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Formation flying for spacecraft is a rapidly developing field that will enable a new era of 
space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has 
selected a formation flying interferometer design to detect earth-like planets orbiting distant 
stars. In order to advance technology needed for the TPF formation flying interferometer, 
the TPF project has been developing a distributed real-time testbed to demonstrate end-to- 
end operation of formation flying with TPF-like functionality and precision. This is the 
Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring 
out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing 
and system-wide formation robustness. In this paper we describe the FAST and show 
results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first 
time that precision end-to-end formation flying operation has been demonstrated in a 
distributed real-time simulation environment. 

I. Introduction 
Formation flying is a very promising and rapidly developing field for enabling a new era of space science. 
Formations of spacecraft separated by meters to kilometers operating together in tight synchronization provide a 
high-precision platform for performing unprecedented science. The Terrestial Planet Finder (TPF) project has 
baselined a design for planet detection using a formation flying interferometer. This design will require a formation 
of five spacecraft to fly with an inter-spacecraft precision of 2cm in range and 1 arcmin in bearing and at separations 
ranging fiom a few meters to a hundred meters. In addition, the formation must be able to avoid s p a c e d  collision 
in the presence of spacecraft faults (e.g., spacecraft computer reset). In recent years, JPL has developed precision 
formation flying algorithms for enabling these types of missions. In order to advance formation technology 
readiness, the TPF project at JPL has been developing a distributed real-time simulation testbed for demonstrating 
formation flying, called the Formation Algorithms and Simulation Testbed (FAST). The FAST contributes one of 
many technology elements in TPF’s approach to formation flying technology (see Ref. 1). 

To prove that this technology is viable for deep space missions like TPF we seek to demonstrate that a 
formation flying control system can be integrated end-to-end, and can achieve the required performance and 
robustness levels. While back-of-the-envelope error budgets can be used to provide much insight into performance 
for single spacecraft missions, formation flying with its high level of integration of multiple components leaves new 
classes of uncertainty in the results. In particular, there is significant interaction between flight control algorithm, 
inertial and relative sensors (in coarse, medium and fine configurations), disturbance sources, communication 
systems, and other elements of the flight system. Hardware testbeds provide much in the way of providing 
validation of this complex operation. However, the relationship between ground hardware testbeds and their 
companion flight versions is typically a necessary approximation due to costhime constraints and the environment of 
changing fight requirements and design. 

Three elements of the TPF plan for developing formation flying technology are system engineering for formation 
flying technology, the FAST - our end-to-end simulation testbed, and the Formation Control Testbed (FCT) - a 
ground hardware testbed using 6-DOF robots with spherical and linear air bearings (see Ref. 2). The role of system 
engineering is to understand TPF formation flying requirements and map these to the FAST and FCT. The FAST 
has the capability of being able to simulate something close to the TFP formation flying concept, whereas the FCT 
provides a hardware proof-of-concept for the integration of the elements needed precision formation flying control. 
FAST can be used to predict functionality and performance of TPF. However, by applying the FAST simulation 
environment to FCT, the FAST can be used to predict functionality and performance of FCT. Comparison of 
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simulation results from the FAST to actual data fiom the FCT will provide validation of the FAST. Figure 1 
illustrates this approach. The Mtom boxes represent the FAST simulation environment applied to the FCT (on the 
left) and TPF (on the right). In addition to the two-spacecraft TPF-like simulation described in this paper, we are 
planning to validate the FAST against a two-robot FCT system and three-robot FCT system in 2005 and 2006, 
respectively. In 2006 we will have a distributed real-time simulation for the baseline TPF design. 
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Figure 1. Linking Hardware Testbeds, Simulation and Flight Design 

A. Context of FAST In Formation Flying Technology Development 
The FAST team has been able to leverage previous and ongoing efforts in formation fly@ as illustmted in 

