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Abstract
There are well-established methods for re­
ducing the number of support vectors in a
trained binary support vector machine, often
with minimal impact on accuracy. \Ve show
how reduced-set methods can be applied to
multiclass SVMs made up of several binary
SVMs, with significantly better results than
reducing each binary SVM independently.
Our approach is based on Burges' approach
that constructs each reduced-set vector as the
pre-image of a vector in kernel space, but we
extend this by recomputing the SVM weights
and bias optimally using the original SVM
objective function. This leads to greater ac­
curacy for a binary reduced-set SVM, and
also allows vectors to be "shared" between
multiple binary SVMs for greater multiclass
accuracy with fewer reduced-set vectors. \Ve
also propose computing pre-images using dif­
ferential evolution, which we have found to
be more robust than gradient descent alone.
\Ve show experimental results on a variety of
problems and find that this new approach is
consistently better than previous multiclass
reduced-set methods, sometimes with a dra­
matic difference.

1. Introduction

The time it takes to classify a new example using a
trained support vector machine (SVM) is proportional
to the number of support vectors, which can often
number in the hundreds or thousands. While SVMs
are a very robust and powerful technique for super­
vised classification, the large size and slow query time
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of a trained SVM is one hindrance to their practical
application. Several "reduced-set" methods have been
proposed which successfully help to alleviate this prob­
lem, either by eliminating less important support vec­
tors or by constructing a new smaller set of vectors,
often with minimal impact on accuracy.

While SVMs inherently solve binary classification
problems, the theory of multiclass classification using
SVMs is now well-studied (e.g., Hsu and Lin (2002),
Duan and Keerthi (2005». Specifically, the most pop­
ular and widely successful techniques combine a num­
ber of binary SVMs to solve a multiclass problem.
Reduced-set methods were developed for binary SVMs
and have only been applied to multiclass problems
naively, reducing each component SVM in isolation.
\Ve propose a new approach that enables the reduced­
set vectors to be shared by all of the component SVMs
at once, leading to much faster convergence with fewer
reduced-set vectors.

We first introduce several innovations to the binary
reduced-set method proposed by Burges (1996). First,
we formulate the pre-image problem such that it does
not require minimizing the vector weight f3 simultane­
ous with the reduced-set vector, which avoids a tricky
singularity. Second, we use a two-stage optimization
procedure to approximate the pre-images, first using
differential evolution to avoid shallow local minima,
and then using gradient descent to refine the best
guess. Finally, after the reduced set vectors are con­
tructed, we optimally compute the reduced-set vector
weights and bias term by running the SVM training
algorithm with a modified kernel matrix. It is this last
innovation that is the key to the success of our multi­
class method, as it makes it possible to share vectors
between separate binary SVMs.

In the next section, we discuss related work. In sec­
tion 3, we present the mathematics and our algorithm
for creating reduced sets for binary SVMs, includ­
ing the enhancements necessary to support multiclass
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3.1. SVM Classifiers

The optimization problem for a soft-margin SVM is

3. Reducing Binary SVMs

(1 )
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subject to 0 <::: 0i <::: C. This is a quadratic opti­
mization problem that can be solved efficiently using
algorithms such as Sequential Minimal Optimization
(Platt, 1999). Typically, many 0i go to zero during
optimization, and the remaining Xi corresponding to
those 0i > 0 are called support vectors. To simplify
notation, from here on we assume that all non-support­
vectors have been removed, so that N x is now the num­
ber of support vectors, and 0i > 0 for all i. With this
formulation, the normal vector of the separating plane,
w, is calculated as:

subject to the constraints Yi(W . x + b) = 1 - ;i and
;i :::> 0, where W is the normal vector of the separating
hyperplane in feature space, and C > 0 is a regular­
ization parameter controlling the penalty for misclas­
sification.

Equation (1) is referred to as the primal equation.
From the Lagrangian form of (1), we derive the dual
problem:

The details of SVM classification are descibed in
(Scholkopf & Smola, 2002; Burges, 1998). Here we
outline the basic equations, and we follow the nota­
tions of (Scholkopf & Smola, 2002).

