of an
iterative optimization algorithms combined with a statisti-
cally robust estimation scheme. The iterative algorithm
scales well with the size of the input data, is relatively
insensitive to noise, and is both highly accurate and fast
converging given good initialization.

We begin with a few preliminary points of notation and
nomenclature. Recovering camera pose corresponds to
finding the Euclidean transformation (R,T) � SO(3) � R3

taking points in some global coordinate frame to those in a
frame centered on the camera. If Vw is a point in the global
frame, then its representation in the camera frame is Vc
� RVw � T. The pose of the camera in the global frame is
then given by (RT, �RTT). The camera frame is always

Figure 2. The runtime of the three components on a PPC 750 computer. (a) the run times of the crater
detection algorithm on different images sizes (b), The run time of the crater matching algorithm on
different sizes of base map with map units in km, (c) The run time of the pose estimation algorithm on
different number of points. The current system is able to do spacecraft localization in less than three
seconds on a 512 � 512 image. This speed is adequate for the pinpoint landing application.
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located at the center of projection with the z-axis coincident
with the optical axis, and positive x to the right, and
positive � downward on the image plane. Normalized coordi-
nates refer to coordinates expressed in the camera frame
with z � 1. These are obtained from pixel coordinates using
the known intrinsic geometry of a calibrated camera.

Pose Initialization
We use a recent linear algorithm that provides localization
accuracy nearly on a par with the best non-linear optimiza-
tion schemes for cases of moderate noise in input data. As
mentioned above, this approach avoids many of the usual
problems associated with iterative algorithms, such as slow
convergence and convergence to a local minimum. Details
can be found in Ansar and Daniilidis (2003). We present
only an overview here.

Suppose that n points in some global coordinate system
are given by {wi} and their normalized image coordinates by
{pi}. Then there exist real numbers �i such that {qi � �ipi}
are the 3D coordinates of the points in the camera frame. Let
dij be the squared distance between points wi and wj. Since
distance is a Euclidean invariant, we have

(1)

This is a quadratic system of n(n � 1)/2 equations in
the variables {�i}. If we find an efficient solution for this
system, we will have recovered the 3D coordinates of all
points in the camera frame. Then, recovering the world
to camera transformation is an instance of the classical
absolute orientation problem. We solve the latter following
Horn et al. (1988). The solution of the system in Equation 1
proceeds as follows. We replace the product �i�j with the
symbol �ij. Now Equation 1 is linear in the n(n � 1)/2
variables {�ij}, and we are free to use linear algebra tech-
niques such as singular value decomposition (SVD). Unfortu-
nately, the linear system is under-constrained and has a
multidimensional kernel. Suppose that the true solution is
the vector � � (�11, �12, . . . )T. If {�i} is a basis for the
kernel of the original linear system, then there exist real
numbers {ki} such that

(2)

The solution for the coefficients {ki} depends on the
observation that for any quadruple of integers {a, b, c, d}
and any permutation {a�, b�, c�, d�}, we have �ab�cd
� �a�b��c�d�. In effect, we are reintroducing the quadratic
nature of the problem with these constraints. By substituting
rows of � in Equation 2 into expressions of this form, we
obtain another quadratic system in the k’s. As before, we
linearize this system by replacing second order terms with
symbols. The new system is provably over-constrained, and
we always obtain a unique solution. Once we have �, we
can obtain {�i � sqrt(�ii)}, and the 3D coordinates of all
points are known in the camera frame.

The runtime for this algorithm is comparable to non-linear
optimization techniques for up to eight points. Assuming we
have matched more than eight points during descent, we take
a random sampling of less than eight to initialize with the
algorithm just described.

Pose Refinement
We now give a brief overview of the refinement step. This
combines a fast converging iterative algorithm from Lu,
Hager, and Mjolsness (2000) with some standard robust
statistical techniques. The algorithm of Lu, et al. (2000) is

l � �ki ni.