Figure 2. The FAST development has benefited fiom development of formalion control algorithm and a distnhted 
simulation environment over the past several years. Technology development of algorithms and a desktop 
workstation environment were developed under a NASA Code-R program In addition, the StarLight project, which 
had planned to demonstrate formation flylng interferometry in space, provided m y  control and estimator algorithm 
building-blocks, along with a C-coded workstation environment to demonstrate integrated operation. The TPF- 
funded FAST effort started with these products and integrated them with new developments to demonstrate 
formation conlrol for a TPF-like mission in a distributed real-time environment. The same environment used to 
develop the TPF system is being used to develop closed-loop, autonomous control for the FCT hardware ground 
experiment. ------- FY02 I FYO3 I FYW I FY05 I FYOg ---, 
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Figure 2. Context of FAST in Fomtion Flying Technology Development 
We have discussed the FAST with regards to the TPF mission and other developments in formation flying. In 

the remainder of tbis paper we describe the FAST. In Section I1 we describe the system adutecture; in Section III 
we describe the flight-like algorithm and software; in Section IV we describe the simulation environment; in 
Section V we describe results; and in Section VI we describe current activities and planned work. 
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II. System Architecture 
As shown in Figures 3 and 4, the FAST is hosted on a pair of racks, the Flight Cluster and the Simulation 

Cluster. The Flight Cluser hosts algorithm and flight-like software funning on PowerPC processors. The 
Simulation Cluster hosts the dynamics simulation on a Beowulf cluster. Between the PowerPC flight-like ha& of 
the Flight Cluster and the Simulation Cluster io a set of reflective memory boards, providing a shared memory 
iuterface. The five fight-side b o d s  are Motorola PowerPC MCP75O-366-K boards wbich each reside in a 
dedicated ELMA CompactPC1 chassis. These boards are running VxWorks version 5.3. The simulation computers 
are PSSP computer cluster nodes which each host a pair of AMD MP220 1.8GHz 8 U s  fllfllllgg RedHat Linux 8.0 
with the RTAI real-time patch. The Simulation cluster rum with a SCI-based high speed hterconuect, the Dolphin 
Wulfkit 2D board, which provides CPU-CPU latencies on the order of l b e c  and a throughput of 3 W W s e c .  
The reflective memory interface between the flight and simulation side is the VMIC VMICPCI-5579 and VMIC 
VMIPCI-5579 hnards, fm the CornpactPC1 and PCI backplanes, respectively. 
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Figure 4. FAST Hardware Block Diagram 

System 
Slmdatlan 

This configuration is representative of one that would be used in a flight project to test and debug the real-time 
flight code before proceeding to 1 1 1  flight system testing. In this environment we are capturing the essence of the 
development and testing of these algorithms in a flight project environment. The testbed will be validated against 
the F C T ,  a ground testbed demonstrating formation robot control, as descrited in Ref, 2. 

The software executive, which we consider separately &om the flight algorithms (see Figure S), includes 
functionality for commading and telemetry, and will be extended in the near future to include inter-spacecraft time 
synchronization and formation fault protection logic. The formation algorithms include formation guidance with 
collision avoidance in the presence of faults (e.g., spacecraft computer reset). The formation algorithms also 
provide formation estirrmtion with the aid of relative sensors and intmpacecrafi c o d c a t i o n .  

This computational architecture is highly scalable and hosts a distributed simulation, based on JPL's HYDRA3 
architecture, of multiple spacecraft dynamics and associated attitude control actuators and sensors (e.g., thrusters, 
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star trackers, gyros). In addition, the simulation includes models of interspaoecmft communication and of dative 
sensors (providing inter-spacecraft range and bearing information). 

-h*IFumcsl 
--3w 
-m 
-hlprmp 

Figure 5. TopLevel Software Architecture 

We have developed the FAST using a process similar to what might be found on a flight projecL The top-level 
s o h  architecture, as shown in Figure 5, is broken up into three areas: algorithms, sofhvare executive and 
simulatio~ The first step in development of the FAST was to define the interfaces betwcen these areas and develop 
requirements to guide the subsystem development. The process for development and integration of these 
subsystems is illusmted in Figure 6. The formation and attitude control system (FACS) algorithms, dynamics, and 
actuatorlsensor models are developed by control analysts and integrated into a desktop workstation environment. 
These items are then delivered to the software and simulation teams, respectively and integrated iuto a distributed 
real-time environment. The process has been applied so far to successllly deliver a two-spaced  distributed real- 
time simulation as well as two stand-alone robot simulations. 

Since the algorithms and simulation environment were contributed fkom other projects, we found it useful to 
document system level archtecture and interface specifications. The use of the shared memory jntmfice between 
the flight algorithms and the simulation environment has been controlled by an interface specification which covers 
interfaces for the actuators, sensors, clocldtimers, uplinkldownlink and inter-spacmfi c o d c a t i o n  (ISC). 

