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Abstract 

The Space Interferometry Mission (SIM) scheduled for launch in early 2010, is an optical 
interferometer that will perform narrow angle and global wide angle astrometry with unprece- 
dented accuracy, providing differential position accuracies of luas, and 4uas global accuracies 
in position, proper motion and parallax. The astrometric observations of the SIM instrument 
are performed via delay measurements provided by three Michelson-type, white light interfer- 
ometers. Two "guide" interferometers acquire fringes on bright guide stars in order to make 
highly precise measurements of variations in spacecraft attitude, while the third interferometer 
performs the science measurement. SIM derives its performance from a combination of precise 
fringe measurements of the interfered starlight (a few ten-thousandths of a wave) and very pre- 
cise (tens of picorneters) relative distance measurements made between a set of fiducials. The 
focus of the present paper is on the development and analysis of algorithms for accurate white 
light estimation, and on validating some of these algorithms on the MicroArcsecond Testbed. 

1 Introduction. 

The Space Interferometry Mission (SIM) scheduled for launch in early 2010, is an optical interfer- 
ometer that will perform narrow angle and global wide angle astrometry with unprecedented accu- 
racy, providing differential position accuracies of approximately luas, and a 4uas global capability 
in position, proper motion and parallax. The astrometric observations of the SIM instrument are 
performed via delay measurements provided by three Michelson-type, white light interferometers. 
Two "guide" interferometers acquire fringes on bright guide stars in order to make highly precise 
measurements of variations in spacecraft attitude, while the third interferometer performs the sci- 
ence measurement. SIM derives its performance from a combination of precise fringe measurements 
of the interfered starlight (a few ten-thousandths of a wave) and very precise (tens of picometers) 
relative distance measurements made between a set of fiducials. Testbeds demonstrating many of 
these challenging technology, requirements of the instrument are currently operational. The focus 
of the present paper is the determination of accurate white light measurements, particularly those 
required by the guide interferometers. 

SIM white light interferometry is based on dispersing the fringes across the detectors and 
measuring the phases at a number of wavelengths by modulating the pathlength in a known way 
to determine the unknown pathlength difference between the two arms of the inteferometer. This 
general technique is known as phase shifting interferometry (PSI). The guide interferometers offer 
particular challenges because there is not only an accuracy requirement on the order of a few tens 
of picometers when averaged over 30 seconds, but the interferometers are also required for real time 
pathlength control and must furnish delay estimates at a lKhz update rate. The resulting challenges 
include low SNR for the guide interferometers (because they operate at  lKhz), vibrations of the 



optical train or imperfections in the phase modulation so that the phase is actually changing while 
being measured, and the necessary use of relatively wide passbands to improve the low SNR causing 
a loss of accuracy of monochromatic models from which PSI algorithms are typically fashioned. 

Several approaches for mitigating these problems are developed and some of these are tested 
on the MicroArcsecond Testbed. The low SNR difficulties are approached with bias correction and 
phasor averaging methods. In the latter case an analysis is performed that shows the validity of 
the approach so long as the visibilities remain stable over the course of the averaging. Undesired 
changes in the optical path of the interferometers are partially observed by the internal metrology 
subsystem of the instrument. Th f i % ; u y n t s  are used via a perturbation formula to correct the - 
initially computed white light fring  mate. A demonstration of this approach on MAM testbed 
data is given. 

( L ? T ?  

The algorithms and methods above are all based on a primary monochromatic model that 
uses the two outputs of the beam combiner imaged onto the detector. Assuming a lossless beam 
combiner, the two outputs ensures that all of the available signal is used to form the phase estimates. 
The two image model has some nice symmetries that enable use to derive analytical formula for 
the delay estimate variances for several estimators in a generd way as a- ction of the defining 9 parameters of the model, such as modulator stroke length, wavelength$tector noise, photon flux, - . 

visibility, and the number of frame reads per fringe estimate. This is the topic of the next section. 
In Section 3 the various methods for removing the effects of bias and vibration/modulator error are 
developed. In the final section some preliminary work on mitigating the errors due to the violation 
of the non-monochromatic assumption are introduced. 

