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This paper presents an approach for slip prediction from a distance for wheeled ground
robots using visual information as input. Large amounts of slippage which can occur on
certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore,
obtaining information about slip before entering such terrain can be very useful for better
planning and avoiding these areas. To address this problem, terrain appearance and ge-
ometry information about map cells are correlated to the slip measured by the rover while
traversing each cell. This relationship is learned from previous experience, so slip can be
predicted remotely from visual information only. The proposed method consists of terrain
type recognition and nonlinear regression modeling. The method has been implemented
and tested offline on several off-road terrains including: soil, sand, gravel, and wood-
chips. The final slip prediction error is about 20%. The system is intended for improved
navigation on steep slopes and rough terrain for Mars rovers. © 2007 Wiley Periodicals, Inc.
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1. INTRODUCTION

Slip is a measure of the lack of progress of a wheeled
ground robot while driving. High levels of slip can be
observed on certain terrains, which can lead to sig-
nificant slow down of the vehicle, inability to reach its
predefined goals, or, in the worst case, getting stuck
without the possibility of recovery. Similar problems
were experienced in the Mars Exploration Rover
�MER� mission in which one of its rovers got trapped
in a sand dune, experiencing 100% slip �Figure 1�. The
science goals of future Mars rover missions will re-
quire the rover to explore areas of the planet which
feature very steep and rocky terrain, where a lot of
slippage is possible. It will be important to be able to
predict slip from a distance, so that adequate plan-
ning is performed and areas of high slip are avoided.

The mobility of a vehicle on off-road terrain is
known to be strongly influenced by the interaction
between the vehicle and the terrain �Bekker, 1969�.
Slip is the result of this complex interaction and, sec-
ond to tip-over hazards, it is the most important fac-
tor in traversing slopes �Leger et al., 2005; Biesiadecki
et al., 2005�. However, with a few exceptions �Ojeda,
Borenstein, Witus & Karlsen, 2006; Brooks, Iagnemma
& Dubowsky, 2005�, slip has not been considered as
an aspect of terrain traversability in state-of-the-art
autonomous navigation systems so far, mainly be-
cause of the highly nonlinear nature of the rover-
terrain interactions and the complexity of modeling
of these interactions �Andrade, Ben Amar, Bidaud &
Chatila, 1998; Iagnemma, Shibly & Dubowsky, 2002�.
The most commonly used approach is to represent
the surrounding terrain as a geometric elevation map,
using range data from sensors, such as stereo cam-
eras, radar, or ladar, in which a binary perception of
the terrain, i.e., obstacle versus nonobstacle, is done
�Daily et al., 1988; Kelly & Stentz, 1998�. This idea has
been extended to detecting compressible grass and
foliage, which would otherwise be perceived as an
obstacle �Macedo, Manduchi & Matthies, 2000;
Lacaze, Murphy & Delgiorno, 2002; Matthies, Bergh,
Castano, Macedo & Manduchi, 2003�, but this again
uses more or less geometric concepts of penetrability
of terrain. Regarding slip, a sandy slope might be
nontraversable because of large slip, whereas the
same slope covered with different material, e.g., com-
pacted soil, could be perfectly traversable. Such areas
of large slip are called nongeometric obstacles, as they
cannot be detected by software which uses geometri-
cal information only �Leger et al., 2005�, and more ad-

vanced perception of the physical terrain properties
is needed to detect them.

Visual characteristics of the terrain, in addition to
geometry, can give more clues to its mechanical prop-
erties and the eventual rover-terrain interaction.
Thus, we propose to use stereo pair imagery as the
input for slip prediction �Angelova, Matthies, Helm-
ick & Perona, 2006; Angelova, Matthies, Helmick,
Sibley & Perona, 2006�. The rationale behind this ap-
proach is that, from a mechanical point of view, slip
depends on physical and geometrical properties of
the terrain �Bekker, 1969�, and stereo imagery pro-
vides information about both the geometry from the
range data and the visual appearance of the terrain.
So, stereo imagery contains much information which

Figure 1. The Mars Exploration Rover “Opportunity”
trapped in the “Purgatory” dune on sol 447. A similar
100% slip condition can lead to mission failure.
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can help predict slip on the forthcoming terrain. The
main challenge is how to interpret the vision data to
infer properties about the terrain or predict slip.

Our approach to this problem is to correlate the
visual information and the corresponding measured
slip while the rover is traversing the terrain. In par-
ticular, we extract information about the terrain ob-
served from a distance by using information from a
stereo pair only, measure the slip of the rover when it
traverses this particular region, and create a mapping
between visual information and the resultant slip
�Figure 2�. We propose to learn this functional rela-
tionship using the experience from previous travers-
als �Angelova, Matthies, Helmick & Perona, 2006;
Angelova, Matthies, Helmick, Sibley & Perona, 2006�.
Thus, after learning, the expected slip can be pre-
dicted from a distance using only stereo imagery as
input. More importantly, the rover’s own sensors are
used as feedback to the learning, which can remove
the human-in-the-loop factor for data labeling. A
learning approach is chosen, because: �1� creating a
physical slip model is extremely complicated due to
the large number of variables involved, �2� the map-
ping from visual input to a mechanical terrain prop-
erty, such as slip, is a complex function, which does
not have a known analytical form or a physical model
and one possible way to observe it and learn about it

is via training examples, and �3� a learning approach
promotes adaptability of the vehicle’s behavior. A
similar idea of learning, using visual and other sen-
sory input, has been previously applied by Welling-
ton & Stentz �2004� for retrieving the load-bearing
surface in vegetation and stems from ideas for learn-
ing permeability of vegetation �Macedo et al., 2000;
Matthies et al., 2003�.

To address the problem of slip learning and pre-
diction we propose a general framework in which the
task is subdivided into: �1� learning the terrain type
from visual appearance and then, after the terrain
type is known �2� learning slip from the terrain ge-
ometry using nonlinear approximation �Angelova,
Matthies, Helmick & Perona, 2006; Angelova, Mat-
thies, Helmick, Sibley & Perona, 2006�. We term the
latter dependence of slip on terrain geometry, when
the terrain type is known, slip behavior. The proposed
decomposition of the problem is adequate because
from a mechanical point of view it is known that dif-
ferent terrains exhibit different slip behavior charac-
teristics �Bekker, 1969; Terzaghi, 1948�, and because
terrain appearance can be considered approximately
independent of terrain geometry. This decomposition
also introduces some structure in the problem, so that
we can solve it with a reasonable amount of training
data.

This work has been the first to attempt predicting
slip from a distance. We have proposed an overall so-
lution framework in which the slip is learned and
predicted from visual information. This paper ex-
tends the results of �Angelova, Matthies, Helmick &
Perona, 2006; Angelova, Matthies, Helmick, Sibley &
Perona, 2006�.

1.1. Testbed

This research is targeted for planetary rovers, such
as the Mars Exploration Rover �Figure 3, left�. A
Mars research rover testbed, called Rocky8 �Figure 3,
middle�, is used for experimental purposes instead.
We also used a LAGR robot1 �Figure 3, right�, as it is
a more convenient data collection platform.

Rocky8 is a prototype research rover with six
wheels in a rocker-bogie configuration �Tarokh, Mac-
Dermott, Hayati & Hung, 1999� which allows for im-
proved mobility on rough terrain. We have used its
hazard stereo cameras with 80° field of view �FOV�,

1LAGR stands for Learning Applied to Ground Robots and is an
experimental all-terrain vehicle program funded by DARPA.

Figure 2. Main idea: learning of mechanical �slip� output
from visual information. The rover collects visual informa-
tion �appearance and geometry� about a future location of
interest in the forward looking map from its stereo pair
images �left�. When this location is reached by the rover, a
slip measurement is taken using onboard sensors �right�.
Correlating vision information to the corresponding slip
measurement and learning this mapping allows for pre-
diction of slip from a distance using visual information
only.
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wheel encoders, rocker and bogie angle sensors, and
Inertial Measurement Unit �IMU�. The rover’s nomi-
nal speed of operation is 8 cm/s. In the dataset used
in the paper, stereo pair imagery is acquired after
each stop of the robot.

The LAGR robot has two front differential drive
wheels and two rear caster wheels. It is about 1 m
tall. It is equipped with stereo cameras with 70°
FOV, wheel encoders, IMU, and Global Positioning
System �GPS�. The IMU and GPS are processed into
a global pose. The robot can run in autonomous mode
or be manually joysticked using a radio controller. It
can achieve speeds of up to 1.2 m/s, although for
some of our experiments it was set to drive at
30 cm/s. Stereo imagery is acquired continuously at
5 Hz.

1.2. Outline

The rest of the paper is organized as follows. We
start by providing a definition of slip �Section 2� and
by reviewing related previous work �Section 3�. Sec-
tion 4 introduces the datasets we are using. Section 5
describes the proposed framework in which learning
and prediction of slip is decomposed into terrain
class recognition �Section 6� and nonlinear regres-
sion modeling for learning of slip behavior for each
terrain type �Section 7�. Both Sections 6 and 7 pro-
vide experimental evaluations of the individual
components. Section 8 provides experimental results
of the final slip prediction, when using remote sen-
sors as the only input. Section 9 concludes the paper
and gives directions for future work.