Let Xi (for 1 <::: i <::: N x ) be the input vectors in input
space, with corresponding binary labels Yi E {-I, I}.
Let Xi = ¢(Xi) be the corresponding vectors in feature
space, where ¢(Xi) is the implicit kernel mapping, and
let k(Xi,Xj) = ¢(Xi) . ¢(Xj) be the kernel function,
implying a dot product in the feature space. Popular
kernel functions (with model selection parameters a,
p, 1') include:
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2. Related Work

reduced-set SVMs. In section 4, we present our algo­
rithm for multiclass reduced-set SVMs, and we follow
this with experimental results and then concluding re­
marks.

Burges (1996) developed the first constructive
reduced-set algorithm, using a gradient descent
method to solve the pre-image problem. This ap­
proach is also described in (Burges & Scholkopf, 1996)
and further developed in (Scholkopf et al., 1999). As
the pre-image problem involves nonlinear optimiza­
tion, Burges' method sometimes gets stuck in prema­
ture local minima, as mentioned by Kwok and Tsang
(2004) and Bakir et al. (2004). One has to restart
the process with many initial guesses. vVe will analyze
Burges' method in greater detail in Section 3.2.

Scholkopf et al. (1999) introduced a fixed-point itera­
tion method for the pre-image problem for the Gaus­
sian kernel. \Vhile this approach has several advan­
tages, it too is unable to avoid the local minimum
problem.

Kwok and Tsang (2004) presented a pre-image method
that utilizes the relationship between the distances be­
tween the input space vectors and the distances be­
tween the feature space vectors, the latter being cal­
culated with the kernel function. The method involves
only linear matri.x calculations and is not iterative.
Kwok applied the method to kernel PCA, where it
seems to be quite successful, but not to constructing
reduced sets, and we did not find it to work as well
for this. Bakir et al. (2004) trained an SVM regres­
sion model to represent the inverse mapping from the
feature space to the input space, thus obtaining a pre­
image function. As did Kwok and Tsang (2004), they
applied it to the kernel PCA problem successfully, but
also found that it did not perform well when applied
to the reduced set problem. It is interesting to note
that the methods of Kwok and Tsang (2004) and Bakir
et al. (2004) can both be applied to pre-image appli­
cations with a discrete input space, since they do not
require the gradient of the objective function.

While this paper is focused on constructive techinques
for reducing support vector machines, other methods
have been proposed to speed up SVM query time with­
out reducing the number of support vectors, such as
(DeCoste & Mazzoni, 2003).

N x

W = LOiYiXi.
i=l

(3)
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Note that because Xi = ¢(Xi) is defined implic ity, w
exists only in feature space and cannot be computed
directly. Instead, the classification ](q) of a new query
vector q can only be determined by computing the
kernel function of q with every support vector:

2 . { I 'lr·¢(z) l2}
II 'lr II mln 1 - lll¢(z) liN II

II'lrf min {I - cos2 (B)}
z

II 'lr 11 2
min {sin2 (B) } ,

z

(9)

(10)

.l~lz:

W ~ '\' 8·¢("/·) (5)/ .1 -z. -"'-'t.
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i=l

](q) ~ sign [t,8i . k(q,Zi) + b] (6)
,=1

where the bias term b is the offset of the hyperplane
along its normal vector, determined during SVM train­
ing. The reduced-set idea is to approximate w using
a smaller number of vectors Zi, 1 SiS N z , where
Nz < Nx , with weights ,8i in place of O:i . Yi, thus
speeding up the classification phase:

and B is the angle between ¢(z) and 'lr. It is clear that
the pre-image problem is to find a B that is as close to 0
or IT as possible, depending on the initial z. In the case
of B ---+ IT, this will result in solutions where ,8 < 0, to
flip ,8¢(z) to the other hyper-hemisphere containing 'lr.
Equation 9 was also derived in Scholkopf et al. (1999)
and Scholkopf and Smola (2002) using an orthogonal
projection argument.

f N" '\

](q) = sign (80Wi .k(q, Xi) + b) , (4)
where

11¢(z) 11 2

N x

L "li"ljk(Xi, Xj),
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(12)

3.2. Re-Formulating the Pre-Image Problem

The reduced set can be constructed by a series of pre­
image solutions. An improved pre-image algorithm is
described in the next section.