 � li
2pi

Tpj � lj
2pj

Tpj�2liljpi
Tpj .

 dij � (liPi�ljpj)
T(liPi�ljpj)

guaranteed to converge but may converge to a local mini-
mum if poorly initialized. Hence, we start its search at the
result provided by our initialization step above. The novelty
of this algorithm lies in its use of an objective function in
space rather than on the image plane. This is similar in
spirit to the constraint in Equation 1. However, instead of an
explicit 3D reconstruction, the technique relies on what Lu
et al. (2000) refer to as object space colinearity. Essentially,
they minimize the distance between the line of sight vector
associated with a 2D point and its 3D counterpart. If pi is
again an image point in normalized coordinates, then
consider the matrix

(3)

We assert without proof that this matrix projects any
point in space onto the ray defined by pi. Then using the
notation of this and the previous section, the objective
function used to find (R,T) is given by

(4)

where Pi is given in Equation 3. Lu et al. (2000) present an
elegant iterative scheme based on Horn’s solution of the
absolute orientation problem. This requires an SVD computa-
tion of a 3 � 3 matrix at each step, so that the complexity
grows very slowly as a function of data size and is limited
by construction of a 3 � 3 cross covariance matrix from n
points.

We combine this algorithm with a Least Median of
Squares (LMEDS) estimator to provide outlier rejection and a
statistically robust solution. Given n matched landmarks, we
determine pose from a subset of size m 	 n a total of L
times. L is chosen to guarantee a maximum algorithm failure
rate of Pfail given m landmarks and a probability Pg that any
given landmark is valid (i.e., not an outlier). L is given by

(5)

Details and justification can be found in Fischler and Boller
(1981). For each trial, we compute the median error in
reprojection of 3D points onto viewing rays as given by
Equation 3. We then take as a valid model the trial with
lowest squared median error. Any data point exceeding an
error threshold with respect to this model is considered an
outlier. Finally, we take all points that are not outliers, and
apply the core pose estimation algorithm to obtain the best
pose.

Note that while the results presented in this paper
assume cratered terrain, the localization algorithms will
work equally well with other features, provided accurate 2D
image to 3D map correspondences can be established. We are
currently exploring such features for navigation around
small bodies (asteroids and comets). Details of ongoing work
were presented in Ansar (2004).

Pose Accuracy, Experiments, and Results
We have conducted numerous experiments using Mars-like
as well as other scenarios to test the accuracy of our local-
ization algorithms and have developed a full simulation
environment for further testing. We now present two experi-
ments to demonstrate the accuracy and robustness of our
technique. The first is a purely synthetic result showing
localization error in simulation. The second show a Mars
landing scenario using real imagery from the Mars Odyssey
THEMIS instrument.

Experiment 1
We have developed a Monte Carlo simulation to characterize
the performance of our pose estimation technique subject to
varying noise levels in both imagery and 3D map knowledge,

L � log(Pfail)/log(1.0 � Pg
m).

E (R,T) � � �(I � Pi)(Rwi � T )�

Pi � (pipi
T)>(pi

Tpi).
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changes in camera geometry (field of view (FOV), sensor
resolution, spacecraft insertion altitude and attitude, and
probability of outliers in matched 2D and/or 3D data. The
purpose of this simulation is to enable a parametric study of
localization error. We decouple this from the image process-
ing problem by avoiding the use of synthetic imagery and
supplying directly the 3D coordinates of synthetic data
points, projecting to the image plane and corrupting with
noise or introducing outliers. In Figure 3, we show the
result for lateral localization error of a spacecraft at an
altitude of 8 km with 100 degree FOV imager at 1024 � 1024
resolution (equivalent to approximately 19 m/pixel on
the ground) and an assumption of 15 matched data points.
Systematic Gaussian image noise is added at a level of one
pixel standard deviation, which we expect is higher than we
will find in practice. In this example, we vary the percent-
age of outliers from 0 percent to 15 percent. A point marked
as an outlier is selected with uniform probability from a 30
pixel � 30 pixel box centered at ground truth. The results
displayed are mean values over 1000 trials. We show results
for both the LMEDS robust algorithm and a version using
only the initialization and iterative refinement step. Observe
that the LMEDS output remains stable over outlier rates much
larger than 	5 percent rates we typically expect.

