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ABSTRACT 

The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called 
L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple 
baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the 
interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the 
articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic 
errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is 
labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single 
metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error 
sensitivity to various error parameters or their combination can be studied using eigenvalueleigenvector analysis. Also 
validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first 
example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay 
errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the 
linear error model is contained in an error-mapping matrix. A corresponding Zemike component matrix approach is 
developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second 
for convenience of combining with additional models. Average and worst case residual errors are computed when 
various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in 
arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices reside with 
the siderostat. The non-common vertex error (NCVE) is treated as a second example. Finally combination of models, and 
various other errors are discussed. 
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1. INTRODUCTION 

Space Interferometry Mission (SIM) is a space optical interferometer mission designed to achieve unprecedented 
accuracy of stellar astrometryl. Since most of the astrometric target stars are very dim, substantial integration time is 
required for measuring starlight fringes. The SIM baseline is essentially time varying on this time scale. Variations of the 
baseline can be due to spacecraft attitude changes, baseline fiducial changes (systematic variations, thermal drifts, etc.), 
or other higher order effects. In order to track the changes of the baseline, SIM employs two guide interferometers (see 
Fig. I) that observe bright "guide" stars, and a laser metrology truss system that calibrates distances between fiducials of 
the primary & secondary science baseline and the guide baseline. In this manner, the guide interferometers track the 
spacecraft attitude changes, while the metrology truss is designed to remove the systematic and temporal variations of 
the baseline fiducials to the best of its capacity. An overview of the SIM mission and descriptions of major instrument 
subsystems can be found in Refs. 2-3. Background of on-board real-time reconstruction of the baseline vector can be 
found in Ref. 4. 

There are two observational modes in which SIM operates. They are the narrow-angle (1' diameter) and wide-angle (15' 
diameter) circular field of regard (FOR, also called tiles in SIM terminology) observations. Systematic Errors of the 
wide-angle FOR observations are much more severe than that of the narrow-angle case. We will be concerned with the 
wide-angle error performance modeling of the external metrology system in this paper. The external metrology system 
consists of 15 essential close-loop laser beams that monitor the distances between fiducials. The geometry of the current 



SIM external metrology system resembles a truss (see Fig. 1 for an illustration of the SIM flight system architecture). 
Criticality of the links between the guide baseline and the science baseline has prompted for addition of backup laser 
gauges on those links, increasing the number of beams to 19. Hence the error modeling in this work is based on this so- 
called L19 metrology truss. Error performance of the entire SIM interferometer is outside the scope of this paper but a 
global error budget summary can be found in Ref. 5. 

The focus of this work is on time-independent systematic errors due to field-dependent effects. The approach is to start 
from the physics-based model of the individual instrument component errors and develop single gauge level field- 
dependent error model. Then the single gauge errors are mapped to errors in the determination of baseline, which in turn 
propagate to errors in delay measurement. The fact that physics-based linear model of field-dependent error has been 
validated on SIM external metrology testbed KITE' lends support to this approach. 
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Figure I: illustration of the SIM flight system architecture. The global coordinate frame used for 
modeling is shown as the sct of white X. Y, Z arrows. 

In part I of this paper5, the mathematical formulation of mappings from single gauge errors to delay error is derived. Part 
I1 of this paper develops physics-based model of single metrology gauge's field-dependent error. In section 2 the external 
metrology's geometry and coordinate frame are discussed. The results from part I of this paper as applied here are 
summarized. The details of error parameter model development are described by following through the example of 
dihedral error model in section 3. The non-common vertex offset error (NCVE) of the double comer cubes (CC) is 
treated in the following section. Finally in section 5, details of combination of models are laid out. Also various other 
effects are discussed. 



2. LIPTRUSS FIELD-DEPENDENT ERROR 

2.1 L19 truss geometry and relation to sky coordinates 

The baseline fiducialslnodes appear in the L19 geometry as shown in Figure 2. 