The pre-image problem is to find a vector z in the input
space whose ,8-weighted mapping ¢(z) in the feature

space best approximates a vector 'lr = ,,>:1(" 17i¢(Xi).
To find the pre-image, we solve for ,8 andz by mini­
mizing the distance p between the ,8-weighted mapping
ofz and the vector 'lr:

.l~lx -i-l

'lr. = '\' 0: 'y' ""(x .) - '\' (3¢(z') (13), ~ J J'f' J ~. J J'

j=l j=l

The pre-image problem given in (9) is a nonlinear op­
timization problem, and thus optimization algorithms
can become trapped in a shallow local minimium. To
alleviate the local minimum problem, we propose using
differential evolution (DE) (Storn & Price, 1997), an
algorithm similar to genetic algorithms, but for opti­
mization on a continuous domain. We found DE com­
bined with gradient descent to be more robust and
computationally more efficient.

DE utilizes a population of Np d-dimensional vectors
Zi,g, 1 SiS Np for each generation g. The initial gen­
eration, Zi,O, is filled with uniformly-distributed ran­
dom numbers. At every iteration of the algorithm,

3.3. Differential Evolution

Burges (1996) used a gradient descent method to min­
imize p over z and ,8 (7). In his algorithm, there is
a singularity when ,8 approaches zero, so he devised a
method to avoid this singularity. In our formulation
of p (Equation 9), ,8 is not a control parameter, so this
singularity is avoided.

When using the pre-image algorithm for the reduced
set, the first reduced set vector Zl can be found by
setting 'lr = ~Y:1 O:jYj¢(Xj). This approximation is
usually not good enough and needs to be augmented
with further reduced set vectors. Thus, subsequent Zi
(i > 1) can be found by setting 'lr to be the residual:

(7)

(8)

2JVx

,8¢(z) - 2::>Ii¢(Xi)
i=l

nlln
(3,z

N x

,8 = L"lik(Xi,Z)/k(z,z).
i=l

mmp
z

mmp
(3,z

min { t 'r;i 17jk(Xi, Xj) + ,82k(z, z)
(3,z ~ i,j=l

N
x

}-2,88"lik(Xi, z) .

By requiring U= 0, we solve for ,8:

Thus the pre-image problem becomes:
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where F E (0,2] is a parameter to the algorithm.

each vector in turn is modified using crossover data
from three other random vectors from that generation,
and if the resulting disturbed vector results in a lower
objective function p, then it is kept, otherwise it is left
unmodified.

(15)

After the reduced set is constructed, the equation to
determine the binary classification of a query example
q IS:

3.4. Re-training on the Reduced Set

Burges (1996) proposed using the f3i values computed
during the construction of the reduced-set, but com­
puting the optimal value of b to minimize the training
error. Instead, we suggest that after computing the
reduced-set vectors, we recompute these coefficients so
as to minimize the original SVM objective function.

In the derivation from the SVM primal equation (1)
to the SVM dual equation (2), if we demand

(Equation 9). When this happens, DE has no way
to compare the objective function values among mem­
bers. To overcome this, we chose Zi,O randomly from
already calculated reduced set vectors (Equation 13),
support vectors, training inputs, and even other unla­
beled input vectors.