The results are fully consistent with the EDL require-
ments of 	100 meters localization accuracy for upcoming
missions. Note that while we present only lateral position
error, which is of primary relevance to pinpoint landing, we
in fact solve for the full six degrees of freedom pose of
the spacecraft. While there is some inevitable coupling of
position and attitude in the solution, this effect is generally
minor, and the primary error component in the algorithm
lies in the position estimate. See Ansar and Daniilidis (2003)
for a complete discussion.

Experiment 2
We have developed a simulation environment that allows us
to test our crater detection, matching and pose algorithms in
an end-to-end fashion through a full landing trajectory. We
demonstrate its application to a Mars landing scenario using

a trajectory based on specifications for the planned Mars
Science Lab (MSL) mission. The 3D database (map) consists
of a large composite image of Martian terrain containing
over 790 craters taken by the Mars Odyssey THEMIS instru-
ment. Using the descent trajectory mentioned, we generated
synthetic imagery to simulate the view from a lander. Note
that this is a preliminary dataset used for development of
the simulator, and the same image is used for the map, and
then zoomed and warped according to ground truth space-
craft pose to produce the descent views. Thus, while this
dataset does demonstrate invariance of our detection and
matching algorithms to geometric distortion, it does not
demonstrate photometric invariance. However, we have
ample evidence from the NEAR mission that our crater
detection and matching algorithms work well with lighting
changes under real mission conditions. See Cheng and
Miller (2003) for details. In future, we will use different base
images for map and descent imagery generation in our
simulator.

Since the Martian surface as viewed from high altitudes
is essentially planar, we used a homography transform to
warp the map image and generate the descent views.
Planarity guarantees that this is a faithful and realistic
representation of the view from a descent camera with 512
� 512 imager and 90 degree FOV. In Figure 4, we show a
snapshot from our simulator. The three panels on the upper
half of the display show camera view, detected craters, and
craters matched to the map, respectively. The lower left
panel shows the true 3D position of the spacecraft in dark
gray and the estimated position in white. The lower right
shows absolute position error. Throughout this trajectory
from 12 km to 8 km in altitude, the position error never
exceeds 50 meters in norm, and the final error at 8 km
altitude was 9 meters for the run displayed.

The 8 km altitude limit is a function of the 18 m/pixel
resolution of the THEMIS image the 512 � 512 resolution
of our descent camera. With a 1000 � 1000 camera with
90 degree FOV and map resolution on the order of Mars
Reconnaissance Orbiter (MRO) of 30 cm/pixel, our algorithm
should be useable to an altitude of approximately 150 m,
provided there are suitable craters in the view. Assuming a
more realistic lower limit of 50 m for the smallest visible
craters, our technique with an MRO-like map will operate
reliably to within 1 km of the surface.

Note that we are using our algorithms for crater detec-
tion and matching on a real image of Mars. The position
estimation uses the full robust version of our algorithm and
estimates all six degrees of freedom of the spacecraft pose;
no prior information on altitude or attitude is assumed at
any time. Observe that noise is not artificially introduced
but is a real artifact of image processing.

Covariance Propagation
A useful pose estimation system must guarantee correct pose
to within a required accuracy and with predictable statistics.
This depends not only on the pose algorithm and the
accuracy of landmark detection and matching in image data
(e.g., our crater search algorithms) but on the distribution
and accuracy of the positions of these landmarks in space.
There are configurations that lead to especially sensitive
solutions. We must be able to recognize these when they
occur, and characterize the uncertainty in resulting pose
estimates. At the same time, we must be able to characterize
analytically the effects of uncertainty in 3D knowledge.

Propagation of covariance to estimated pose parameters
is needed to provide an essential confidence metric. Without
this information, risk mitigation is impossible. Furthermore,
any sophisticated filtering technique for state estimation
requires a covariance matrix for estimated parameters. Even

Figure 3. Lateral position error at 8 km. altitude for
varying probabilities of outliers. Note that the robust
algorithm remains stable and produces estimates are
well within the requirements of future Mars missions.
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Figure 4. Snapshot from crater detection/position estimation simulator. The upper
panes show the output of the crater detection and matching algorithms. The
lower left pane shows the ground truth position (dark cone) and estimated
position (light cone) of the spacecraft. The lower right pane shows position error
in meters.

in cases where noise levels are low, there are likely to be
configurations of landmarks that are inherently noise
sensitive. It is critical that such situations be identified
when they occur and that the directions of most- and least-
stable pose be identified.