2. DEFINITION OF SLIP

Slip s is defined as the difference between the velocity
measured by the wheel �wr� and the actual velocity v:

s=wr−v, where w is angular wheel velocity and r is
the wheel radius �Wong, 1993�. It can also be normal-
ized by the commanded wheel velocity: s= �wr
−v�/wr �Bauer, Leung & Barfoot, 2005; Iagnemma et
al., 2002; Wong, 1993�. Similarly, the slip for the whole
rover is defined as the difference between the actual
vehicle velocity and the velocity estimated from the
kinematic model for each degree of freedom �DOF� of
the rover per step �i.e., between two consecutive ste-
reo pairs� �Helmick, Cheng, Roumeliotis, Clouse &
Matthies, 2004�. It can also be normalized, to receive
a unitless slip value or express it in percentage of the
step size. In this paper we use the normalized version
of slip for the whole rover.

For the kinematic estimate, we use a differential
drive model for the LAGR vehicle and a full rocker-
bogie kinematic model for Rocky8 �Tarokh et al.,
1999; Helmick et al., 2004�. The actual position
�ground truth� can be estimated by visually tracking
features �Matthies & Schafer, 1987; Matthies, 1989�, a
method now called visual odometry �VO�, or mea-
sured with some global position estimation device.
VO is the preferred method for ground truth estima-
tion because it is a convenient, self-contained sensor
on the vehicle. By using VO, data collection and train-
ing can be done automatically, onboard the rover,
which coincides with the goals of planetary explora-
tion missions. Furthermore, global positioning de-
vices are not always available, especially in planetary
missions.

Validation of VO position estimation has been
performed by several groups �Olson, Matthies, Shop-
pers & Maimone, 2001; Helmick et al., 2004; Nister,
Naroditsky & Bergen, 2006�. VO position estimation
error has been measured to be less than 2.5% of the
distance traveled, compared to ground truth sur-
veyed with a Total Station that has 2 mm precision,

Figure 3. The Mars Exploration Rover “Spirit” in the Jet Propulsion Laboratory �JPL� Spacecraft Assembly Facility �left�.
Rocky8 rover in the Mojave desert �middle�. LAGR robot on off-road terrain �right�.
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for runs of 20–30 m in outdoors testing with the
Rocky8 rover �Helmick et al., 2004�. Similar results of
1.2% position error for a 20 m traverse have been
achieved by Olson et al. �2001� while testing in dif-
ferent circumstances, i.e., using a smaller robot, wide
field of view cameras, different image resolution, etc.
VO path length errors of about 1%–1.6% for
180–380 m traverses in outdoor environments have
been reported by Nister et al. �2006� with a different
VO algorithm. The results of these tests indicate that
VO is a precise position estimation technique and is
adequate to be used as ground truth both for com-
puting slip per step and for precise localization
within short to midsize �20 m� traverses, i.e., to be
able to map correctly the position of the location seen
from a distance to the location traversed later on.

We measure slip with respect to the previous
rover frame �corresponding to the beginning of the
step� which is defined as follows: the X coordinate is
along the direction of forward motion, Y is along the
wheel axis, and Z is pointing down. We define slip in
X and slip in Y as the components of slip along the X
and the Y axes, respectively. Slip in yaw is the rotation
angle around the Z axis. Note that the LAGR vehicle
has only three kinematically observable DOFs, while
Rocky8 has five �Tarokh et al., 1999; Helmick et al.,
2004�. Slip is normalized by the commanded velocity
in X and will be expressed in percent. There will be
cases in which the commanded forward velocity is 0,
e.g., a purely crabbing motion for the Rocky8 rover,
which will make the slip value undefined. As those
cases are rare, we remove those steps from our
dataset.

We have adopted a macrolevel �of the whole
rover� modeling of slip, in the spirit of Helmick et al.
�2004� and Lindemann & Voorhees �2005�. More spe-
cifically, our assumptions are that, between two con-
secutive steps, the rover will be traversing approxi-
mately locally planar and homogeneous regions, and
the weight distribution on all its wheels will be the
same. These assumptions mean that we consider slip
�i.e., predict the terrain type, estimate terrain slopes,
etc.� in regions comparable in size to the size of the
robot or its wheel and not at the pixel level, for ex-
ample. Naturally, those assumptions are violated in
our field test data, which is taken on real-life terrains
with all complications, such as uneven and nonho-
mogeneous terrain, clumps on the ground, or rocks in
front of the wheels. For example, when one of the
wheels traverses a rock, an unexpected slip in yaw
might occur, because the rock creates different trac-

tion compared to the soil or can serve as an additional
external force to the vehicle. As similar events are not
modeled by our system, there will be some sources of
sometimes significant noise in the slip measurements
in our data. Nevertheless, this macrolevel modeling is
justified, as the slip prediction is intended to be used
in a first, quick evaluation of terrain traversability to
be handed down to a planner. More complex me-
chanical slip modeling can be applied �Kraus, Fre-
driksson & Kumar, 1997; Jain et al., 2003; Ishigami,
Miwa, Nagatani & Yoshida, 2006�, but to predict slip,
information about soil mechanical properties of the
forthcoming terrain is still required and will have to
be learned. These approaches may deal better with
uneven terrain, e.g., if dynamic simulation of the
traverse over detailed terrain elevation models is per-
formed �Jain et al., 2003�, but they will be consider-
ably more computationally expensive.

Slip also depends on the commanded velocity, al-
though for the relatively small speeds of the Mars
rovers, velocity is not a significant factor. We have fac-
tored it out by averaging consecutive steps, by driv-
ing at approximately constant velocity, or by normal-
izing slip stepwise by the commanded velocity.

3. PREVIOUS WORK

Although early work in autonomous navigation and
traversability analysis based on forward looking sen-
sors did not use learning �Daily et al., 1988; Kelly &
Stentz, 1998; Goldberg, Maimone & Matthies, 2002�,
learning-based approaches have started to become
more and more preferred �Pomerleau, 1989; Bellutta,
Manduchi, Matthies, Owens & Rankin, 2000; Mat-
thies et al., 2003; Vandapel, Huber, Kapuria & Hebert,
2004; Wellington, Courville & Stentz, 2005�. The rea-
son for that is that intelligent autonomous behavior
needs to be adaptive to the environment and the more
complex the environment is, the less likely it is that
predefined rules or heuristics will work well. This is
particularly true for outdoor, off-road, unstructured
environments which offer a lot of challenges, e.g.,
variability in terrains and lighting conditions, lack of
structure, lack of prior information, etc., and in which
learning approaches have proved to be more appro-
priate �Seraji, 2000; Howard, Tunstel, Edwards &
Carlson, 2001; Dima, Vandapel & Hebert, 2004; Van-
dapel et al., 2004; Wellington & Stentz, 2004; LeCun,
Muller, Ben, Cosatto & Flepp, 2005; Lieb, Lookingbill
& Thrun, 2005; Wellington et al., 2005�.
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Related work on vision-based perception of the
forthcoming terrain has been considered for the pur-
poses of determining the mobility of Mars rovers
�Howard et al., 2001� or the traversability in tall grass
for agricultural vehicles �Wellington and Stentz,
2004�, for detecting the drivable rural road in the con-
text of off-road autonomous navigation �Rassmussen,
2001�, or for detecting obstacles in indoor �Ulrich &
Nourbakhsh, 2000� and outdoor environments �Bata-
via & Singh, 2001; Kim, Sun, Oh, Rehg & Bobick,
2006�. In most of the abovementioned cases the task
at hand is to determine a binary output value, “tra-
versable” or “not traversable,” or at most, several tra-
versability levels �Seraji, 2000�. In the proposed work
we predict a nonlinear behavior rather than a single
binary value, using visual information, similar to
Wellington & Stentz �2004�. Moreover, we have pro-
posed to learn this behavior, instead of adopting a
known physical model, because such a model might
be hard or impractical to obtain, as is the case with
slip for which significant experimentation is required
to adjust the parameters related to soil behavior and
vehicle-terrain interaction �Bekker, 1969; Wong,
1993�.

From a mechanical point of view, modeling and
estimation of slip has been done at various levels of
complexity and for various vehicle architectures
�Bekker, 1969; Wong, 1993; Kraus et al., 1997; Le, Rye
& Durrant-Whyte, 1997; Andrade et al., 1998; Farritor
et al., 1998�. These methods are rather complicated
and need to be performed at the traversed location, as
they require local sensor measurements and detailed
knowledge of terrain geometry. They are computa-
tionally intensive and impractical in the present
setup. As slip depends also on the mechanical soil
characteristics �Terzaghi, 1948; Bekker, 1969�, addi-
tional estimation of soil parameters, such as cohesion
and friction angle �Le et al., 1997; Iagnemma et al.,
2002�, or modeling of the soil behavior �Andrade et
al., 1998� needs to be done. Methods for online terrain
parameter estimation �Iagnemma et al., 2002�, for rec-
ognizing terrain types �Brooks et al., 2005�, and for
characterizing terrain trafficability �Ojeda et al., 2006�
from onboard mechanical sensors have been pro-
posed, but these estimates apply to the present ve-
hicle location. No method, to our best knowledge, is
available for predicting terrain parameters from a dis-
tance. One way to address this problem is by using
forward looking sensors, e.g., vision, as proposed in
this paper.

Although slip has been acknowledged as an om-

nipresent problem in localization, especially in
rough-terrain mobility �Hoffman, Baumgartner,
Huntsberger & Schenker, 1999�, very few authors
have considered counteracting slip for improving ve-
hicle mobility. Among them are the slip compensa-
tion algorithm of Helmick et al. �2004, 2005�, in which
the slip, measured at a particular step, is taken into
account to adjust the next step, compensating for the
distance which was not traversed; or the algorithm
for improving traction control, proposed by Iag-
nemma & Dubowsky �2004�. However, those meth-
ods, again, work at the traversed rover location and
do not allow for planning at a distance, which our
method enables.

