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Reorientation of Mini-Moons

* Why 1s the hot spot of
Enceladus centered on the
south pole?

What are the implications
for Enceladus?

What 1s the relationship
to other planetary bodies,
especially Miranda?




Mini-Moons

Jupiter

Small radii (200-250 km).

Tidally heated (Enceladus,
Miranda), or cold & cratered
(Mimas, Proteus).

Saturn

If heated, may have large diapiric
plumes relative to radius, which
could promote reorientation.

Large craters on cold inactive
moons can constrain models.
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Enceladus: South Pg




South Polar Hot Spot
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Hot Spots Correlate to “Tiger Stripes”

_ South Pole Hi-

EES -

Res Brightness Temperat

70

75 80 85 90 85 100
Best Fit Blackbody T, K

ance, Wem®str”’ (em')”

Hot Source D Spectrum

)
£ @
2 2

4.6% filling factor
at 145K

Radi
K
=)
3

2410° L i i X
600 700 800 900 1000 1100
Wavenumber, cm™

D.GC': ]
100 120 140 160 180 200

Temperature Uncertainty

Temperature




Active Plumes!




“Tiger Stripes”: Psychedelic Stretch
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Miranda: Tempest Survivor?
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Risers and Sinkers

icy mantle

Sinker model Riser model
[Janes & Melosh, 1988] [Croft & Soderblom, 1991]




Miranda’s Coronae: Origin above Diapirs

« Extensional structures and cryovolcanism suggest coronae
formed above upwelling diapirs [Johnson et al., 1987; Greenberg

et al., 1991, Pappalardo et al., 1997].
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Loading Model

« Corona geology 1s a good
match to upwelling predictions:
¢ Outward facing normal faults.

¢ Broad load on thin lithosphere.

Membrane
Response

Transition
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[Pappalardo, 1994] [after Janes & Melosh, 1988]




Reorientation of Miranda

Coronae on greatest inertia axes (¢, b) suggests
reorientation to place mass deficiencies there

[Janes & Melosh, 1988, Greenberg et al., 1991].

Consistent with corona formation by low-density diapirs.

Supported by craters and structures [Plescia, 1988, Pappalardo, 1994].

Present orientation
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Proposed reorientation
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Reorientation of Miranda: Craters

Miranda fresh crater
distribution differs from
expected leading-trailing
asymmetry [Plescia, 1988].

Asymmetry restored
by reorientation about
polar axis.
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Cumulative number of craters = 5 km per 106 kn#
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Planetary Reorientation

Earth: Mantle convection
can alter mass distribution
to induce true polar
wander (TPW), including
inertial interchange events
[Richards et al., 1997, 1999].

£

A

[Richards et al., 1997]

Mars: Tharsis would

reorient to equator
[ Willemann, 1984, Bills and
James, 1999, Sprenke et al., 2005,

Matsuyama et al., 2006], and
dichotomy boundary to pole
[Roberts & Zhong, submitted)].

[Roberts & Zhong, submitted]




Icy Satellite Diapir-Induced Reorientation

* Adapt methods of Matsuyama
et al. (20006):

¢ Balance between load-induced
TPW and stabilization by fossil
rotational and tidal bulges.

Lithospheric rigidity affects
both fossil bulge size and load
compensation C, thus TPW.

Uncompensated low-density
diapir (C=0) 1s negative geoid
anomaly: reorients poleward.

If compensated (C=1), upwarped
topography 1s positive geoid

anomaly: reorients equatorward. A l 3
L . | ice shell [ Isilicate core
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Modeling Diapir-Induced Reorientation

« Diapir modeled as low-density spherical wedge: o

27R,*Ap(a - d)(1- cosq‘)){l - u; 4 - U—, ]'
¢ = angular radius of diapir |
e?=a*+ad+d* assume 7,=0.4d

Mass excess at surface: C2mpR, h(1-cos (p)
h = 1sostatic surface topography
C = degree of compensation (0 < C < 1)

. . l 4 O%*sin 28,
Angular reorientation due to load: |6 = —tan =— L
2 n—-Q*cos20,

where O* = RO (k e Y n=1 for b-axis, n=4 for a-axis

G,, = degree 2 component of gravitational potential due to diapir

k,, k{= Love numbers with and without an elastic lithosphere
(2 = angular rotation rate




Diapir-Induced Reorientation: Results

For ice diapir, poleward reorientation up to ~30° for d > 1.5 km:
¢ Large Ap= 100 kg m> = thick ice and compositional diapirism.
For silicate diapir, similar reorientation amount (C = 0):
¢ Coupling to ice = no global ocean.

Reorientation 1s dependent on emplacement location.

Results insensitive

to k ) ice diapir

e silicate diapir

¢ =35°; emplaced 45° lat off b-axis

equator

1

Greater reorientation
if silicate diapir
triggers 1ce diapir.
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Reorientation by Large Craters

Herschel-sized crater would reorient Mimas poleward:
¢ Up to ~15° reorientation.
¢ Location near equator suggests formation there, or mascon.

Similar arguments apply to Pharos on Proteus:
¢ But significant irregular topography complicates the issue.

Mimas: ¢=18°; d=5 km;
starting 45° and 3° off a, b axes

equatorwa rd

3° lat

b, 45° lat

polar wander (degrees)

poleward
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Reorientation Tectonics

* Tectonics suggest spin axis

flattening [Porco et al., 2006;
Helfenstein et al., 2000].

Consistent with reorientation,
which “squashes” current
spin axis and expands equator. 4

e Stresses ~10 MPa.

sub-planet

i/ AN rﬁ%

— extension
—— compression

~ strike-slip [after Melosh, 1980] [Porco et al., 2000]

270°W




Additional Tests of Reorientation Model

* Reorientation should affect
crater distribution by affecting
leading-trailing asymmetry:

¢ Decipherable from imaging.

* Gravity anomaly should be
associated with diapir:
¢ A few mGal from 200 km.

¢ Similar anomalies detected
at Ganymede by Galileo.
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Enceladus Global Map

* Geologically active areas along leading & trailing points...
« Multiple diapiric and reorientation events?
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Tidal Heating on Enceladus

g Shemzone e e « Presumed tidal heat source
iy [Ross & Schubert, 1989,
Matson et al., 20006].

/

I~2 km

e Tidal heating would
surface collapse . . .
from void cld concentrate in warm diapir.

Shear heating 1n lithosphere
may explain warm tiger stripes
[cf. Nimmo & Gaidos, 2002].
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Reorientation of Mini-Moons:
Conclusions

\

« Large diapir within Enceladus can
reorient active region to south pole:

¢ Ice diapir = thick shell, compositional
buoyancy, rigid lithosphere 7, > 0.5 km.

¢ Silicate diapir = no global ocean.
¢ These may combine.

¢ But Enceladus cannot have both
a thin 1ce shell and a global ocean.

» Tests of diapir-induced reorientation:
¢ Tectonic record: polar flattening!
¢ Cratering record: asymmetry affected.
¢ Qravity: detectable anomaly predicted.




Future Work

Origin and nature of large diapirs.
Relative timing of diapir rise,
lithosphere thickness, tidal
heating, and reorientation.
Multiple heating-diapir episodes?
Effect of emplacement position.
Miranda’s apparent a—b-axis

reorientation, and timing of corona
formation.

Consideration of other mid-sized
icy satellites (including Mimas).

Future Cassini tests for Enceladus
and other satellites.