Figure 2. 3D view of the L19 
truss in the global coordinate 
frame of the spacecraft. 
Primary science baseline is 
between fiducials 3 & 4. The 
secondary science baseline is 
6-1. The guide baseline is 2- 
5. 

6 
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Figure 3 illustrates the definition of sky coordinates (u, v) and its relationship to the spacecraft coordinates. The 
modeling in this work is done on the science baseline 6-1, which is equivalent to modeling based on baseline 3-4 if 
correct symmetry rules are applied. 

Figure 3. View of node 3 and 

Center Field of Regard 1 with their respective sky 
coordinates in the negative Y 
direction. The symmetry of 
center FOR direction 
between 1 and 3 is noted. For 
baseline b,,,  the sky 
coordinates is (u3, v3), and 

Z 1 the same for bS2 is (uI, vl). 
A The coordinates of center 
"3 G I  FOR star vector S in the 

right-handed u - v - W 4 4 system are conveniently 
written as ( O , O ,  1). 

If  we do modeling on baseline 6-1, the starlight vector s will also need to be expressed in the same coordinates. The 
following expression will be the convention of s in computing the delay error from baseline 6-1 : 



2.2 Summary of mapping from single gauge error to delay error 

We first summarize the main ingredients of the single gauge model and then scope of mapping from single gauge to 
delay: 

2.2.1 Single Gauae Model 
We consider the change due to articulation in the structure. Therefore only the beams incident on the articulating 
CC's need to be modeled. There are altogether 8 beams on the 2 double CC's (4 CC's) located at the science baseline 
fiducials. The gauge model is expressed in sky coordinates (u,v). 

2.2.2 From Gauae Error to Science Delav Error 
In reality, there are altogether 14 laser beams operating in the external metrology system (15 if all beams were present 
between the 6 fiducials, but the beam between the primary science baseline fiducials is substituted with internal 
metrology beam instead). In keeping with the larger scheme of metrology or star calibration of fiducial positions, all 
the single gauge errors need to be combined in the full 14-beam gauge error vector 81, which then will be mapped to 
science delay error 8d through the L-19 M matrix: 

6 d ( u , v ) = < s , 6 b > = < s 7 M 6 1 ( u , v ) >  (2) 
Above 8b is the error in external metrology measured baseline, 8 1 is the combined single gauge error vector, s is 
the unit vector in the starlight direction, the notation < , > stands for vector inner product. The reader is referred to 
part I of this paper7 for derivation of equation (2). 

2.2.3 Mau~ing Matrix 

Let us define 

By adapting the mapping matrix to the L19 geometry, we have: 



M = [ Z ~ + B * ~ ~ ~ V ( T ) * S * Z ~ ] * ~ ~ ~ V [ F ' ( X = X ~ ) ]  

zs = L13x3 '3x12 -'3x3 1 
zg ' -Ijx3 OiX6 I 3 ~ 3  1 

Isxs - identity matrix of order s 

Osx, - zero matrix of size s x t 

X = [x,' x,' x,' x,' xST x:]' is a 18x1 vector 

Xi - 3 x 1 position vector of fiducial i 

X: - known position of fiducial i 

1 
FV(X)=-*61, 14x18 matrix 

6 X' 

6 1 - defined in equation (14), 6 lij = (x, - xi 1 - (X; - X; 1. 
pinv() - pseudo-inverse of matrix 

s g I ,  are the 2 guide star vectors of size 3 x 1, bg = X: - X: is also 3 x 1 vector 

B is the skew symmetric matrix, such that for vector x, Bx = b x x. 