Previous approaches have used manually created
functions of slip as dependent on slopes �Lindemann
& Voorhees, 2005�. Slip measurements were per-
formed on short traverses of the rover on a tilt-table
platform set to varying slope angles. These results
showed that slip is a very nonlinear function of ter-
rain slopes. For example, in deep sand, slip of about
20% on a 10° slope and of about 91% on a 20° slope
was measured, when the rover was driving straight
upslope. The results of these experiments have been
used successfully to teleoperate the Opportunity
rover out of Eagle Crater, but the approach is very la-
bor intensive, as it requires manual measurements. It
also needs careful selection of the soil type on which
the tests are performed to match the target Mars soil.
Another limitation is that no slip models were avail-
able for angles of attack different from 0°, 45°, or 90°
from the gradient of the terrain slope �Cheng, Mai-
mone & Matthies, 2005�. The results are also specific
to the vehicle. For example, a small design modifica-
tion in the pattern of the wheels can change the slip
behavior �Bauer et al., 2005�, affecting a potential
physical model. We believe that learning slip is a
more general approach, namely, the same learning al-
gorithm can be applied to another vehicle to learn its
particular behavior on different terrains. Moreover,
the proposed method enables the vehicle to apply the
learned models dependent on what it has sensed
from the environment.

The work described above concerns estimating
slip from mechanical measurements, or, in our case,
visual information. Conversely, slip measurements
have been used to infer mechanical terrain param-
eters on the Mars Pathfinder Mission in a controlled
one-wheel soil-mechanics experiment �Moore et al.,
1999�. Similar experiments have been done by Arvid-
son et al. �2004� for MER. This gives us the assertion
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that slip characteristics are directly correlated to ter-
rain mechanical properties and the intuition that if
the terrain soil type could be correctly recognized
�which would entail its mechanical properties� then
slip behavior is predictable.

4. DATASET

For our slip prediction experiments we have collected
several datasets on off-road terrains with the LAGR
vehicle. There are five major terrain types which the
rover has traversed: soil, sand, gravel, asphalt, and
woodchips �Figure 4�. We focused mainly on terrains
which are significant for planetary exploration and
provided the latter two for comparison only. In ad-
dition to that, there are several other terrain types
which appear in the sequences, such as green or dry
grass, which we considered as a single “grass” class
in the terrain classification in Section 6. The terrains
contain irregularities, undulations of the surface,
small rocks, and grass clumps for off-road terrains or
discolorations for asphalt. Although we have good
variability in the terrain relief in our dataset �level,
upslope, and downslope areas on soil, asphalt and
woodchip terrains, transverse slope on gravelly ter-
rain, flat sandy terrain, etc.�, not all possible slip be-
haviors could be observed in the area of data collec-
tion. For example: there was no sloped terrain
covered with sand, besides, the LAGR robot showed
poor mobility on flat sand, i.e., about 80% slip �An-
gelova, Matthies, Helmick, Sibley & Perona, 2006�;
the gravelly terrain available was only possible to be
traversed sideways for safety reasons; there was no
transverse slope for the soil or asphalt datasets. We
have collected a total of �5000 frames which are split
approximately into 3000 for training and 2000 for
testing. The distance covered by the rover during the
data collection is roughly about 1 km. These data
have been used extensively for testing in Sections 6–8.

A second smaller dataset was collected with the
Rocky8 rover in the Mojave desert �Figure 13, later in
this paper�. It covers a distance of about 30 m. As
there was a single terrain type in the course of the
traverse �desert sand� we will be using it for evalu-
ation of the slip prediction without the terrain recog-
nition module �Section 7.3.5�.

5. GENERAL FRAMEWORK FOR SLIP LEARNING
AND PREDICTION

In this section we propose a general framework to
learn the functional relationship between visual in-
formation and the measured slip using training
examples.

The amount of slippage for a given vehicle de-
pends on the soil type and the terrain’s geometry
�Bekker, 1969�, so both geometry G, captured by the
terrain’s slopes, and appearance A, e.g., texture and
color, must be considered. At training time, the infor-
mation about appearance and geometry coming from
the stereo imagery is correlated to the measured slip
�in X, Y, or yaw� as the robot traverses the cell. At
query time, geometry and appearance alone are used
to predict slip.

5.1. General Framework

The dependence of slip on terrain slopes, called ear-
lier slip behavior, is known to be highly nonlinear
�Lindemann & Voorhees, 2005�, but the precise rela-
tionship varies with the terrain type �Bekker, 1969�.
So, we cast the problem into a framework similar to
the mixture of experts �MOE� framework �Jacobs,
Jordan, Nowlan & Hinton, 1991�, in which the input
space is partitioned into subregions, corresponding
to different terrain types, and then several functions,
corresponding to different slip behaviors, are
learned for each subregion. That is, in each region
one model of slip behavior would be active, i.e.,
when the terrain type is known, slip will be a func-
tion of terrain geometry only.

More formally, let I be all the information avail-
able from stereo pair images, I= �A ,G�. Let f�S � I� be
the regression function of slip S �S can be any of the
slip in X, Y, or yaw� on the input variables A ,G
�used interchangeably with the image information I�.
Now, considering that we have several options for a
terrain type T, each one occurring with probability
P�T �A ,G�, given the information from the image in
question A ,G, we can write f�S � I� as follows:

f�S�I� = f�S�A,G� = �
T

P�T�A,G�f�S�T,A,G� ,
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where �TP�T �A ,G�=1. This modeling admits one ex-
clusive terrain type to be selected per image, or a
soft partitioning of the space, which allows for un-
certainty in the terrain classification. We assume that
the terrain type is independent of terrain geometry
P�T �A ,G�=P�T �A� and that, given the terrain type,

slip is independent of appearance f�S �T ,A ,G�
= f�S �T ,G�. Assuming independence of appearance
and geometry is quite reasonable because, for ex-
ample, a sandy terrain in front of the rover will ap-
pear approximately the same, no matter if the rover
is traversing a level or tilted surface. So we get

Figure 4. Example images from some of the terrains collected by the LAGR vehicle: sand, soil, gravel, woodchips, and
asphalt.
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f�S�I� = �
T

P�T�A�f�S�T,G� .

In summary, we divide the slip learning problem
into a terrain recognition part �P�T �A�, i.e., the prob-
ability of a terrain type, given some appearance in-
formation� and a slip prediction part �f�S �T ,G�, i.e.,
the dependence of slip on terrain geometry, given a
fixed terrain type T�. For simplicity, in this paper,
instead of the mixing coefficients P�T �A�, we use a
single winner-take-all terrain classification output
T�A�=argmaxTP�T �A�, which will be learned and
predicted by a terrain classifier �Section 6�. The re-
gression functions fT�S �G�= f�S �T ,G� for different
terrain types T will be learned and predicted by a
nonlinear regression method �Section 7�. More pre-
cisely, suppose we are given training data D
= ��xi ,yi� ,Si	i=1

N , where xi is the ith appearance input
vector, yi is the ith geometry input vector, Si is the
corresponding slip measurement, and N is the num-
ber of training examples �x, y are particular repre-
sentations of the appearance A and geometry G in-
formation in the image, respectively�. We will train,
independently, a texture classifier T�x� to determine
the terrain type, using the appearance information x
in Section 6 and a nonlinear function approximation
ST�y�= fT�S �G=y� for a particular terrain type T in
Section 7. When doing testing, we will use the full
input vector �x ,y�, recognize the terrain type T0
=T�x�, and then predict slip, as a function of slopes,
from the slip behavior function ST0

�y�, learned for
the terrain T0.

We believe this approach is adequate for our slip
prediction problem because terrain types do not rep-
resent a continuum in appearance space and, in gen-
eral, would form separate regions in the input space
�experts�. However, several experts might need to be
active at the same time, to make smooth transitions
in borderline terrain cases. Both cases are naturally
incorporated in the MOE framework. The alternative
to introducing structure in the problem is pooling
appearance and geometry features, which will not
only make the problem more complex, because of
increased dimensionality, but will also require a for-
midable amount of training data. Moreover, this
framework is quite general and, in principle, allows
for different ways of addressing the problems of
learning to recognize terrain types from appearance
and different algorithms for learning of slip behavior
from terrain geometry.

5.2. Architecture

In this section we briefly describe the architecture of
our system, summarized in Figure 5. We will be us-
ing the stereo imagery as input, as well as the IMU
of the vehicle and its wheel encoders �the latter is
needed only for training�. Stereo imagery is used to
create a two-dimensional �2D� cell map of the envi-
ronment from its range data. It also provides appear-
ance information for each cell in the map. The 2D
map contains geometry information about the ter-
rain �G� and, as we are interested in terrain slopes
with respect to gravity, we use the vehicle’s IMU to
retrieve an initial gravity leveled pose. In fact, both
LAGR and Rocky8 rovers use a filtered IMU signal,
taking into consideration other sensors as well, e.g.
the LAGR robot uses GPS and Rocky8 uses VO
based pose estimation. The appearance information
from color imagery �A� will be used to decide which
terrain type corresponds to a cell or a neighborhood
of cells. This is all the information necessary to per-
form slip prediction with our algorithm.