2 The Guide Interferometer Function and the Two Image Mono- 
chromatic Interferometric Model 

The operation of the SIM instrument has been previously described in [1,2]. Here we will recount 
the very basics. The role of each of the three SIM interferometers is to determine the "external" 
pathlength delay, which by definition is the quantity 

d = (s, B) (1) 

where (., .) denotes the standard inner-product on R ~ ,  d is the delay, s is the unit star direction 
vector (normal to the planar wavefront), and B is the interferometer baseline vector. The baseline 
vector is defined via the positions of fiducials from which direct metrology measurements that follow 
the same path as the starlight are made. The difference in the distance between the fiducials of 
each arm of the interferometer to the beam combiner is termed the internal pathlength difference 
and is directly measured by metrology. The total pathlength difference is measured by white light 
interferometry, and the difference between the two is the measurement of the external pathlength 
difference, the sought after quantity. We begin by discussing the issues related to making the white 
light interferometry measurement, but will consider in Section 3 the use of using the metrology to 
improve this estimate when the modulator is non-ideal, etc. 

Consider an interferometer in which the total photon flux at the two outputs of the combiner 
is such that it generates a current 210 in the detector. This total photon flux is split between the 
two combiner outputs in a manner which depends on the total delay, so that in a time interval r 



the number of photoelectrons on the two sides of the combiner is 

where 0 = is the phase corresponding to the total delay D l  V is the visibility, X is the 
wavelengthland No r 107. NOW suppose we apply a triangular phase modulation, so that 0(t) = 

u(t) + 4, where 4 is the (astrometric) phase being measured and u(t) is the phase modulation. 
(For now we assume 4 is constant during this measurement.) Then [I] [2], the number of electrons 
detected during interval i, i.e., during the ith dither step of n dither steps, is1 

where uk = (k - l ) A  + A/2 - nA/2, the effective visibility V, is 

A 
Vm r Vsinc(-), 

2 (4) 

sinc(x) r y, A = el and s is the length of the modulation stroke. The unknown quantities in 
(3) are No, Vml and 4. 

Let v denote the 3-vector with components v = (No, NoVm, 4), and define the mapping 
X : R~ -+ R3 by 

1 
X (v) = - (vl ,212 cos(v3), v2 sin(vg)). 

n ( 5 )  

Next define the n x 3 matrices A+ and A_, 

- sin(u1) ] , [ 1 - cos(ul) sin(ul) 
A- = : (6) 

1 - COS(U,) sin(u,) 

The n-dither-step photon counts from the "bright" and "dark" fringes are, respectively, 

corresponding to  the respective intensity models in each dither step 

The measurement error covariance matrices due to shot noise for the two fringes are D(N+) and 
D(N-), respectively, where D(N*) is the diagonal matrix with N* on the diagonal. Let a; denote 
the variance in the measurement due to read noise and dark current in each dither step at each side of 
the combiner. Then the total measurement error covariance matrix is D(Y) = diag(D(Y+), D(Y-)) 
where D(Y*) = D(N*) + o ~ I ~ , ,  and I,,, denotes the n x n identity matrix. 

Define A as the concatenation of the matrices A+ and A_: 

and let N denote the concatenation of the observed photoelectron counts N*. Then the nominal 
monochromatic model is 

Y = AX(v) + rl ,  (10) 
where y is the observed vector of photoelectron counts and q is a zero mean noise vector with 
covariance matrix D(Y) = diag(D(Y+), D(Y-)). 

'We assume that the mean value of the dark current is removed by calibration, either in hardware or in software. 



3 Phase estimators. 

Since X is invertible, a broad class of estimators for the unknown parameter vector v has the 
general form 

v = x-'(Ky), 

where K is any 3 x n matrix with K A  = I. For example the (unweighted) nonlinear least squares 
problem 

min ly - Ax(v) l 2  

leads to an estimator in this class with K = A+ (the pseudoinverse of A).  
The presence of the noise vector q in (10) leads to an error in the estimate of v. (Typically, 

especially for the application of the guide interferometers we are most intersted in the third com- 
ponent of v, 03, the unknown phase of the delay.) To investigate this error let v0 denote the true 
solution, and let C denote the estimate based on the noisy observations. Write v0 = C + h, and note 
that 

x (v0 )  -X(C) = Kq. (13) 

Expanding X(vO) around C to  second order 

1 
x(vO)  = X(6) + Xf(C)h + -X1'(C)[h, h], 

2 

and solving for h, yields the second order expression for the error 

The bias in the solution is obtained by taking expected values of this expression, 

1 
E(h)  = E(-x'(C)-~X"(C)[X'(C)-'K~, x'(C)-'Kq]), 

2 (16) 

and the error covariance matrix is 

where 
Q = K d i a g ( ~ ( y + ) ,  D(Y-))KT. 