The system has a novel method of providing accelerated simulation. The VxWorks operating system used for 
the flight-side of the system provides facilities for clocks and timers. However, by implementing the dock and 
timers on the simulation side the execution of the cyclic control loops in the flight-side- processors is triggered via 
timer interrupts h m  the simulation. This provides the capability of scaling the real-time execution of the system 
easily by appropriately scaling the clock component of the simulation. Formation flying maneuvers often require 
hours of simulation time; we have been able to compress the nominal 1Hz interrupt rate by up to a factor of 32. This 
capability has been a great boost to productivity in using the testbed. 
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Figure 6. Flight-like Development Process 

When wing shared menmy interfolce in a real-time system, the two components (Le., flight and simulation 
components) c d a i a g  over the shared memory i n 6 c . e  must not access the interface at the same time. 
otherwise, irmconsisknt or oormpted data acccgses m y  occur. Thc shared fnemory interface in FAST is used to 
provide L medium for transfer of actuator, sensor and communication data. Exclusive mxss to data is enforced 
using access time restrictions, or d w r i t e  deadlines, on the shared memory interface. In the initial FAST two- 
SIC design, the algorithms an procased in a single phase; the five-S/C design thc algorithms will be p r o c a d  in 
two phases. 

I I I 
SBnbM, actuator. 
command, Isc read LSC write 
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Figure 7. Flight-side Single- and Dual-Phase Cycle Timing Deadlines 
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Figure 7 shows tbe single phase and dual phase timing deadlines, which are stated relative to the real-time 
interval (RTI) interrupt. For smgle-phase design, the sensor, command and communication reads must be 
completed within a fraction of 0.25 of the RTI and the actuator, telemetry d communication writes must occur by 
a fraction of 0.75 of the RTI. For the dud-phase design we require the following. The flight side m t  read all 
sensor, commands, and initial communication data within a hction of 0.2 of the RTI, the flight side must write 
initial comm. data, after processing, before 0.4 into the RTI. The so- will then poll for the second phase of 
communication data. The system requirements stipulate that phase-2 communication data must be transferred 
between spacecraft by 0.5 into the RTI. The second phase of algorithm computations, actuator Writes, 
communication writes and telemetry writes must be conq>leted by 0.9 into the RTI. Currently these requirements 
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are representative and do not reflect any driving requirements (which might come fiom analysis of communication 
latency capabilities). 

III. Flight-Like Algorithms and Software 
The flight-like software component of FAST consists of the formation control algorithms - called the Formation 

and Attitude Control System (FACS) - and the Software Executive. Details of the FACS design and capabilities are 
covered in a companion paper4. The FACS includes (refer to Figure 5 )  a guidance component (“guid”, with 
autonomous path-planning and collision avoidance), formation estimation (“estimator”), formation control (“con”, 
with synchronized thruster firing),) a control allocator (“cal”, to map torqe/force commands to thruster and reaction 
wheel commands and a mode commander (“mdc”, the supervisory logic for the control system). 

The Software Executive provides a flight-like environment for execution of the FACS. The executive provides 
commanding, telemetry handling, device-level communication, inter-spacecraft communication, and scheduling 
withing the real-time VxWorks operating system. This software uses a TCL (Tool Command Language, see Ref. 5 )  
command interpreter as the command executive. The formation control algorithms are also commanded via TCL 
commands. These commands are simple to implement and we have found that adding new commands can be done 
in less than an hour. Telemetry is available in ASCII or binary format and the process for generating telemetry has 
been highly automated. Conversion tools are provided for analysis in a MATLAB environment. In addition, 
telemetry identifiers, telemetry generation, telemetry decoding, and telemetry display code are all automatically 
coded from a telemetry specification written in any standard spreadsheet tool. We are able to automatically code the 
memory map describing the interface between the simulation and the VxWorks hardware boards, again based on a 
spreadsheet specification. The autocoding tools were written in Java. 

In its current form, the two FAST spacecraft clocks are synchronized. As mentioned previously, the flight 
computer clock is provided by the simulation cluster. This contrasts with the traditional method of relying on 
VxWorks or hardware. The simulation provided interrupts to the FAST software indicating the start of the RTI. 
This synchronized feature was provided for compatibility with the FCT, and also allows time scaling. As we move 
toward 5-spacecraft simulations in the FAST, we intend to allow simulated spacecraft clocks to drift with respect to 
each other. The FAST software will then be upgraded to provide a clock synchronization algorithm via exchange of 
inter-spacecraft communication messages. 