In order to learn slip we have added slip feed-
back. The mechanism to measure slip is as follows.
The actual motion between two frames is estimated
by VO, which only needs two consecutive stereo
pairs as input �Matthies & Schafer, 1987�. The motion
which the vehicle thinks it has performed is given by
the vehicle’s forward kinematics. As the LAGR ve-
hicle has a differential drive model the wheel encod-
ers are sufficient to compute its full kinematics. A
more complex kinematic model, which needs addi-

Figure 5. Slip learning and prediction algorithm
framework.
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tional angle sensors, is needed for a rocker-bogie
type of vehicle, such as Rocky8 or MER, but it is well
understood how to compute it �Tarokh et al., 1999;
Helmick et al., 2004�. Differencing the actual motion
and the motion estimated by the kinematic model
gives a measurement of slip for a particular step.
This feedback is used for collecting training ex-
amples to learn slip from stereo imagery.

Note that the slip prediction coming from ap-
pearance and geometry information is based on
frames which observe terrain at a distance, i.e., those
stereo frames will come earlier in time than the
frames which measure the slip feedback �using VO�.
The stereo input for both is denoted by a single box
in Figure 5, as both types of information come from
a single stereo imagery sensor. The advantage of
such a system is that it can sense the terrain re-
motely and that it needs only passive, cheap and
self-contained sensors on the vehicle, such as stereo
vision.

6. TERRAIN CLASSIFICATION

This section describes the terrain classification �T�A��
using vision information, which is the first step of our
algorithm. For the purposes of slip prediction, we
consider only the part of the image plane which cor-
responds to the robot’s 2D map of the environment.
That is, for now, we are not interested in regions be-
yond the distance where range data is available, be-
cause we simply cannot retrieve any reliable slope in-
formation and therefore cannot predict slip. A
reasonable map for the LAGR vehicle is of size 12
�12 m or 15�15 m, centered on the vehicle. Note
that the MER panoramic camera has considerably
higher resolution and look-ahead �Bell et al., 2003�.
The map is subdivided into cells, each one of size
0.4�0.4 m. Our goal is to determine the terrain type
in each cell of the map. In fact, we will be classifying
the patches corresponding to the projections of map
cells to the image plane.

Note that the patches at close range and at far
range have considerably different appearances, so a
single texture based classifier could not be used for
both. This is due to the fact that the spatial resolution
decreases rapidly with range. This could also be clari-
fied by looking at the amount of information in the
image plane which corresponds to different areas in
the 2D map. For the LAGR vehicle the estimates are:
about 70% of the image plane is mapped to ranges

below 10 m, about 7%—to ranges between 10 and
50 m, and about 2%—to ranges between 50 m and
the horizon �Matthies et al., 2005�. So, for our experi-
ments we build five independent classifiers which are
active at different ranges �ranges up to 2, 2–3, 3–4,
4–5, and 5 m and above�.

6.1. Terrain Classification Algorithm

As we are interested in classifying patches, corre-
sponding to map cells, the approach we use consid-
ers the common occurrence of texture elements,
called “textons,” in a patch. This representation is
appropriate, because a texture is defined not by a
single pixel neighborhood, but rather by the co-
occurrence of visual patterns in larger regions. The
idea follows the texton-based texture recognition
methods proposed by Leung & Malik �2001� and
Varma & Zisserman �2003, 2005�. The approach is
summarized in Figure 6.

Five different texture classifiers are trained, each
one specialized at different range. For each classifier
and for each terrain type class �we have six terrain
classes�, a set of patches in the image plane, corre-
sponding to the map cells at the appropriate ranges,
are collected. All the training patches belonging to
some range are processed by extracting a set of 5
�5 RGB regions forming a 75-dimensional vector
representation of a local pixel neighborhood. Those
vectors are clustered with the k-means algorithm
and the cluster centers are defined to be the textons
for this class. We extracted k=30 textons per class. As
a result, a total of 180 textons, called “texton dictio-
nary,” are collected for the whole training set. Work-
ing in a feature space composed of local neighbor-
hoods allows for building statistics of dependencies
among neighboring pixels, which is a very viable
approach, as shown by Varma & Zisserman �2005�.

Now that the dictionary for the dataset has been
defined, each texture patch is represented as the fre-
quencies of occurrences of each texton within it, i.e.,
a histogram.2 In other words, the patches from the
training set are transformed into 180-dimensional
vectors, each dimension giving the frequency of oc-
currence of the corresponding texton in this patch.
All vectors are stored in a database to be used later
for classification. Similarly, during classification, a

2Instead of searching for each texton within a patch individually,
each pixel location of the patch is assigned to the texton closest in
Euclidean distance.
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Figure 6. Schematic of the terrain classification algorithm �Leung & Malik, 2001; Varma & Zisserman, 2005�.

Figure 7. Example texture classification results from each of the datasets. Patches from the six terrain types considered in
the texture classification and the corresponding color coding assigned are shown at top left. Each composite image
contains the original image �top left�, the ground truth terrain classification �bottom left�, and the results of the terrain
classification algorithm represented in two different ways �top right and bottom right�. Ambiguous terrain type in the
ground truth is marked with white. Those regions are not required to be classified correctly.

Angelova et al.: Learning and Prediction of Slip from Visual Information • 215

Journal of Field Robotics DOI 10.1002/rob



query image is transformed into a 180-dimensional
vector, i.e., a texton occurrence histogram, and com-
pared to the histogram representations of the ex-
amples in the database, using a nearest neighbor
method and a �2-based distance measure �Varma &
Zisserman, 2005�. The majority vote of N=7 neigh-
bors is taken as the predicted terrain class of the
query patch. The result of the classifier will be one
single class. To determine the terrain type in the re-
gion the robot will traverse �Section 8� we select the
winner-take-all patch class label in the 4�4 cell
neighborhood region. In both decisions, a probabilis-
tic response, rather than choosing a single class,
would be more robust. Addressing more advanced
probabilistic inference within a patch and among
neighboring patches is a subject of our future work.

6.2. Terrain Classification Results

In this section we report results of the terrain classi-
fication algorithm. Our dataset is composed of five
different image sequences which are called soil,
sand, gravel, asphalt, and woodchip after the pre-
vailing terrain type in them �Figure 4�, but an addi-
tional “grass” class can appear in those sequences.
As mentioned earlier, we consider patches in the
original color image that correspond to cells of the
map. Each patch is classified into a particular terrain
type and all the pixels which belong to this patch are
labeled with the label of the patch �Figure 7�. To
measure the test performance we take �30 frames in

each sequence, which are separated by at least ten
frames within the sequence, so as not to consider
images similar to one another. The test set contains a
total of �150 frames which span �1500 frames. The
ground truth terrain type in the test set is given by a
human operator. Example classification results are
shown in Figure 7.

Summary results of the terrain classifier for the
five sequences for different look-ahead distances are
given in Figure 8. Classification performance is mea-
sured as the percent of correctly classified area �i.e.,
number of pixels� in the image plane and the cor-
rectly classified patches corresponding to cells in the
map. The drop-off in performance, especially in
terms of patches, is due to a large number of classi-
fication errors at far range. This is expected, as the
patches at far range correspond to very small image
area �with little information content� and therefore
are much more likely to be misclassified. Naturally,
regarding slip prediction, a larger map is preferred,
as it allows the robot to see farther, but the terrain
classification errors at far ranges can make slip pre-
diction unreliable at large distances. Therefore, a
tradeoff between accuracy of classification and being
able to see farther must be made. To be concrete, in
our further experiments we fix the map size at 12
�12 m. The confusion matrix3 for the terrain classi-
fication for the 12�12 m map is shown in Figure 8.

3The confusion matrix shows what percentage of the test ex-
amples belonging to a class have been classified as belonging to
any of the available classes. Its diagonal shows the correct classi-

Figure 8. Terrain classification results for different map sizes �left�. Different ways of representing the classification rate
by counting correctly classified patches or pixels are shown. Confusion matrix for the 12�12 m map �right�. The classi-
fication rate for each class is displayed on the diagonal.
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From it we can see that grass is often misclassified as
woodchips �this happens for the areas of dry grass
�Figure 7, top middle��, soil is sometimes misclassi-
fied as sand and vice versa, asphalt is misclassified
as gravel, etc.

6.3. Discussion

The texton-based algorithm has been previously ap-
plied to artificial images �Varma & Zisserman, 2005�,
but not to the autonomous navigation domain. Our
main motivation for using it here is that slip predic-
tion requires fine discrimination between visually
similar terrains, such as soil, sand, and gravel. Pre-
vious approaches for terrain classification in the con-
text of autonomous navigation focus on recognizing
terrain types, such as road, grass, and sky, which are
much easier to discriminate using only color
�Manduchi, 1999; Bellutta et al., 2000; Rassmussen,
2001�. The texton-based approach is also robust to
intraclass variability, often observed in natural
terrains.

Although the algorithm is relatively fast ��4.7 s
per frame for a 512�384 pixels image and a 12
�12 m map on a 3.6 GHz P4 processor�, some addi-
tional improvements to decrease the computational
time are needed, to be able to work onboard the ve-
hicle in real time. Another limitation of the algo-
rithm, which could be addressed in future work, is
that currently the training of the texton approach
does not work in an online, incremental fashion.
This is mainly due to the clustering procedure dur-
ing texton selection and to the fixed length histo-
gram representation.

7. LEARNING SLIP BEHAVIOR ON A FIXED
TERRAIN

In this section we describe the method for learning to
predict slip as a function of terrain geometry, when
the terrain type is known, i.e., the slip behavior.

The input for slip prediction, i.e., the terrain ge-
ometry G, will be represented by the longitudinal and
lateral slopes which are the terrain slopes decom-
posed along the X and Y axes of the current position
of the robot, respectively. They are named pitch and
roll angles, as they correspond to the vehicle’s pitch

and roll, but they are retrieved from stereo imagery.
The terrain slopes are estimated as described in Sec-
tion 7.2, see also Gennery �1999�.