bs = X: - X: is the science baseline 

3. DIHEDRAL ERROR MODEL 

3.1 Basic parameters 

For each CC, three facet unit normal vectoes are labeled as n, , n2, n3 . The three components of the dihedral error are 

defined as: 

a=[al a, a,]', dn2 =a3nl, dn, =-a2nl +up2 ( 5 )  - 

3.2 From CC dihedral error to delay error 

We derive a general scheme of mapping from dihedral errors on the 4 articulating CC's to the delay error. Of all the 

gauge measurements listed in equation (3), only a subset composed of 61,, ,6 I,, ,6 I,, ,8 I,, and 6 lZ6 ,6136 ,6 ,6156 
will change during siderostat articulation. So we compose a subset gauge measurement vector 

which satisfies 



Call it external metrology design matrix if you will, ZE defined in equation (7), is a 14 X 8 matrix with only non-zero 
elements at the specified locations. Let us also define the dihedral errors of the 4 articulating CC's as a single parameter 
vector of size 12 X 1 : 

a  = [(a')' ( a 2 )  ( a 3 )  (a4)']' , ai = [a; a; a;]' , i = l ,2,3 

In the above equation a', i = 1,2,3,4 are the 4 articulating CC's (In the L19 designation of Table Al,  the order of 

CCs from i = I to i = 4 is I .a, I .c; 6.c, 6.a. Please note that CC 6.c is the mirror image of CC I .c about the XZ plane that 
exactly halves the truss structure, i.e., the surface normals are exactly opposite in y components. The reader is 
encouraged to verify this using Table Al and the illustration in Figure 1 .) dihedral error vectors (of size 3 X 1 , defined 
in equation (5)). Because the gauge errors are linear with respect to dihedral error parameters, 61, can be written as: 



In general we use the notation om,, for a m x  n matrix of zeros. The dlq(u,v) are the single gauge models. They 

have been computed using fundamental vector geometry of rays reflecting of comer cubesx. Now the delay error due to 
dihedrals can be written as: 

Defining a new field-dependent matrix 

of size 1 X 12, we can rewrite the delay error 

6 d(u,  v) = g(u, v) a 

4. NON-COMMON VERTEX ERROR MODEL 

4.1 Introduction to NCVE 

Figure 2 illustrates the basic parameters associated with a double comer cube at one of the siderostat mirrors. Let 1 .a and 
1 .c designate the 2 CCs residing at the "same" vertex. 



Magnify 

Figure 2: Illustration at fiducial #I of the geometry associated with the definition of error 
parameters. The view is top-down along the normal direction of the shared surface of the double 
comer cube. The reference comer cube is labeled as 1 .c in the L19 designation. Comer cubes are 
formed by the presence of the wedges. And the vertex is effectively the intersect of non-connect 
surfaces. The central portion is drawn in magnified details on the right. 

4.2 Parameters and the model 

Let vector A, denote the offset of comer cube 1 .a's vertex from that of 1 .c. Since comer cube 1 .a and 1 .c share a 

common surface (the shared unit normal vector of which is labeled n ,  ), the current strategy of NCVE model is only 

considering the offset A, to lie in the common surface (which corresponds to the reality of the manufacturing process). 

At center field of regard (that is u = v = 0 ), the offset is 

A, (0,O) = ~ , n ,  + ~ , n ,  (1 2) 

where n2 and n3 are the unit normals of the other 2 surfaces of 1 .c. The articulation of the corner cube is taken to be 

performed at the vertex of 1 .c. We will consider the case when there is no offset of the SIM gimbal axes from the vertex 
of 1 .c (Consideration when there is an offset shows that the field dependent error to be the same'.). The field dependent 
error results from the vertex offset vector's change due to articulation, which can be expressed as 

A, ( u ,  v) = Wu,  VIA, (0,o) (13) 
where the rotation matrix W(u, v) for SIM truss articulation is derived in appendix I of Ref. 8. 

The field dependent gauges that are affected by NCVE are 112, 113, 146, ls6. Consider for example the gauge between the 

fiducial 1 and 2, to first order in offset, the gauge error is the projection of the A, vector onto the unit vector that 

I 
First the reader should understand that the offset of gimbal axes from the reference CC's vertex is not an error of the truss, because 

the external metrology system will properly track the motion of the reference CC's vertex which is the fiducial of the science baseline. 
However, when there is an offset of the gimbal axes, the amount of vertex offset after articulation is different from the case when there 
is no offset of the gimbal axes. Without loss of generality, let us assume that the 2 gimbal axes lie in the same plane, and the 

intersection of the 2 axes has a vector offset Ag from the reference vertex of 1 .c. The field dependent vertex offset is then 