After NDE generations with DE, we drive the DE so­
lution lower by using a gradient descent method, just
as in Burges' method, starting twice from the two best
DE solutions. The gradient descent method we use is
function fmin_bfgs in SciPy (Jones et al., 2001 ), a
quasi-Newton method implemented in Python. It is
our observation that to a certain extent, the larger
NDE is, the better the DE solution becomes for being
used as an initial guess of gradient descent. However,
large NDE slows down the reduced set construction.
In this paper, we typically used NDE = 100.

j E [no, ... ,no + L - 1]
for all other j

r v[.j]
Ui q+l = 'I .. [.]" l Zi,g J

The ith offspring l[i,g+1 is copied from Zi,g, except that
the L elements beginning with no are copied from the
temporary vector v instead. Note that the crossover
segment is allowed to wrap around when no + L - 1
goes beyond the dimension of the vector. Formally:

The algorithm for modifying a member of the popu­
lation Zi is as follows. First, three mutually different
integers rl, r2, r3 E [1, iVp ] are randomly drawn, repre­
senting the indices of three other vectors that will be
used to modify Zi, and a temporary vector v IS com­
puted as a combination of those three:

Second, two integers are chosen to represent the posi­
tion and length of the crossover segment: the starting
position no is a random integer chosen uniformly from
[1, d] (d being the dimension ofz), while the length L is
chosen from a distribution that favors smaller values.
The suggestion in (Storn & Price, 1997) is to choose L
such that the probability Pr(L > v) = Rv-l, for some
algorithm parameter 0 <;; R <;; 1.

(17)

(16)

(18)

where kij are elements of K. K is defined as

we then arrive at a modified dual equation

(14)if p(Ui,g+I) <;; p(Zi,g+l)

if p(Ui,g+l) > p(Zi,g+l)

The objective function p is then evaluated on Ui,g+l,

and the next generation Zi,g+1 is determined by allow­
ing only those vectors that improved according to this
criteria to continue on:

There are three parameters for DE: Np , F, and R. In
the experiments presented in Section 5, the parameter
values are: Np = 5 * d, F = 0.8, and R = 0.95, as
suggested by Storn and Price (1997). We did a limited
sensitivity study, and found that the algorithm is not
very sensitive to these parameters.

When applying DE to the pre-image problem, we
found that filling the first generation Zi,O with ran­
dom numbers, as suggested by Storn and Price, does
not work, as those Zi 0 are so far from '.If that numer­

ically p(Zi) = II '.If f ~niformly among the population

Specifically, we run a SVM training program with K
as the kernel matrix, giving us a solution vector ct.

Then the adjusted f3i can be calculated as:

(19)
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vVe found that retraining for (3i usually results in sig­
nificantly better performance for reduced-set SVMs,
as will be seen in section 5. In addition, retraining is
the key to our proposed multiclass method.

Note that our proposed retraining method requires
taking the inverse of the kernel matri.x. In practice,
this matrix will sometimes turn out to be singular, in
which case it is necessary to take a pseudo-inverse.

4. Reducing :Multi-class SVl\1s

Methods for solving multi-class problems using binary
SVMs include one-v&-one, one-vs-all, error-correcting
codes, directed acyclic graph, and pairwise coupling
(Hsu & Lin, 2002). Our proposed algorithm works
with any of these methods, although in our experi­
ments we focus on the most popular one-vs-one and
one-vs-all.

Suppose that we have some multiclass method for k
classes using l binary SVMs. The key innovation of our
approach is sharing reduced-set vectors between the
binary classifiers. To evaluate a new query q, the out­
put of Equation 15 must be computed for each of the
binary SVMs. The most time-consuming part of this
computation is computing the kernel function k(q, Zi)
for each reduced-set vector Zi from any of the binary
SVMs. Except for very low-dimensional problems, the
time of multiplying by (3i, summing, and adding b is
negligible in comparison. Thus, in effect we say that
there is no added cost if the same vectorzi is used in
more than one of the l binary SVMs; we can compute
k(q,Zi) once and use it in all of the computations.

Note that our proposed technique for retraining (3i and
b for the binary reduced-set SVM works regardless of
the source of the vectorszi' Thus, adding additional
vectors from other SVMs could not hurt the accuracy,
because the retraining is optimal with respect to the
original SVM problem, and having more vectors to
choose from can only help. Thus, our proposed algo­
rithm to reduce a multiclass SVM is:

1. Begin by creating a single reduced-set vector for
each of the l binary SVMs independently.

2. Combine all reduced-set vectors into a single mas­
ter list and retrain the (3i and b for each binary
SVM using alll reduced-set vectors.