7.1. Learning Algorithm

We consider the problem of learning of slip behavior
as a nonlinear function approximation. That is, the
slip ST�y�, i.e., fT�S �G=y�, is approximated by a non-
linear function of terrain geometry G. Previous ex-
perimental evidence shows that slip behavior is a
highly nonlinear function of terrain slopes �Linde-
mann & Voorhees, 2005�. So to model this highly
nonlinear dependence, we use a type of receptive
field regression algorithm �Schaal & Atkeson, 1998;
Vijayakumar, D’Souza & Schaal, 2005�. The main
idea is to split the input domains into subregions,
called receptive fields, and apply locally linear fits to
the data to approximate a globally nonlinear func-
tion. While there are many algorithms which can be
applied to this learning task, such as neural net-
works, support vector regression, etc., our choice is
mainly motivated by the fact that the algorithm
needs to be eventually running onboard the rover, so
it has to allow fast online updates. The receptive
field regression approach gives a good tradeoff be-
tween memory-based nonlinear regression methods
�Hastie, Tibshirani & Friedman, 2001� and global
function approximation methods, such as neural
networks.

Slip S �we have dropped the subindex T for sim-
plicity� can be written in the following form:

Ŝ�y� = �
c=1

C

K�y,yc�
b0
c + �

r=1

R

br
c�dr

c,y�
 ,

where y are the input slopes, y= �ypitch,yroll�, K�y ,yc�
is a weighting function, or kernel, K�u ,v�=exp�− �u
−v�2/��, yc is a training example which serves as a
receptive field center, dr

c are several local projections
in each receptive field c, bi

c are the corresponding
regression coefficients, R is the number of linear pro-
jections �here R�2�, and � is a parameter which con-
trols the receptive field size ���0�. In other words,
the slip S, corresponding to a query point y, is com-
puted as a linear combination of C linear functions
�one per each receptive field�, where the weights are
computed according to the distance from y to the
centers of the receptive fields. As the weighting
functions K�y ,yc� depend on the distance from the

fication rate for each class and the off-diagonal elements show
how often one class is confused with another.
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query example y to the receptive field centers yc, the
final functional approximation will be nonlinear.

Now, given the training data Dy= �yi ,Si	i=1
N ,

where the vectors yi contain the estimated slopes
from range imagery, Si are the corresponding mea-
surements of slip at this particular location, and N is
the number of training examples, the learning pro-
cedure’s task is to estimate the unknown parameters
so that they fit the training data Dy well. The param-
eters to be learned are the receptive field centers yc,
1�c�C, the linear regression parameters b0

c , br
c, dr

c,
1�r�R, 1�c�C, and the parameter � which deter-
mines the receptive fields’ size.

For a given �, the receptive fields are distributed
to cover the input space so that all training data be-
long to at least one receptive field. This is done by
allocating a new receptive field in the input space
whenever an incoming training example is not cov-
ered by other receptive fields, setting the center yc to
be the new example �Schaal & Atkeson, 1998�. To
estimate the parameters br

c, dr
c in each receptive field,

a partial least squares �PLS� linear fit �Wold, 1966;
Hastie et al., 2001� is performed, in which the train-
ing points are weighted according to their distance
to the receptive field center �Vijayakumar et al.,
2005�. In our case of only two-dimensional inputs,
one can also use the weighted linear regression
�Schaal & Atkeson, 1998� or some other locally linear
projection. However, by using PLS, the algorithm
can be easily extended to working with higher di-
mensional inputs, because of the dimensionality re-
duction capabilities of PLS �Vijayakumar et al.,
2005�. As our method uses the PLS regression, it is
closer to the locally weighted projection regression
�LWPR� method of Vijayakumar et al. �2005�. We pa-
rameterize the receptive field size by only one pa-
rameter � �which implies symmetric kernels�. More
advanced structured kernels could be applied as in
Vijayakumar et al. �2005�, but they introduce addi-
tional parameters to be learned, which would re-
quire a larger sample size. We select the parameter �

using a validation set, in order to avoid overfitting.4

For example, the best selected � for our soil dataset
renders a kernel of local activity within about 4° in
pitch and roll angles.

An important aspect of this algorithm is that,
when a new example arrives during training, only
the parameters of the receptive fields in the vicinity
of this example are to be reevaluated. This allows for
fast update in online learning. It is the result of con-
structing of a final cost function in such a way that
competition among receptive fields is promoted, i.e.,
a receptive field is encouraged to fully approximate
the required value of the function rather than split-
ting the responsibility among many receptive fields
�Jacobs et al., 1991�. The cost function, implicit in the
receptive field regression algorithms, is the
following:

min
b0

c ,br
c,dr

c
�
c=1

C

�
i=1

N

K�yi,yc��Si − 
b0
c + �

r=1

R

br
c�dr

c,yi�
�2

.

In other words, the function is required to ap-
proximate well the observed output of an arbitrary
data point by an individual receptive field, rather
than approximating the data point output using
multiple receptive fields. As a result of optimizing
this cost function, the updates to the parameters of
one receptive field are done independently of the
parameters of the other receptive fields. This is an
important point, because when new data arrive in a
subregion of the input domain, only a subset of the
parameters of the function will need to be adjusted,
rather than having to reevaluate all the parameters
of the function, as is done with neural networks, for
example. This property also prevents the “cata-
strophic forgetting,” typical of global approximation
methods, and the algorithm does not need to store
training examples in memory.

For now, the training is done in a batch mode,
but the LWPR algorithm has been selected in view of
future training online, onboard the rover. In particu-
lar, the properties of the receptive field regression
approach that we find valuable are: the concept of a
receptive field which makes keeping of a huge
amount of data in memory unnecessary; the adapt-
ability of creating and removing receptive fields as
needed; and the possibility to easily extend the ap-
proach to online learning. We shall note that model-
ing with local nonlinear regression imposes very
little restriction on the functional dependency. It al-
lows for it to be nonlinear but does not assume any

4The purpose of the validation set is to test the generalization of a
learned model independently of its training and select the best
model possible for the data. For example, in this particular case,
selecting an infinitely small receptive field size would allow for
one receptive field per each example and therefore perfect ap-
proximation of the function on the training set. However, this will
result in a very poor performance on examples outside of the
training data.
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particular model; instead, the model is learned from
the data. An experimental comparison with a neural
network algorithm is given in Section 7.3.3.

7.2. Implementation Details

In this section we describe in detail the information
we use for training purposes. A 2D map of the envi-
ronment is built using range information from the
stereo pair images. The map has a cell representation
with a cell size of 0.2�0.2 m. The information kept
per cell is its extents, average elevation, and a
pointer to an image which has most recently ob-
served this cell. This is sufficient to retrieve the re-
quired inputs when needed, i.e., when the cell is tra-
versed, and does not overburden the system with
keeping a huge volume of data per cell. To collect an
example for the training data we do the following:
for a particular cell in the map which is seen by the
rover at a distance, we can compute information
about appearance and measure the slopes �the input
vector�; when the rover traverses this cell the slip in
X, Y, or yaw �the output value� is measured. To be
more efficient, the data collection goes in the reverse
way: in each map cell the average elevation and a
pointer to the image viewing it are stored, because it
is not known which cells are to be traversed. It is
only after the rover traverses some region that com-
putations about slopes and terrain appearance are
done and are added to the training data.

To estimate the slope at a particular location, we
do a local plane fit to the average elevation in each
cell in its neighborhood �Gennery, 1999�. A slope es-
timate can be missing if there are not enough cells
under the robot to do a plane fit. This can happen
due to missing range data, e.g., in sparse vegetation
or at the borders of the map. The slope is decom-
posed into a longitudinal �along the forward motion
direction� and lateral �along the wheel axis, perpen-
dicular to the forward motion� component with re-
spect to the current position of the rover, i.e., the
pitch and roll slope angles. The initial attitude of the
rover, received from the IMU, is used to transform
the retrieved longitudinal and lateral slope angles
from the terrain into a gravity leveled frame. The
slope angles cannot be perfectly evaluated because
of noise in the range data and because the locally
planar terrain assumption might be violated. As
each location in the map is seen by many frames
while the rover approaches it, we average the roll
and pitch estimates to smooth some noise effects.

Localization is important for the success of this
method. VO is used for the vehicle’s localization. In
the case of an outlying VO position estimate, the
step is skipped and the map and rover position are
reinitialized.

7.3. Experimental Results

7.3.1. Experimental Setup

In this section we give experimental results of learn-
ing and prediction of slip from terrain slopes �esti-
mated from visual information� when the traversed
terrain type is known. Our dataset is composed of
long stereo sequences �1000–2000 frames� which
were taken on one terrain type at a time. We report
below both training and test error. The training data
are used to learn the regression function. After learn-
ing, the function is tested on the same data �training
error� and also on data not used in training �test er-
ror�. Naturally the training error will be smaller, but
the test error is a criterion for the learning method’s
generalization abilities, i.e., how well it will perform
on new, unseen data. To be able to measure the test
error, we predict slip only on locations traversed by
the rover but, in principle, prediction could be done
at each point of the local map �wherever there are
sufficient range data�. So, slip can be predicted on
different locations on the whole visible map, without
the need for the rover to traverse them.