Next we develop useful formulas for the errors in the least squares and minimum variance 
solutions. To compute these we shall need expressions for xf(6)- l  and (ATA)-'AT. A simple 
calculation shows that 

0 

The two port model makes the calculation of (ATA)-'AT very easy since  AT^ is diagonal. After 
some algebraic manipulations the variance in the least squares delay estimate has the final form 



where S is the ratio of the shot noise to the total noise 

and f is the parameter derived from the the number of temporal bins and the ratio of the stroke 
length to  the wavelength defined as 

The ratio under the radical in (20) illuminates the delay error as a function of the number of 
temporal bins and the ratio between the stroke length and wavelength. For example, if y = 1, 
corresponding to equal wavelength and stroke length, f = 0 so that the ratio is one and the error 
is independent of the delay. In general this is not the case. Another interesting case is when n = 4 
(corresponding to a 4-bin algorithm). In this case y = 2 (stroke length is twice the wavelength) 
leads to a singularity. To see this how this happens observe that f / n  = -1 when n = 4 and y = 2. 
Now if 4 # 0 it follows that 1 - f2/n2 = 0, but 1 + f cos(2+)/n # 0. Thus the ratio is infinite, 
and the variance blows up. One simple conclusion from (20) is to choose a stroke length such that 
1 - f / n  is maximized over the operating wavelengths of the interferometer. 
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Figure 1. Comparison of performance for three estimator design parameters 

In Figure 1 we plot the function 114- for n=4, n=8, from wavelengths of 400nm-900nm 
and two different stroke lengths - lOOOnm and 600nm (although the case with 4 dither steps and 



a lOOOnm stroke is excluded because of the singularity at  the 500nm wavelength). From the figure 
it is clear that there is an advantage to use an 8 dither step algorithm coupled with a 600nm 
stroke length. The picture becomes a little more complicated when the effect of the parameter S is 
included, since as the number of pixels that must be read increases, the value of S will decrease; and 
thus an increase the variance of the error occurs. In Figure 2 we make the same three comparisons 
as in Figure 1, but this time we use representative values for S and No. 
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Figure 2. Comparison of performance for three estimator design parameters 

A similar computation for the error variance can be made for minimum variance estimator. This 
estimate is obtained from the least squares problem (12) weighted by the inverse of measurement 
covariance matrix. The resulting variance is 



The ratio of the variance of the least squares and minimum variance estimators at zero delay 
error is given by 

Varls - -- 
sin2 (ui) 

C{ 1 - s2v: cos2 (ui) 
) [C sin2 (ui)] -I. 

Varmve 

Figure 3. Ratio of ,/Vaqs/ Var,,, as a funciton of V S  

Figure 3 plots the square root of this ratio as a function of the product V S  for an 8 dither 
step design. Observe that as V,S -+ 0, this ratio goes to 1, while as V S  -+ 1 and n -+ co, the 
ratio tends to 2/(1 - sinc(2ny)). For nominal values of visibility, shot noise, and read noise for the 
SIM guide interferometers (SV, = .38), there is a small (2%) advantage in using the minimum 
variance solution versus the least squares solution. Because of this relatively small advantage, for 
the remainder of the paper we will focus primarily on the unweighted least squares solution. 

4 Improving estimates. 

Several factors can degrade the performace of monochromatic estimators. For SIM applications 
these include low SNR for the guide interferometers (because they operate at lKhz), vibration or 
imperfections in the modulation, and the necessary use of relatively wide passbands to improve 
the low SNR. This latter difficulty, especially when a monochromatic model becomes inadequate, 
is treated in a preliminary fashion in Section xx. In this section we address the first two of these 
problems. 



The form for the general bias error for the class of estimators under consideration was given 
in (16). Previous work [2] has shown that the least squares algorithm is biased when the stroke 
length and wavelength do not match. A bias correction algorithms was worked out in [2] for the 
minimum variance estimator. Below we compute the bias in the least squares solution for the two 
port model and then discuss ways to mitigate it. 

For an arbitrary 3-vector z let 

1 
r = -~l(f i)-~x"(f i)[z ,  z]. 

2 (25) 

The bias in the phase is the expected value of the third component of r ,  r3, computed using 
z = XI(+)-I ~q above, where K = (ATA)-l~*. In general it is readily established that 

Working through the algebra and noting that (Ki,q)2 = Qii (the variance of the error in the 
estimate Xi(6)), it can be deduced that 

is the bias in the least squares estimate of the two port model and has magnitude proportional 
to the product of the square of the reciprocal of the SNR and the phase offset because of the 
nonlinearity of the problem. 

