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Swept-frequency laser metrology
- Absolute optical pathlength measurement
- Relative optical pathlength measurement
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Background JPL
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Wavefront sensing and control for large segmented
telescopes always a challenge (both technically and
financially)

Edge sensors have been successfully used in some large
segmented systems such as Keck, HET, SALT, etc.

- Draw back of edge sensors include:
« M1 — M2 distance not measured
« M1 global curvature not measured
 Limited control bandwidth due to computational complexity

This paper describes a laser metrology system that could
be used for segmented mirror telescope control
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Q*‘f‘ Laser Metrology in Segmented Telescopes
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*Use of laser metrology truss to tie all the segments together with a
common reference such as M2
*Optical hexapod 6DOF (tripod 3DOF) for segmented telescopes
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Optical Hexapod (OHP) Concept
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*S1x (6) laser beams between two
rigid panels (M1 and M2)

*Three reference points on each
rigid panels

*All 6 DOF between two panels are
measured
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@ Optical Hexapod (OHP) Concept JPL

Common fiducials (3) on M2 M1 panels with embedded beam launchers
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Swept-frequency laser metrology

REF beam launcher with a calibrated REF cavi
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Swept Frequency Absolute Ranging JPL

Phase meter outputs

e Phase from a COPHI beam
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 Measure phase changes in both

M

MEAS and REF beam
launchers s o 13 17 21 25 20 5 57 41 45 49 5 57 1 65 9 7 17 81 85 89 83 o7
47
Ay = TxMAf Inferface Timing (full sweep)
4
A¢ o xRAf
C

« Calculate MEAS distance:

Adu
Ay

Least-square fit to achieve high
accuracy

Xy = Xp
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Phase Measurement — Abs and Rel Modes
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Phase changes (Fringes)
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Absolute Mode

x 10" REF and UNK phases during ABS mode (x1)
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REF Cavity Calibration — Method #1

APL
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« Use white-light Michelson
interferometer:
- REF cavity in one arm

- Mirror on translation stage in the
other arm

- Measure displacement of the
mirror between two white-light
fringes

« Optical encoder ~1um
« DMI ~3nm

* REF cavity thermal stability:
~0.01ppm/C° (ULE material)
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Initial Performance

APL
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YW Can laser metrology be useful in ground-based telescopes? _JIDL

s Laser metrology and LA mouivia
edge sensors to actively pacitytesee
align and control the s T

telescope:

- Primary mirror surface I
fi g U re Coqmmb(?-’.‘
- Distance between e e
I Archipelago Juan SR
primary and secondary ccnmm?alcjuaansemmn

Mirrors

Performance Goals

Aperture 25 m

Wavelength 200-1500 pm
Field of view 20
Pointing 035"
Surface (rms). active 10 pm
Primary focal ratio 0.6
Naysmyth focal ratio 8
Site altitude = 5000 m
Water vapor (median) <1 mm
Project Plan
F Comell Caltech agreement 2004 g1
Project office established 2004 g4
Feasibility study 2004-2005
% Feasibility study review 2006 g1
Engineering development 2006-2007
Construction sta rt 2008
Telescope complete 2012
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Measurement in the lab with open air JPL

« 80 ft long open optical path

* Optical table with folded mirrors

* Ambient temperature (21C+/-1C)

» Relative humidity (43%).

« CTE of optical table ~10-5 =» 270um/°C

* Index of air (i.e. optical path length) also
depends on environment:

n=1+786 10" pi(273+0-1.5 107N RE (£ +160)
* Turbulence is an important factor for

dynamic sensing and control
* Needs more study

R&TD

Air Path LengthNoise detrendeddata

| i).lnm[,,\.nl ]

Displacement|micron

) ) ) ) )
0 10000 20000 30000 40000 50000
Sample (6.4Hz)

Magnitude

0.5 -

crons / rHz

0.05 |

0.01

0.01 0.05 0.1 0.5 1
Hz

SPIE 6267-81

5/30/2006 — 1:40PM  Feng Zhao - 14



Summary APL

« Described an optical hexapod metrology concept
- Can work together with edge sensors
- Can measure M1 — M2 distance and M1 global curvature

« Swept-frequency laser metrology system
- Absolute optical path length measurement (~1um)
- Relative optical path length measurement (~nm)

 Air turbulence is a concern for ground-based telescopes
and needs further study
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APL
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Backup slides
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Common Path Heterodyne Interferometer (COPHI) S0

« Measurement and reference signals from spatially separated different parts of the
same wavefront

- Reduced optical cross-talk
- Improve thermal stability (common path)
- Variety of configurations for different types of measurements
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Scaling Laws

APL
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« Mechanical optical error scales

to the 4 power of aperture
diameter (Peterson, et al.)

s 2L 1(0)e(p)
A

« The larger the aperture, the

more (a lot more!) challenge on
structures

Metrology sensor error scales
linearly with the dimension

_ _ O
Aoy XR

Xy

Save your $$ and kg from
structures to build metrology?

Build a very rigid back structure and a simple metrology
system or a low-cost back structure and a very capable
metrology system to correct for deformations? Where is the

optimum?
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