To do learning, for most of the experiments in
this paper, we perform a sequential split of the data
into training and test sets. That is, for each terrain
type we take the frames up till some time for train-
ing, and test on all the frames after that. Some small
portion of the data, between the training and test
sets, is held out for validation. This is a more realis-
tic scenario than the commonly used random split in
the machine learning community, because the robot
is expected to train on some portion of the terrain
first and then continue to traverse the terrain apply-
ing what it has learned �testing�. It is also more dif-
ficult because the distribution of input variables dur-
ing training might shift to unexplored regions while
testing, which makes it much harder to generalize.

Slip prediction error is measured by the average
absolute error, Err=�i=1

n �Pi−Ti �/n, or by the root
means squared �RMS� error, RMS=��i=1

n �Pi−Ti�2/n,
where Pi is the predicted and Ti is the target slip at a
particular step i. The latter is more adequate for
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Figure 9. Prediction of slip in X on soil �top left�, gravely transverse slope �top right�, flat sandy terrain �bottom left�, and
up and downslope asphalt �bottom right�. Each panel contains the predicted and ground truth slip �top row� for the
corresponding slope angles estimated from vision �bottom row�; training data �left column�, test data �right column�.
LAGR vehicle.

Figure 10. The slip prediction and its 1-sigma confidence intervals for the soil dataset �top� and the corresponding slope
angles �bottom�. Training mode �left�. Test mode �right�. Note that the uncertainty for the test set is at times larger �e.g.,
around step number 600� and much more spiky compared to the training set. This is because some test examples occur
away from the regions covered by the training examples. Soil data. LAGR vehicle.
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measuring the error of a regression function, but is
more prone to outliers and can give an incorrect idea
of the error. We do training and testing pointwise,
i.e., not considering potential correlations between
consecutive points, which do exist, and could be ex-
ploited in a more advanced prediction algorithm.

To allow for comparisons among datasets and
platforms, slip will be represented in percent, by
normalizing by the average velocity at which the
dataset is taken.

7.3.2. Slip in X for the LAGR Robot on Off-Road
Terrain

The first experiment is done with the LAGR robot on
five different off-road terrains �Figure 4�. The first
45% of the data are used for training, the next 10%
for validation, and the remaining 45% are used for
testing. The data are taken by either manually joy-
sticking the rover �soil and gravel datasets� at a
speed of about 1 m/s, which can create variability in
the commanded velocity, or by autonomous driving
at a controlled straight constant velocity of 0.3 m/s
�all the remaining datasets�. The data are normalized
by the average velocity for each dataset.

The results of slip prediction with the LAGR ve-
hicle on soil, gravel, sand, and asphalt are presented
in Figure 9. The actual learned nonlinear function of
slip as dependent on terrain slopes for the soil ter-
rain is shown in Figure 11 �left�. The soil dataset con-
sists of going up and down a slope twice, which
helps the testing because similar slope angles have
been seen in training. However, this does not hap-
pen in the gravel dataset where there is very little
variability in the data it was trained on. This is a
result of the consecutive split of the data. Also, no-
tice that a lot of the input test slope angles have not
been seen during training �this is also true for the
soil data, although to a less extent�. Still, the algo-
rithm manages to generalize well, i.e., to extrapolate
to unseen examples, in those circumstances. For
some areas of large pitch angles in the gravel data
the algorithm returned an invalid prediction �dis-
played as 0 on the plot�. Although, in this case, these
measurements have not been excluded from the pre-
diction and contribute a lot to the final error, the
ability of the algorithm to also provide a confidence
or validity of the prediction can be certainly taken
advantage of in practice. For the gravel dataset we
used the vehicle’s tilt angles �from the IMU� instead
of the ones from the visual information because of

localization problems �due to occasional large rota-
tions between consecutive frames which resulted in
incorrect position estimates�, but, with good local-
ization, there are no significant differences between
the two �Angelova, Matthies, Helmick, Sibley & Pe-
rona, 2006�.

Prediction of slip in X for sand and asphalt ter-
rains is given in the bottom row of Figure 9. Unfor-
tunately, the LAGR vehicle mobility in deep sand
turned out to be extremely poor. On a flat sandy
terrain the vehicle experienced a consistent slip of
about 80% �Figure 9; compare to the mobility of
Rocky8 on sandy slopes described later on in Figure
13� and it was not possible to collect a dataset on
sandy slopes with the LAGR vehicle. The consistent
80% slip in sand forces an almost constant function
to be learned �Figure 9�, which is quite natural in
this case. Other slip behavior in our dataset that was
uninteresting from a learning point of view was ob-
served on asphalt and woodchip terrains. Similar to
sand, a constant function is learned, because the
measured slip for these datasets is approximately
constant and independent of the slope angles.

On average we get slip error of about 3%–15%
for all the datasets �except for gravel, with 27% RMS
error, corresponding to 16% absolute error, which is
achieved in a hard to generalize learning setup�.
This is quite a satisfying result in this type of data
where a lot of noise is involved. In general, our re-
sults show very promising prediction of slip in real
off-road outdoor environments.

As mentioned earlier, we are using the slope
angles retrieved from stereo imagery �i.e., vision in-
formation�. We have previously compared the slip
prediction results when learning with respect to the
vehicle’s tilt angles �retrieved by the vehicle’s IMU�
and with respect to the slope angle estimates which
are computed from the range data using visual in-
formation �Angelova, Matthies, Helmick, Sibley &
Perona, 2006�. Both are, in general, noisy measure-
ments of the actual slope angles: the IMU based
measurement gives the tilt of the robot, not of the
ground plane, which might be erroneous if the robot
traverses a rock, for example; the geometry based
slope estimation is susceptible to outliers and can be
wrong if there are obstacles in the plane fit area. Our
results show �Angelova, Matthies, Helmick, Sibley &
Perona, 2006� that they give comparable test
performance.

For the purposes of using the slip prediction for
planning, it is important to have a confidence value
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on each prediction, in order to know how much to
trust it. We have computed the confidence intervals
on individual query predictions as in Vijayakumar et
al. �2005�. The main assumptions in computing the
variances are that two independent sources of noise
are present in the case of LWPR: one coming from
the locally linear fit in each receptive field and the
other from the differences between the prediction of
a local model and the final prediction. The latter
measures how much local models agree in areas of
overlap; it contributes significantly less to the uncer-
tainty of the estimation. Figure 10 shows the confi-
dence intervals for each query point for both train-
ing and test datasets for the soil terrain. The dataset
has been normalized stepwise and is split consecu-
tively into two equal size sets, without using a vali-
dation set. As we can see, query examples among
the training data have smaller variance, whereas
some test examples have larger variance whenever
they fall into regions of the input space not covered
by training data, or where the training examples are
noisy or contradict each other. The most uncertainty
�a large confidence interval� occurs on the boundary
of the region within which any prediction response
is given. No prediction is available outside this re-
gion, as it is too far from any receptive fields, see
also Section 7.3.3.

7.3.3. Comparison of the LWPR Method to a Neural
Network

In this section we compare the results of learning
with the LWPR algorithm and with a standard non-

linear approximation method, e.g., a neural network,
on the soil dataset �used also in Section 7.3.2�. The
neural network has ten hidden nodes, it has been
trained for 10,000 epochs, uses early stopping and
does not use weight decay. The LWPR has used 12
receptive fields to cover the input data domain. Fig-
ure 11 shows the learned nonlinear function �repre-
senting slip as a function of the longitudinal and lat-
eral slopes, i.e., pitch and roll angles� evaluated for a
range of values for both angles.

The test results showed comparable perfor-
mance of both methods with some advantage to the
LWPR �RMS of 11.89% and 12.64% for the LWPR and
neural network, respectively, when the training is
done on a sequential split of the data into equal sizes
of training and test portions, with 5% of the ex-
amples in between held out for validation�. The
training data include pitch angles of only up to
17 deg and roll angles up to 8 deg in absolute value
and include slip measurements of up to 65% with
occasional outliers of up to 80%. Both methods gen-
eralize to regions which have not been observed
during training, i.e., have reported slip predictions
outside the training slope ranges �i.e., for pitch and
roll angles larger than 17 and 8 deg, respectively�.
However, considerably different approaches to gen-
eralization to areas of the space, which have not
been seen during training, can be seen in Figure 11.
The neural network extrapolates incorrectly to re-
gions where no training data are available. For ex-
ample, it predicts �50% positive slip on a more than
20 deg downslope �see upper left corner on the right

Figure 11. The learned nonlinear function of slip as dependent of the two terrain slopes. Learning with LWPR �left� and
with a neural network �right�. The LWPR algorithm returns an invalid response �denoted with 0 on the plot� for regions
which are far away from any receptive fields formed during learning. The neural network extrapolates easily but incor-
rectly in areas far from training data. Both methods manage to approximate the function in a similar way in the domain
covered by training data. Soil data. LAGR vehicle.
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subplot of Figure 11�, which is wrong, because slip
on a downslope is expected to be negative or zero.
Instead, the LWPR method returns a confidence
value on its prediction or in the simplest case a flag
denoting that the predicted response is invalid. The
latter happens if the query point has negligible
weights with respect to all receptive fields. Natu-
rally, if the training method had data covering the
whole input space that would not be an issue, but
usually, in practice, the available training data are
not as variable or abundant as desired. The LWPR
nonlinear approximation both gives better generali-
zation performance and alerts of areas of the space
where the result is not reliable. This adds more ad-
vantages of the LWPR method together with the pre-
viously mentioned fast online update, training in a
memory efficient way �i.e., it does not need all the
training data in memory�, and lack of catastrophic
forgetting when the input distribution is shifted to a
new, unexplored domain �Vijayakumar et al., 2005�.