A, ( u , v )  = W(U,V) (A, (0,o) - hg  ) + W(U,V)A~ = R(U,V)A, (o,o) 
which is the same as that of equation (2) for the case when there is no gimbal axes offset. 



connects the fiducial from 2 to 1.  The reason for this becomes apparent from considering the geometry as illustrated 

Figure 2. The gauge error is simply the difference of the measured distance I,,, and the designed distance lI2 : 
Sf,, = I,., -I,, (14) 

Let the unit vector pointing from tiducial2 to 1 be v,, . The vertex offset vector A, has components parallel and 

perpendicular to V 2 ,  . For small offset, the parallel component is first order in error and the perpendicular component is 

second order in error. 

Hence, the field-dependent error associated with the gauge between fiducial 1 and 2 is 

61,, (u ,v )=A,  (u ,v ) -v2 ,  (1 5a) 
In the same manner, 

( ' ,  V )  = (', v ) .  v31 0 5b) 

Figure 3: Illustration of the 
single gauge error due to an 
offset of the CC vertex. See 
text for detailed explanation. 

True 

Fiducial 1 
from Design 

Let the offset vector at fiducial6 be 

A,(O, 0) = ~ , n i  + ~ , n :  (1 6 )  
i 1 where the normals n2 and n, are the mirror image of n, and n, respectively about the XZ plane in the L19 global 

coordinate frame. Specifically 
1 n, = n, -2(n, . e v ) e v  . . (1 7 )  

ni = o, - 2 (n, . e,, ) ev 

Gauge errors at fiducial 6 are 

("v) = A 6  ( ' , V ) . V ~ ~  (I 8, 

64, (UP) = A, (w). v,, 

where the field dependent vertex offset A, (u,  v) is calculated in the same way as in equation (13), and the unit vectors 

v,, and V5, are the mirror images of the v,, and v2, respectively in the global Y coordinate direction: 



v, = v21 - ~ ( ~ 2 1  .e.")e." 
Rewriting the single gauge errors in the matrix form, we have 

- La ( ~ 7  V )  ( ~ 1 ~ 2  11. v*, - 
[R ( ~ 7  ( & I n ,  +&Zn, ) ]  ~ 3 1  ,jL 

- - -. E 
[a ( ~ 9  V )  ( ~ 3 ~ :  ~ 4 6  d&' 

(20) 

- [ a ( u ,  ('30: '56 

W n 2 . v 2 1  W n 3 . v 2 1  0 0 

Wn2 . '31 Wn3 . v , l  0 

dzT 0 0 Wn: . v,, Wn; . v,, 

0 0 Wn: . v,, Wn; . v,, E4 

4.3 Truss delay error 

The mapping of  the single gauge error to delay follows the form: 

6d(u7v)  = gNCv(u7v)E ( 2  0 

where the NCV mapping matrix is simply the first 2 and the last 2 columns o f  the full mapping matrix: 
-1.1652 0.5000 -0.5000 1.1652 

0.1127 0.1470 0.1470 0.1127 

0.4237 0.5000 -0.5000 -0.4237 

4.4 Zernike component matrix 

One can define a Zemike component matrix for NCVE: 

U v x= -  , Y = - , -  integration is over FOR 
Rmax Rmax 

Z(x, y )  - [Z; Z, ... Z;, 1, 2 - ith order Zernike Polynomial 

E~~~ = \IE: +E: +E: +E: , - amplitude of the composite offset vector 



5. DISCUSSION AND CONCLUSION 

The advantage of the Zemike component matrix of the delay error corresponding to a particular type of error is that it 
can be conveniently combined with other model's corresponding Zemike component matrix to yield the full error metric 
matrix. Other effects that have been treated or estimated include comer cube surface index errors, race-track beam 
location errors, comer cube orientation errors. The interested reader is referred to Ref. 8 for relevant details. Future 
development of SIM external metrology system requirements will necessitate more careful assessment of errors based on 
given statistical distributions of error parameters. 
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