IV. Simulation Environment 
FAST uses simulated spacecraft dynamics for closed-loop testing of formation flying algorithms. The simulation 

includes rigid and flexible body spacecraft dynamics as well as device models for on-board actuators and sensors. 
The simulation must also model inter-spacecraft communications. The simulation runs on a real-time, RTAVLinux 
system and communicates with the software executive using fiber-optic reflective memory as shown in Figure 4. 

The Dynamics Algorithms for Real-Time Simulation (DARTS) software package (see Ref. 7) is used to simulate 
spacecraft dynamics based on the Spatial Operator Algebra (SOA). DARTS is a multi-platform software library 
written in the C programming language. It provides highly efficient numerical algorithms for both rigid and flexible 
body dynamics. Spacecraft mass and inertia properties are input to DARTS using a TCL script. A lightweight 
interface to DARTS provides external actuator and sensor models access to dynamical inputs (forces) and outputs 
(spacecraft state). A numerical integrator is used to propagate the system state based on accelerations computed by 
DARTS. The FAST simulation allows the user to choose either a fixed step, fourth order Runga-Kutta integrator or 
the variable step CVODE (see Ref. 6) integrator. The fixed step integrator provides real-time, deterministic 
performance while the variable step integrator provides higher accuracy. 

Each spacecraft’s dynamics simulation is distributed to run on its own CPU as shown in Figure 4. This 
separation exploits the distributed nature of multiple spacecraft formation flying and allows for higher fidelity 
simulation of more spacecraft than could be achieved on a single processor. While spacecraft dynamics can be 
distributed, the multiple spacecraft in a formation flying system are not totally decoupled. Relative sensing between 
spacecraft in a formation requires state knowledge of two or more spacecraft at a given time. This requires 
synchronization between dynamics integrators runnine on separate CPUs. Synchronization is also used for inter- 
spacecraft communications (ISC). This prevents a spacecraft simulation from propagating its state beyond the time 
when it should receive a message from another spacecraft in the formation. 

As the number of spacecraft in a formation increases, the overhead required to manage communication and 
synchronization between distributed simulation components grows rapidly. A scalable, flexible and easily extensible 
architecture is needed to automate communication and manage connections between distributed applications. The 
FAST uses the JPL-developed Hierarchical, Distributed, Re-configurable Architecture3 (HYDRA). HYDRA 
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automates the connection of distributed simulation elements using a publish-subscribe, client-server parad@ As 
each client application is started, it provides the m e r  with a list of offered and desired services. The server 
comrnank two clients to form a connection when they have advertised compatible services. Client applications 
communicate through connectors that abstract message passing over a variety of protocols, including shared 
memory and TCPIIP. Whik HYDRA is similar to other disirhuted architectures {e.g. CORBA, HLA, etc.), it was 
specifically designed for the needs of high-speed, distributed simulatioa HYDRA allows the user to ovemde default 
behaviors at several layers. Each spacecraft simulation in FAST is a HYDlU client and thcy communicate using 
both lOOMbps TCPlEp network and a low-latency Scalable Coherent Interface (SCI). Adding a simulated spacecraft 
to the formation ~ n l y  requires starting up another spacecraft client. This flexibility allows the FAST to rapidly 
respond to changing mission requirements. 

Figure 8 shows a tirmng diagram for a two s p a c e c d  distributed simulation with a 1 second RTI duration. The 
two spacecraR simulations are HYDRA clients that commuuicate over a SCI protocol. Hydra manages 
communication and synchronization between simulation clients. Each simulation client com~nunicates with the 
software executive over a reflective memory interface. In hs diagram, the software executive calls the FACS code 
once per RTI and a single ISC message is sent between spacecmft each RTI. 
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V. Results 
In the first year of FAST development, we were able to successfully integrate the Gcoded FACS, the software 
executive and Hydra-based simulation in our new distributed simulation environment to demonstrrtte autwomus 
formation flying conbol of a two-spacecraft system using a single leader and single follower spacecraft.. The 
followmg commands are representative of those sent to the spacecraft from the ground console. 