3. While more vectors are desired:

(a) Use a heuristic to determine which binary
SVM to improve. Compute a new reduced­
set vector for this binary SVM.

(b) Share all reduced-set vectors and retrain (3i
and b for all binary SVMs again.

As the heuristic to determine the binary SVM to re­
ceive the next vector, we simply choose the SVM with
the lowest binary accuracy. However, one could imag­
ine a slower solution in which a vector is computed
for each binary SVM and the one which reduces the
overall multiclass error the most is the one chosen.

5. Experiments

We performed three sets of experiments to highlight
the performance of our proposed multiclass reduced­
set method. In the first experiments, we reproduced
the results of Scholkopf et al. (1999) and compared
the performance of our method directly against theirs.
In the second experiments, we considered five common
problems from the UCI Machine Learning Repository
(Newman et al., 1998) to show how successful this
technique is on a wide variety of problems. Finally,
we did an additional experiment to try to quantify the
benefit provided by using Differential Evolution, which
is an issue of robustness and speed and not accuracy.

5.1. USPS Experiments

In order to compare our new method directly against
previously published results, we focused on the USPS
database of handwritten digits. The original database
consists of 7291 training examples and 2007 test ex­
amples, all images of size 16 x 16. As described in
Scholkopf et al. (1999), we used the smoothed USPS
data (using a Gaussian kernel of width a = 0.75) and
followed the procedure in (Scholkopf et al., 1995) to
extract a special set of 3000 training examples from
the original 7291. Specifically, a multiclass SVM (one­
vs-all) was trained on all 7291 training examples, re­
sulting in 1618 of those examples being chosen as sup­
port vectors. These 1618 examples were augmented
with 1382 other random vectors from the training set,
to make a total of 3000. Using the Gaussian kernel
k(x, y) = exp(-llx - yl12 / (0.5.162)) and regularization
parameter C = 10, we trained a one-vs-all classifier
with a 4.4% error rate on the test set and an average
of 262 support vectors per class, matching (Scholkopf
et al., 1999).

Table 1 compares the Burges method (as implemented
by Scholkopf et al.) to our new reduced-set method.
While Scholkopf presents results based on the number
of reduced-set vectors per class, we present these re­
sults relative to the total number of reduced-set vectors
in the multi-class classifier, since in our algorithm the
same vector can be shared by multiple binary SVMs.
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Burges Multiclass

#SVs Reduced-set

20 - 8.4%

50 - 6.0%

100 7.1% 5.3%

150 6.4% 5.0%

200 5.6% 4.9%

250 5.1% 4.7%

500 5.0% 4.6%

Table 1. Percentage of multi-class test errors on the USPS
digit recognition task, as a function of the total number
of reduced-set vectors. The unreduced SVM had an error
rate of 4.4%. Comparison between the Burges method,
as reported in (Scholkopf et at., 1999), and our proposed
multiclass reduced-set method ("Shared").

The table shows that our algorithm consistently out­
performs Burges' method. Notably, it achieves the
same level of accuracy (5.0%) after less than a third as
many reduced-set vectors (150 compared with 500).

As an illustration of how much the greedy heuristic
is affecting the results, the following table shows the
number of times that our multiclass reduced-set algo­
rithm added a new vector to each of the 10 classifiers
in the USPS digit classification problem after 500 it­
erations, corresponding to the last line of Table 1:

Note that all 10 classifiers use all 500 vectors, just with
different weights.