This bias due to the low SNR can be reduced in several ways: by direct compensation based 
on (29), integrating for a longer period, or use phasor averaging. But because the guide inter- 
ferometers must operate at a lKhz update rate, the second option is not viable. For precision 
astrometric purpsoses the primary quantity of interest is an accurate value of the average delay 
over an integration period of tens of milliseconds for the guide interferometers and is not required 
at the 1Khz rate. The bias correcting approach requires the correction with each phase estimate 
and is thus more computationally intensive than the phasor averaging approach. For this reason 
phasor averaging is perhaphs the most desirable way for treating the low SNR problem. 

The issue that arises for phasor averaging is whether the average value of the computed phasors 
when transformed to a delay is equal to the average value of the delay. To address this question 
consider a sequence of observation vectors {yk},&produced by the states vk. (In the noiseless case 
we would have yk = Ax(vk), identically.) Let 

and set Svk = vk - @. We recover the average state from the phasors via the estimate 

To determine the error in this, note that to second order (using C bvk = 0) 



Let F = zij - 8. Then from (28), 
1 l c k k  Fg = - ~ ( 6 v 2 6 v 3 / v 2 ) .  

M (31) 

Thus if NoV is constant over the averaging period so that 6vk = 0, there is no error through second 
order in computing the average phase by first averaging the phasors. 

Another difficulty encountered during phase estimation are factors that lead to a changing 
phase while the phase measurement is being made, e.g. the presence of vibrations, modulator 
performance deviating from nominal, etc. Mechanical vibrations have a strong adverse effect on 
MAM white light performance. The SIM equivalent of this error are large external path changes 
while a white light measurement is being made. Because the dominant external path error for SIM 
will be the relative low frequency ACS error this should not be a major problem for SIM. (The 
external path changes are not observable by any of the SIM instruments, other than the white 
light interferometers.) The internal pathlength can change due to vibration of the optical train and 
modulator non-idealities. These changes are monitored by the internal metrology system. Here we 
will discuss a correction of the phasors based on the metrology measurements. 

Let k denote the wavenumber of the monochromatic light, s is the stroke length of the modu- 
lator, N denotes the number of bins, and xi (i = 1, ..., N )  are the midpoints in each temporal bin. 
I. is the intensity of the signal and V is its visibility. The photo-electron counts per bin is given 

where A = s /n  and r(x) is the change in pathlength during the fringe estimation that we are 
trying to compensate for using metrology measurements. The quantity we wish to estimate is F, 
the average value of r over the fringe estimation period (or the phasor quantities associated with 
this mean pathlength difference). To this end let S(x) = r(x) - F and expand the integrand above 
about kx + kF. Retaining only terms that are linear in 6(x) leads to the model 

where the ith row of B+ is 

Concatenating the * quantities as before yields 

The matrix A is constant and independent of the variation 6(x), while B is a function of the 
variation. In general we would expect B to be time-varying because of vibrations, changes in the 
modulator stroke, etc. Let K be any matrix such that KA = I, i.e. K is an unbiased estimator of 
X(v) (assuming B = 0.) Then multiplying by K we get 

Therefore, 
X(V) = (I - KB)-~x(v). 



And since ( K B  ( << 1, the approximation ( I  - KB)-' % I + K B  is valid, and consequently to  first 
order in IS(x) 1 

X ( V )  = X ( V )  + K B X ( V ) .  (38) 

Hence the sought after perturbation is simply K B X ( V ) .  
Implementing this update depends on how B is computed. The matrix K is fixed. For the guide 

interferometers (and also on MAM), 6(x) is partially observed by metrology. Below we will indicate 
the computation assuming the metrology is sampled at the camera rate. With this assumption the 
metrology measurement is 

6 .  - 1 J x i f  s(x)dX. 
- A x i - A 1 2  

(39) 

Thus we can think of the n measurements made by metrology during the period of a single fringe 
measurement as a mapping m : L2 + Rn with 

Given the measurement vector there is no unique way of reconstructing the function that produced 
it. One simple approach is to assume the function is a step function. In this case given a mea- 
surement vector S E Rn, we define the inverse of m as the function 8 that has the value Si on the 
interval xi - A/2 5 x 5 xi + A/2. In this case we obtain the implementation 

5 Concluding remarks. 

Precision white light interferometry is a cornerstone technology for the success of the Space In- 
terferometry Mission. SIM presents many unique challenges in this area becasue of the various 
constraints and of the accuracies required. Although the project has many of the individual tech- 
nologies well in hand, the system level aspects still provide rich motivation and fertile ground for 
further innovation. 
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