We follow the technique described in Haralick (1994) to
propagate covariance from error estimates on 3D and 2D
knowledge. The technique depends on existence of an
objective function that is directly minimized to obtain
estimated parameters from measurements. This constraint is
used to solve implicitly for errors in the former given errors
in the latter. Propagation is correct to first order. While our
initialization algorithm does not directly minimize the
constraint in Equation 1, the refinement algorithm does
directly minimize the constraint in Equation 4. Thus, a
covariance on overall pose can be determined.

Given a constraint to be minimized of the form f(
, X)
� 0, where 
 are parameters to be estimated and X is a set
of measurements (in our case, 2D image measurements and
3D map coordinates), we calculate an implicit error �
 on
the estimates from an error �X on the measurements. In the
presence of noise, f achieves a minimum at f(
 � �
, X
� �X). Thus,

(6)

Now, taking a Taylor expansion of �f/�
 about (
, X) and
observing that the gradient also vanishes at this point, we
obtain to first order the relationship

(7)a �f 2

�X�u
 bT

�X � a �f 2

�2
u
 bT

�u � 0.

�f

�u
 (u � �u, X � �X ) � 0.

From this we can solve directly for �
 in terms of �X. The
covariance of 
 is simply E(�
*�
T), where E signifies the
expectation value. Similarly, we have Cov(X) � E(�X*�XT).
A trivial substitution into Equation 7 then gives us

(8)

For simplicity, we have used numerical derivatives in all
computations of Jacobians. In Figure 5, we show the 1
error ellipses for both position and attitude for several cases
of synthetic data using the analysis above. We vary the
image noise, 3D map noise, image point distributions and
number of detected points. The resulting error ellipses
behave according to intuition. Larger numbers of points
shrink the ellipses. Higher noise levels cause them to grow.
Biases in the distribution reflect in obvious ways.

Cov(X) is currently just a diagonal matrix encoding
expected image and map noise variances. However, a full
covariance matrix can be accommodated if additional
structure in measurement error is known. Observe that the
maximum error directions clearly change as a function of
crater/landmark distribution. Note also that the magnitudes
of the position errors are well within the requirements for
precision landing for high noise levels. Attitude errors
remain well under 0.5 degrees throughout.

Compensation for Velocity
In a real landing, it is not sufficient to find instantaneous
position and attitude only. Course corrections must incorpo-
rate ground relative velocity information as well, since the
effect of winds cannot be determined from IMU data. An
image based horizontal velocity estimator, the Descent Image

Cov(u) � a �f 2

�2
u
 b�Ta �f 2

�X�u
 b T

Cov(X)a �f 2

�X�u
 b a �f 2

�2
u
 b�1

.
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Figure 5. Each frame shows the synthetic image, position error ellipse and attitude error ellipse. All
positions are bounded by 10 m in all directions and all attitudes by 0.2 degrees in all directions. (a)
Moderate image noise (0.5 pixel) and perfect 3D map. (b) High image noise (1.25 pixel) and perfect map.
(c) Moderate image noise and high map noise (10 meters). (d) Moderate noise and vertically biased
distribution. (e) Moderate noise and horizontally biased distribution. (f) Low number of detected points
(six) versus high number in other cases (30).

Motion Estimation System (DIMES), was successfully used on
both Mars Exploration Rovers (MER) landings. The DIMES
algorithm combines measurements from a descent camera, a
radar altimeter and an inertial measurement unit (IMU). To
deal with large changes in scale and orientation between
descent images, the algorithm uses altitude and attitude
measurements to rectify image data to a level ground plane.
Feature selection and tracking is employed in the rectified
data to compute the horizontal motion between images
Cheng, et al. (2004). Although DIMES satisfied the MER
landing requirement, it estimates only an average velocity
from image data. This is inadequate for pinpoint landing
applications. However, we show that given our position
estimates, we can integrate IMU data to obtain “instanta-
neous” velocity estimates and bound landing error to well
withing future mission requirements.