7.3.4. Slip in Yaw for the LAGR Robot on Off-Road
Terrain

Apart from slip in the forward motion direction �i.e.,
slip in X�, slip in the other DOFs of the rover, Y and
yaw, can also affect the rover mobility. For example,
large amounts of slip in Y and yaw will prevent the
rover from executing a planned path and therefore
reaching the predetermined goal �Helmick et al.,
2004�, so predicting them, as well, would be very
beneficial for the planning.

Figure 12 shows the result of learning and pre-
diction of slip in yaw on a transverse gravelly terrain
for the LAGR vehicle. An interesting functional de-

pendence is learned for this dataset: large slip in
yaw, corresponding to large pitch angle, is learned
whenever the roll angle is large, but an almost zero
slip in yaw is learned when the roll angle is small,
regardless of the pitch angle. This means that the
pitch and roll angles work in conjunction to approxi-
mate the final slip well, i.e., both inputs are relevant
for the measured quantity �here, slip in yaw�. A simi-
lar effect has been observed in learning of slip in X,
although the dependence of slip in X on the roll
angle is significantly less pronounced. On the same
dataset, a small amount of negative slip in Y, consis-
tent with the large roll angle, could also be learned
by our algorithm, see Angelova, Matthies, Helmick,
Sibley & Perona �2006� for details. No significant slip
in Y or yaw could be detected in any of the other
datasets we have for this vehicle.

7.3.5. Slip in X for the Rocky8 Rover in the Mojave
Desert

Another experiment with learning and prediction of
slip in X is done for the Rocky8 rover, traversing
sandy slopes in the Mojave desert. Figure 13 �left�
shows the terrain where the data was collected. The
dataset consists of about 220 steps and is taken on
slopes which range from −5° to 10° in pitch and up
to 12° in roll. The ground truth for this dataset is
obtained with a Total Station, tracking four prisms
mounted on the rover, providing the 6-DOF pose
within 2 mm and 0.2° accuracy in position and atti-
tude, respectively. In this experiment we have used
the roll and pitch angles provided by the ground
truth. Slip is measured between steps which coin-
cide with stops of the rover. Each step is taken in
approximately constant time. As the step size can
vary slightly, we average the slip across several
neighboring steps. Here again, we normalize slip by
the average step size ��0.22 m� to represent the slip
in percent.

As the available data are rather small, we split
the data randomly, rather than consecutively, into
training and test portions �more examples are given
to the training set, about 130 examples�. To achieve
statistically significant results, the experiment is per-
formed multiple times with different random splits
of the data into nonoverlapping training and test
subsets. The test errors from 100 trials of this experi-
ment are as follows: the average test RMS error is
6.5% with standard deviation of 0.6%, the average
test absolute error �Err� is 5.5% with standard devia-

Figure 12. Predicted slip in yaw �in deg� on a transverse
gravelly slope �the slip in yaw has not been normalized�.
Training mode �left�, test mode �right�. LAGR vehicle.
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tion of 0.34%. Performing multiple trials and using
the average and standard deviation prevents us
from reporting the result of a single particularly fa-
vorable or unfavorable random split of the data. The
consecutive split of the data �as performed in Sec-
tions 7.3.2, 7.3.3, and 7.3.4� is a much harder learning
scenario and the split is uniquely defined, given the
sizes of the training and test datasets.

The results for learning of slip in X from one of
the trials and its corresponding errors are given in
Figure 13. For this trial, slip prediction captures cor-
rectly �with error for the whole data within 5%–7%�
slip of about 20% for high pitch angles. Note that in
this dataset there are combinations of roll and pitch
angles in the second part of the data �if split con-
secutively�, which have not been seen in the first half
to allow us to do a reasonable sequential split.

8. SLIP PREDICTION IN THE FULL FRAMEWORK

In this section we test the full slip prediction algo-
rithm in which stereo imagery and the IMU are the
only input and slip at a remote location is the output.
The prediction works as follows: given an input ex-
ample �x ,y�, first the terrain type T0=T�x� is esti-
mated from appearance x �using the terrain classifier
described in Section 6� and then the learned slip
model ST0

�y� for the terrain type T0 is activated to
produce slip results, given the measured terrain
slopes y �Section 7�. We present the final quantitative
results by comparing the actual measured slip to the
predicted slip.

8.1. Test Procedure

This experimental setup is similar to the one in Sec-
tion 7.3.1 with the main difference that the terrain
type in each patch is recognized first and a different
slip model is used dependent on the terrain. The
implementation details are described in Section 7.2.
Some other minor differences in the final system are
the change of cell size to 0.4�0.4 m and the local
neighborhood to 4�4 cells �because larger cell re-
gions are preferred by the texture classifier�, and the
mechanism for combining slope measurements
about each location, obtained from different frames
that have observed it. Here we average the measure-
ments, weighting them by the inverse of the range at
which they were obtained; no significant differences
were noticed by changing the combining coefficient
in the slope estimation. The same 4�4 cell neighbor-
hood and the same averaging scheme �1/range� is
used for both terrain classification and plane fit. The
slip measurements in this dataset have been normal-
ized pointwise by the commanded velocity, rather
than normalizing all slip measurements by the aver-
age velocity. There were no significant differences,
except that the pointwise normalized data are
slightly noisier �see Figure 10, compare to Figure 9,
top left�. Here, again, to measure test performance,
we predict slip only on the path which was later
traversed by the rover. VO is used for the vehicle’s
localization.

There is one more issue of deciding at what
range to start reporting the predicted slip and accu-
mulating information as a particular location is be-

Figure 13. Prediction of slip in X based on terrain slope angles. The dataset has been collected with the Rocky8 rover on
sandy slopes in the Mojave Desert �left�. Training mode �middle�, test mode �right�. The test error for this run is 5%–7%.
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ing approached �we call it “minimum range”�. We
explore what is the farthest minimum range for this
robot. Naturally, a potential path planner would
benefit more, the farther we can make a good slip
prediction. On the other hand, locations observed at
a large distance might give unreliable or noisy slope
estimates, or provide very little information for the
terrain classifier to be correct. Results of the slip pre-
diction error, as a function of the minimum range at
which prediction has started, are given in Figure 14.
We can see that much better slip prediction is re-
ceived for smaller initial ranges and that the deterio-
ration in slip prediction is mainly due to terrain clas-
sification errors occurring at far ranges. The slope
angle estimation seems to be much more stable with
range for this dataset. The slope angle errors are
computed against the roll and pitch angles received
from the vehicle’s IMU, which are approximations of
the actual slope angles. For our further experiments
we will fix the minimum range at 3 m as a trade-off
between a good enough slip prediction and a far
enough initial range, preferred from the point of
view of the planner. This means that if a location is
seen at a closer than 3 m range we would not use
any information we acquire about it �through vision
or other sensors� to improve our slip prediction. So,
all estimations or predictions about slope angles, ter-
rain type, and slip will be accumulated between the
ranges of 3 m and possibly 8.4 m �8.4 m is the diag-
onal distance from the center to the corner of a 12
�12 m map; in practice, very few cells will occur at
ranges larger than 6 m�.

To briefly summarize the test procedure: at each
step a 2D map of the terrain is built �the map is of
size 12�12 m, each cell is 0.4�0.4 m�, the terrain
classifier is applied to each visible cell in the map
and the terrain slope is estimated whenever there
are enough cells in the neighborhood. For each fu-
ture rover position which is within the map we save
the estimated slope with a coefficient of 1/range and
all the terrain classification responses in the cell
neighborhood with their corresponding 1/ranges.
The final slope measurements are weighted aver-
ages, and the final terrain classification is resolved
with voting among all terrain types that were re-
corded in the neighborhood when the same location
is seen multiple times, each vote counting according
to its weight. This mechanism is very useful to re-
move terrain classification errors, initially occurring
at far range. The final measured slope angles are
given as input to the slip behavior predictor learned
for the detected terrain type of the cell in question.
In the experiments the statistics are accumulated at
ranges larger than 3 m and the predicted slip is re-
ported only for cells which have been observed at
least 3 m away.

8.2. Results

In this section we describe the results of final slip
prediction for the dataset collected with the LAGR
robot. The test dataset in this section is a composite
of sequences of frames in which the terrain type is

Figure 14. Slip prediction and terrain type classification errors �left� and slope estimation errors �right�, as a function of
the minimum range at which prediction is performed. Slip prediction error, if the terrain type were known, is also shown
to the left. The terrain type classification error measures the percentage of misclassified cells along the rover traverse. This
experiment is done for a 15�15 m map on a subset of the soil terrain dataset.
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constant within a sequence but can change to an-
other terrain for the next sequence. In this way a
human operator can specify the terrain type of a
long image sequence, instead of giving ground truth
for each image. The terrain classification algorithm
does not have the knowledge that the terrain is con-
tinuous for some number of frames and then can
abruptly change. The algorithm which estimates the
slopes, however, is aware of that change because a
new frame sequence has to come with a different
initial gravity leveled �IMU based� pose. A sequence
size varies between 60 and 200 frames and the whole
composite dataset contains about 2000 test frames.
We have made sure that the test dataset has not been
used for training.