5.2. VCI Experiments

Table 2 shows the results of our comprehensive experi­
ments on five data sets from the UCI machine learning
repository (Newman et al., 1998), and Figure 1 shows
the error curves for one problem in particular. We
used the data sets and hyperparameters from Duan
and Keerthi (2005), a recent paper that compared sev­
eral multiclass methods and suggested a reproducible
way to compute the kernel and C for each experiment.
Each experiment was performed 20 times with differ­
ent splits of the data into training and test sets each
time; the training set sizes were the "large" sizes from
Duan's paper. The data sets, and number of classes k,
dimensionality d, and number of training examples n
we used were ABE (the letters A, B, and E only from
the "letter" data set; k = 3, d = 16, n = 1,120), DNA

(k = 3, d = 180, n = 1,000), WAY ("waveform";
k = 3, d = 21, n = 600), SAT ("satimage"; k = 6,
d = 36, n = 2,000), and SEG ("segment"; k = 7,
d = 18, n = 1,000). We repeated all experiments with
both one-vs-all (winner take all) and one-vs-one (max
wins) classifiers.

For each experiment, we show the test error resulting
from four different multiclass reduced-set approaches.
The first column, labeled, "Orig", shows the original
method as described in other papers, with the same
number of reduced-set vectors in each binary SVM.
"Greedy" adds one reduced-set vector at a time to the
binary SVM with the largest error. "Retrain" then
retrains for the optimal f3 and b after reduced-set se­
lection. Finally, "Shared" shares reduced-set vectors
between multiple binary SVMs before retraining. In
doing these experiments, we occasionally had problems
with the retraining algorithm (used in both "Retrain"
and "Shared") failing to converge in a reasonable pe­
riod of time. When this happened, we used the f3
values from this partially-converged solution but com­
puted the bias b to minimize the training error, which
was better than using the partially-converged b.

In almost every case, we found that each of our pro­
posed enhancements provided a measurable increase in
the performance of the reduced-set method. Our pro­
posed "Shared" method was dominant in almost every
case, though there were a couple of exceptions. The
most improvement was seen on the ABE and SAT data
sets using one-v&-all. For example after 20 reduced­
set vectors, using "Shared" instead of "Orig" on ABE
lowers the test error from 10.9% to 3.4%. Both DNA
and WAY were surprisingly easy to reduce by all four
methods; all four achieved the same performance as
the original SVM after fewer than 20 vectors. Finally,
note that in some cases, one-vs-all achieved lower error
more quickly (e.g., SAT), while in other cases, one-vs­
one achieved faster convergence (e.g., SEG). Thus for
best results we recommend considering both multiclass
methods (if not others) and choosing the one with the
best reduced-set performance.

For some data sets (e.g., ABE, SAT), there are degra­
dations of a few percentage points in accuracy from
the full multiclass SVMs to various forms of reduced­
set SVMs, even when the number of reduced vectors
reaches 20 or 40, as shown in Table 2. We com­
ment that with 20 reduced vectors, the degradations
for reduced-set binary SVMs are usually small, almost
always less than 1%, but those binary degradations
sometimes aggregate to more significant ones for mul­
ticlass SVMs.
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Figure 1. Test error as a function of the number of reduced-set vectors for the SAT (satimage) data set, with a one-vs-all
SVM (left) or one-vs-one SVM (right), for four different variations of the reduced-set algorithm. Averages over 20 trials
with different training/test splits.

6. Conclusions and Future Work

5.3. DE Experiment sharing reduced-set vectors between multiple compo­
nent binary SVMs in a multiclass SVM for additional
gains. In addition, we have also presented a new
derivation of the pre-image problem that avoids the
singularity, and proposed differential evolution (DE)
as a faster and more robust way to compute the pre­
images. Our experimental results have shown conclu­
sively that our enhancements are quite successful on
six different benchmark problems.

There are several avenues for future study. We would
like to investigate optimizing multiple reduced set vec­
tors simultaneously, which we think will lead to faster
convergence. With our current method, the greedy
heuristic used to select the next binary SVM could be
improved. The problem that the retraining algorithm
occasionally fails to converge quickly needs to be fur­
ther studied. Finally, the idea of finding the optimal
weights for a set of vectors which are not the original
training vectors could possibly be applied to applica­
tions other than reduced sets.
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