We estimate an upper bound on the landing error el as
follows:

(9)

where eP is the position error at the moment of transition
from freefall to powered descent, eV is the instantaneous
velocity error at that moment, and dT is the time remaining
to the ground. Our effort here is a proof of concept only. We

el � ep � ev*dT

fully expect that any final system will incorporate a sophis-
ticated Kalman or similar filter to determine velocity from
our position measurements and easily surpass the results of
our approach. However, even the relatively simple technique
we describe below produces adequate results. Suppose two
frames are taken at times tf and to, with associated position
estimates P(tf) and P(to). If acceleration data a(t) are also
available, then a simple derivation shows that at any time t,
the instantaneous velocity can be computed as

(10)

If multiple frames are available, we can further refine
the estimate of V(t) by taking a weighted average of all
pairwise estimates. We have determined empirically that
weighting by difference in time between the frames and
inversely by altitude works well. So that if a sequence of
indexed frames is available, then the sum over all i 	 j of
the quantity

(11)V (t) � a Vi,j (t) 
tf � ti

Z(tf)
na

tf � ti

Z(tf)
.

V(t) �
P(tf) � P(t0) � ∫

tf

to

∫
t

to

a(t)dt

tf � to

� ∫
t

to

a(t)dt.

(a) (b)

(c)

(e)

(d)

(f)
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Figure 6. Comparison between averaged and integrated
velocities for varying altitudes at which transition from
freefall to powered descent starts. The integrated
approach meets requirements for pinpoint landing on
future Mars missions.

Here Vi,j(t) is the instantaneous estimate of Equation 10
given by frames i and j. In Figure 6, we show the difference
between using this integration technique in estimating el in
Equation 9 versus an approach that estimates average velocity
from the last two frames before transition to powered descent.
Results are shown as a function of the altitude at which dead
reckoning (i.e., transition from freefall to powered descent)
starts. Note that while the averaging technique fails to meet
requirements for pinpoint landing, the integrated technique
easily satisfies them for all transition points considered.

Attitude Recovery
We have made little mention of attitude because position
recovery is the more relevant issue for localization. In real
mission scenarios, attitude is generally well known via star
trackers prior to entry. Nevertheless, we always solve
directly for all six degrees of freedom of the spacecraft pose.
In the next section, we will show that attitude is very well
constrained by our technique. In all cases discussed so far,
we are able to estimate it to within 0.5-degree absolute error,
even in the presence of high noise.

Crater Uniqueness Analysis
We now address the feasibility of our technique for the
specific case of crater features. We have developed models
for the likelihood of ambiguous crater configurations given
specific crater size distribution models. These follow from
purely geometric arguments under the assumption that all
craters are circular. Naturally, this is a worst-case scenario,
since eccentricity is a disambiguating factor. We validate our
geometric arguments using real data from an Odyssey THEMIS
image containing nearly 1,000 craters. Note that this study
focuses exclusively on ambiguity within a pre-computed
ground map. The spacecraft and imager used during descent
are not factors. We now sketch the analysis.

A formal counting argument and some calculus shows
that the probability of having two pairs of craters with centers
at the same relative distance d in a disk of radius R is

(12)

Suppose two distances are considered “equal” provided they
are within �p of one another. We can integrate Equation 12

P1 � a3
4

 
1
R

arctan aA4R2

d2 � 1 bb � aad
4

 b2 3
R3A4R2

d2 � 1 b.

subject to this definition of equality to find the probability
that any two pairs of craters are at the same relative dis-
tance. Let this quantity be called P2. Once a crater pair is
chosen, we have implicitly fixed an origin and orientation
on the full collection of craters. Suppose there are N craters
in our region of interest and that m of them are used for
pose determination. This leaves n � N � m remaining. Now
a further counting argument applies to determine the
probability Pgeom of having a second collection of m craters
with a configuration geometrically identical to the first:

(13)

By geometrically identical, we mean that the two collections
can be mapped onto one another by a planar Euclidean
motion with less than �p error between any two correspon-
ding crater centers.