The results of the full slip prediction experiment
for the abovementioned large “composite” dataset
are shown in Figure 15. The figure shows the color
coded terrain type classification results, the mea-
sured slip, the predicted slip, and the predicted slip,
if the terrain type were known. The final slip predic-
tion error for the whole dataset is 21.8%. When the
terrain type is classified correctly, the slip prediction
error is 11.2%. As seen in the figure, large slip errors

come from misclassified terrain types �usually soil
and gravel are misclassified for sand�. Figure 16
shows more details on some of the frames which
incur large slip prediction errors, in particular,
frames in which soil and sand are misclassified. The
predicted terrain type is based on a single frame and
is determined by weighted voting of the predictions
in the cell neighborhood. The color coding is consis-
tent with Figure 7. As seen in the figure, the task of
discriminating between those two terrains is very
challenging in our field test data. Also, notice the
inconsistent ground truth slip measurement in the
end of this sequence �the rover traversed more solid
terrain�. In this dataset the error is artificially in-
creased as the slip measured for level sandy terrain
is about 80%, which gives a rather large slip error
due to terrain misclassification �compare to the error
if the terrain type were correct�. This result also
shows that some errors are more dangerous than
others. In other words, that the terrain classification
algorithm should be applying different penalties for
different types of error, i.e., terrain misclassification
which leads to large slip errors should be given
larger cost. In general, those results are very prom-
ising given the level of difficulty that the field test
data offer.

Up until now, we have shown the performance
on the future rover path only, but in actual test setup
the result of the algorithm will be as shown in Figure
17, namely, each cell on the visible map will have
predictions of slip in X �or Y, yaw� for potentially
different orientations of the rover. The results in Fig-
ure 17 show the predicted slip in X for a fixed, neu-
tral �i.e., the rover yaw is 0� orientation of the rover.
The rover has detected the flat sandy area as hazard-
ous because of large slip, as opposed to the adjacent
flat woodchip area which would incur almost 0%
slip. Slip of about 40–50% is predicted on a slope
covered with soil when traversed upslope. The re-
sults are done on an individual map �each location is
observed only once� but the terrain type in each cell
is determined by weighted voting in the neighbor-
hood, which helps reduce occasional terrain classifi-
cation errors. No slip is predicted for the cells close
to the corners of the image as there is not enough
support of neighboring cells to estimate the slopes.
No prediction is given for terrain cells which are
classified as grass �bottom row of the figure� as there
is no slip model for the grass terrain type. Slip pre-
diction based traversal cost will be handed down to
a path planner which can avoid very slippery ter-

Figure 15. Results of slip prediction from stereo imagery
�terrain geometry and appearance� on the whole dataset.
Top: The predicted and measured slip for the correspond-
ing test sequences. Slip prediction, assuming correctly rec-
ognized terrain type, is also shown �naturally, it coincides
with the final slip prediction, whenever the terrain type is
classified correctly�. Bottom: The predicted and correct ter-
rain types across the dataset. The test data spans about
300 m.
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rains. The prediction on the whole map takes about
6 s per frame for a 12�12 m map on a 3.6 GHz P4
processor �from which 77% of the time is devoted to
terrain type recognition�.

8.3. Notes from the Field Tests

Several issues regarding slip prediction done on our
real-life dataset are worth mentioning.

While collecting slip data with the LAGR ve-
hicle, we have encountered the problem of how to
factor out the dependence of slip on the vehicle’s
velocity. This problem could be ignored for a Rocky8
type rover, as the Mars rovers drive at relatively low
speeds and the dependence of slip on the com-
manded velocity is known to be insignificant for
small velocities. But this was an issue with the
LAGR robot, especially as originally the data were
collected by joysticking the rover, thus introducing
variability in rover velocity. We addressed this prob-
lem by forcing the vehicle to drive at relatively low

Figure 16. Expanded results of slip prediction from Figure 15 for the areas incurring most error. Frames 550–650, soil
terrain is sometimes misclassified for sand �left column�. Frames 1550–1650, sand is misclassified for soil �right column�.
The terrain classification on several frames from these sequences is also shown in the bottom rows.

Figure 17. Prediction of slip in X on the forward looking
map. Input images �left�, result prediction �right�. Sand,
level ground �top row�, soil, uphill �bottom row�. LAGR
vehicle.
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constant speeds in our later data collections, but for
the datasets collected at higher speeds only normal-
ization is performed, which does not fully solve the
problem. Extending the application for Earth based
rovers �or rovers driving faster� would require the
training and testing to be performed at similar speed
ranges. It is also possible to introduce speed as an
input to our system, with the caveat that in this case
training data at various speed ranges need to be
collected.

Driving the rover at higher speeds caused some
occasional errors with the VO-based ground truth
estimation. This was not surprising as there was not
always a sufficient overlap between two consecutive
stereo pairs �especially when the rover is turning; in
particular, we observed that behavior while driving
the robot on a transverse gravelly slope and, al-
though not commanded to rotate, the rover was ex-
periencing significant slip in yaw�. The occasional
VO errors practically disappeared when the rover
was forced to drive at a lower speed. Additionally,
we had to avoid test scenarios in which the robot
was following its own shadow, in the cases in which
the shadow took a large portion of the stereo images.
This case is particularly problematic for VO, as the
contour of the rover shadow offers prominent fea-
tures which are often found and matched in the next
frame sequence, but produce a wrong motion esti-
mate. In most cases though, the VO algorithm is ro-
bust enough to identify them as outliers. The pro-
posed method assumes good vehicle localization
and, while VO provides satisfactory results here, ro-
bot localization is still a topic of ongoing research.

As the dataset is collected in the field, the slip
measurements themselves are quite noisy because of
random effects coming from the terrain, measure-
ment errors, etc. Also, because of the adopted mac-
romodeling, there are events from the terrain which
we do not model and therefore cannot predict. For
example, when one of the wheels hits a small rock or
falls in a gutter on the path, an unexpected motion
�e.g., in yaw� occurs, which will not happen on an
otherwise homogeneous terrain. In general, we are
aware that the slip could vary in some range on the
same terrain type and slope, for reasons we cannot
control.

8.4. Discussion

In this section we have performed prediction of slip
from visual information only. From our results we

can conclude that learning of slip is possible and can
lead to successful prediction from visual informa-
tion. There are other factors, such as uneven wheel
sinkage, unequal vehicle weight distribution, and
unequal traction across different wheels, which also
influence slip. This makes slip prediction a hard
problem a priori, from both mechanical and machine
vision point of view �Leger et al., 2005; Biesiadecki et
al., 2005�. So, there will be cases when slip prediction
would not be possible with the available tools. Still,
there is a strong motivation for enhancing the terrain
perception for detecting nongeometric hazards
whenever possible.

We believe that learning from examples is a vi-
able approach when a physical model is not avail-
able, or is too complex to compute. We want to note
that from a mechanical point of view slip behavior
of rigid wheels �Rocky8� and of pneumatic wheels
�LAGR� is described by different physical models; in
addition, slip on off-road terrains, such as soil and
sand, is modeled differently from slip on a rigid sur-
face, such as asphalt �Wong, 1993�. Nevertheless, we
could learn all those different behaviors from ex-
amples because of the flexibility of our learning ap-
proach to adjust the learning model according to the
data.

9. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed to predict slip, a
property of mechanical vehicle-terrain interaction, re-
motely using vision information as input. The idea is
to map the appearance and geometry of the forth-
coming terrain to its mechanical properties, mea-
sured when the robot traverses it, and learn this map-
ping from previous experience. Our approach is
based on texture recognition and nonlinear regres-
sion modeling. Experimental evaluation has been
performed on several natural terrains with two ve-
hicle platforms. The proposed algorithm gives very
satisfactory results for slip prediction, given the fact
that a lot of noise is involved in measuring it and that
the dataset is taken on completely natural, off-road
terrains.

The importance of this method is that it is pre-
dictive. That is, the rover can avoid terrains of large
slip before getting stuck. This is possible because the
input information, obtained from stereo imagery, is
available at each location in the map �wherever there
are range data� so the rover can predict slip at each
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observed, but not necessarily traversed, location. The
output of the slip prediction algorithm is intended to
be incorporated into a more intelligent path planner,
so that areas of large slip are avoided as potential haz-
ards, or more adequate control commands are issued
taking into consideration the expected slip.

This work also opens up the topic of learning
more about the mechanical properties of the terrain
from visual information when the underlying physi-
cal model is unknown, and with the possibility of
learning in a completely autonomous mode, i.e., with
only sensors onboard the vehicle. We have provided
a solution for the case of slip prediction, but this can
be extended to various mechanical properties, e.g.,
soil compressibility, or wheel sinkage.

Further efforts are needed to develop a better ter-
rain classification algorithm, to avoid erroneous slip
prediction due to terrain type classification errors.
Currently, the terrain classification algorithm consid-
ers the terrain at a low level, i.e., in small local regions
only. A more advanced algorithm to consider terrain
classification in a probabilistic framework and to in-
troduce spatial and temporal continuity of the clas-
sification over neighboring patches or dependent on
terrain geometry will be one of our main problems for
future work. Visual information might not be suffi-
cient to distinguish various terrain types and prop-
erties, especially considering Mars terrains. It can be
complemented with multispectral imaging or other
sensors to resolve some inherent visual ambiguities
and improve on the classification results.

Our experiments required offline training be-
cause a human operator was needed to determine the
terrain types. Future work could concern learning in
the full MOE framework, i.e., closing the loop on
learning with fully automatic measurements from the
vehicle’s onboard sensors. In that case, a fully auto-
matic online learning will be performed, which has
influenced the selection of the algorithms and meth-
ods in this work.

Slip prediction from visual information does not
undermine the merit of mechanical modeling of ter-
rain. Instead, it exploits sensory information, e.g., vi-
sion, which is unavailable or not yet utilized by me-
chanical models and thus can be complementary to
them. An important area of research would be how to
combine these two different levels of information.
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