facs-crnd INITIALIZE time I85001 StarDirection (0.0, 0.0, 1.0) \ 
Basel ine I201 Baselinevector I0.0, -1.0, 0.01 Duration I45001 

facs-cmd RE-TARGET time I14000} StarDirection 0.0, 0.6, - 0 . 8 1  \ 
Baseline I201 Baselinevector 10.0, 0.8, 0.6) Duration I8000) 

These are TCL commands whch are lransmitted from the ground cosole, to the simulation, through the uplink 
model and software handler, and thence to the FACS guidance module. In reaction to these comnmds, the pair of 
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spacecraft (communicating via the ISC model) was able to go through initial deployment, stopand-stare 
observations ahd re-targeting maneuvers. The system is very autonomous, performing basic collision avoidance 
without ground intervention. 

Plots showing attitudes and relative positions for the spacecraft are provided in Figure 9. The top set of plots 
shows the combiner spacecrafi attitude, collector spacecraft attitude and spacecraft relative position from the 
workstation-based CAST simulation environment. The bottom set of plots shows the same scenario executing in the 
FAST distributed real-time Simulation environment. As one can see, the agreement between the two environments 
is excellent. Figure 10 shows the collision-avoidance path traveled by the spacecraft during a re-target maneuver: 
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Figure 9. Agreement between Workstation and Distributed Real-Time Simulation Environments 

The process of developing and integrating this system together provided lessons in the validation of formation 
flying work as well as bring out issues that we did not anticipate. One design issue brought out by the distributed 
real-time simulation was that the guidance algorithm required more computational effort than we had anticipated. 
The calculation performed by the guidance algorithm and required for each formation maneuver (e.g., re-target) had 
been originally carried out in the foreground task as the core of our real-time loop. After discovering that the 
guidance required about 20 seconds of computational time, we re-architected the software to process this algorithm 
in a background task. The TPF design is being worked to accommodate this if maneuvers are to be commanded at 
given times, the guidance algorithm will need to process the commands (20 seconds) prior to execution. 
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VI. Current Activities and Fnture Work 
The results we described above were for a demonstration we executed in October 2003. Since then we have 

been working on two major areas. We have been updating algorithms, software and simulation code to demonstrate 
a five-spacecraft TPF-like formation flying operation. T ~ I S  work will be continued in 2005 and 2006. Currently, we 
are workmg on developing algorithms, software and simulation capability for the TPF FCT, a ground hardware 
testbed for demonsttation of 6-DOF robots operating in precision formation. We have delivered two versions of 
s o b e  for the fist robot, to be delivered tn DPJ. in August 2004. 

rigwe 1 1. Simulated FCT Robot 

In the deveIopmnt of our five spacecraft simulation, we have developed prototype code for a communication 
system that can simulate path-dcpendent delays, jitter, dropouts and buffer overflow. We plan to incorporate this 
into FAST in 2005. In addition to this, we plan to develop spacecrafi-to-spacemft synchronization code. This is 
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based on a Time Echo packet which is transmitted from each follower spacecraft to the leader and back. The packet 
contains (1) the time the packet left the follower S/C, (2) the time the packet arrived at the leader, (3) the time the 
packet was retransmitted from the leadex and (4) the time the packet arrived at the follower again. From these four 
values and the assumption that the time to transmit the pack is independent of direction, one can easily compute the 
offset in the clocks on the two spacecraft as well as the time of flight. 

Other work in the coming years will be focused on developing and demonstrating autonomous formation flying 
systems which are robust to faults (e.g., spacecraft computer reset), working with communication dropouts, and 
exploring the options for improving control performance. 

Conclusions 
FAST is providing a high fidelity environment for developing and exploring formation flying, providing 

confidence in this new technology to the space science community. The architecture of this testbed is very flexible 
and scalable and hence should be adaptable to not only changing TPF requirements but also other formation flying 
missions. The testbed is equipped with a rich set of formation flying algorithms, a flight-like software environment 
and distributed dynamic simulation with communication and relative sensor simulations. We have shown results 
from a demonstration of a two-spacecraft formation exhibiting autonomous formation flying maneuvers in 
distributed real-time. The results show much promise for the followsn work of demonstrating five-spacecraft 
formation flying in distributed real-time as well as system validation using a two and three robot formations in the 
FCT ground testbed. 
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