So far, we have ignored crater size. We find in Hart-
mann (1999) a model for crater distribution on Mars. An
equivalent representation for the size-frequency distribution
function can be written as:

(14)

which relates the number n of craters per square kilometer
to their size d subject to two parameters � and K. If we
integrate this expression over all sizes from dmin to dmax, we
find an expression for the total number N of craters in a
region with area A. Then, the probability distribution for
craters within the size range dmin to dmax is then given by
N(dmin,dmax) � N/A. We make this explicit:

(15)

Now if we set �s as the tolerance for “identical” crater size,
the probability of two craters having identical size is found
by integrating N(d, d � �s)2 over all possible d. We call this
quantity P3. Then with yet another simple counting argu-
ment, we find the probability of having m craters of the
same size out of the full collection to be

(16)

Finally, the probability of an ambiguous configuration of m
craters out of N is given by

(17)

Using information in Hartmann (1999), we derived
plausible (K, �) values for lightly (K � 0.1, � � 1.8), and
heavily (K � 0.3, � � 1.8) cratered terrain. Assuming 90
degree FOV and 8 km camera altitude, we set the diameter of
our region of interest to 8 km to cover roughly four times
the instantaneous camera view, �s � �p � 30 meters, dmax
� 4 km, and dmin � 100 meters. Since our goal is to study
ambiguity on the ground only, we assume that spacecraft
location is known sufficiently well to restrict the valid map
to this region. In Table 1, we show the results for m � 2 to
5. The probability of ambiguous configuration is already
increasingly small for m � 5.

We verify these results with a real Mars image from
Odyssey THEMIS and an exhaustive search over 917 identified
craters for ambiguous configurations. An image of the terrain
and the detected craters is shown in Figure 7. Note that this is
the same image as used in Experiment 2. The difference in total
number (790 in Experiment 2 versus 917 here) of craters is due
to selection of a larger portion of the image in this test as well
as a slight change in crater detection parameters. Detected
craters range in size from 55 m in diameter to 457 m, and the

Pambiguous � PgeomPsize .

Psize � (1 � (1 � P3)
n)m.

sN(dmin ,dmax) � N/A �
K

1 � a
 (dmax

1�a � dmin
1�a) .

n � Kd�a

Pgeom � (1 � (1 �
d

2
p

R2)n)m�2(1 � (1 � P2)
(2n�3)(2m�3)).
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TABLE 1. PERCENT PROBABILITY OF AMBIGUOUS CONFIGURATIONS FROM

GEOMETRIC ARGUMENT

Number of Craters Lightly Cratered Heavily Cratered

2 5.4 44.4
3 5.2 � 10�3 0.20
4 2.9 � 10�6 8.4 � 10�4

5 1.4 � 10�9 3.4 � 10�6

TABLE 2. PROBABILITY OF AMBIGUOUS CONFIGURATIONS USING ODYSSEY

THEMIS DATA

Number of Total # Valid # Ambiguous % Probability of 
Craters Configuration Configuration Confusion

2 7.1 � 105 71,898 10.1
3 1.3 � 107 7,394 5.8 � 10�2

4 1.8 � 108 1027 5.7 � 10�4

5 2.2 � 109 221 1.0 � 10�5

scene covers a 45 km � 22 km patch of the Martian surface.
Observe that the large crater near the center of the image is not
detected because its size exceeded our search threshold, not
because of some inherent deficiency in the algorithm.

The results for m � 2 to 5 are given in Table 2. Observe
that they fall squarely between the lightly and heavily
cratered cases obtained by the geometric argument above up
to order of magnitude. We believe that this validates our

counting argument and gives further credence to the low
probability of ambiguous configuration.

Conclusions
We have presented an image based localization technology
that satisfies the requirements for future NASA missions
requiring pinpoint landing with emphasis on feasibility in
terms of localization accuracy and applicability to Martian
terrain. Along with the detailed description of detection and
matching algorithms reported elsewhere, this provides the
first plausible solution for autonomous spacecraft localiza-
tion during descent. Our solution is fast, robust and requires
few identified landmarks to produce an accurate estimate.
We have shown that the technique does not suffer from
inherent ambiguity under even mild assumptions. Further-
more, we have developed a covariance model parameterized
by image and map noise. This provides a tool for studying
position estimation as a function of crater/landmark distri-
bution as well as a real-time confidence measure on the
estimate obtained from a given dataset.
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