Design and varactors:
operational considerations

A reliability study

Frank Maiwald, Erich Schlecht, John Ward, Robert Lin, Rosa Leon, John Pearson, and Imran Mehdi

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena CA 91109, Frank.Maiwald@jpl.nasa.gov

Presentation to the 14th International Symposium on Space THz Technology
April 22th, 2003
for robust planar GaAs
Measurements

▪ RF Input Power Burn-out Tests
 - Tests done:
 • 200mW @ 99.1GHz input with 200GHz doubler at ambient, > 2000 hours
 • 35mW input on two 400GHz doublers, 40.5 hours and 170 hours
 • 200GHz doubler at 400K and 450K with RF applied > 170mW

▪ Reverse DC Bias Current Stress Test
 - Tests done:
 • 800GHz diodes on test structure at -1µA, -5µA, -10µA at different ambient temperatures (77K, 295K, 395K)

▪ Safe Bias Range with RF input-power (10mW – 200mW)
 - Test done:
 • 200GHz doubler and 400GHz doubler

▪ Live-time measurement
 - Elevated ambient temperatures

▪ Additional measurements to determine safe bias range
 - DC Burn-out under reverse bias
 - DC Burn-out under forward bias
 - RF burn-out under high forward current
x2x2x3 Frequency chain

38mm height

Band 5
Base plate

45mm

1200 GHz tripler
WR-5 dummy isolator
WR-10 Isolator

245mm

400 GHz doubler
200 GHz doubler
45 degree twist waveguide
Power amplifier
WR-10 Isolator

94-106GHz Frequency source

- Broadband balanced design 1127 - 1242 GHz (10%)
- Reduced loss in GaAs substrate due to 3 μm thin membrane
- Beam leads for mechanical support and ground contact
- Beam leads as RF probes in the input and output waveguides
- Nominal anode size 3.0 x 12.0 μm², variations +/- 20%, 2*10¹⁷ 1/cm² doping

- Broadband balanced design 369 - 424 GHz (14%)
- Two diodes in each branch, used for impedance matching and power handling
- Nominal anode size 1.5 x 4.3 μm², variations +/- 20%, frame, and stub, 1*10¹⁷ or 2*10¹⁷ 1/cm² doping

- Beamleads as RF probes
- Reduced waveguide height in input and output waveguides (impedance matching)
- No mechanical tuning element

Precision of machining better +/-2μm

JPL - SWAT (Submillimeter-Wave Advanced Technology) - 14th International Symposium on Space Terahertz Technology April 22-24, 2003 fwm
Measured I/V curve at 300K and 100K

3E17 doping

3E17 doping 1P5x10P3 area

Reverse bias

Forward bias

Bias voltage [V]

Bias current [mA]

Limited by destructive Avalanche effect

Range of operation

Limited by dissipated power

JPL - SWAT (Submillimeter-Wave Advanced Technology) - 14th International Symposium on Space Terahertz Technology April 22-24, 2003
Chip thermal model (conduction only)

Improvements:
- Thicker metalization (1.6 um)
- wider beam leads (60 um)
- shorter beam leads (10 um)
33mW input power per diode

(a) 300K block temperature
(b) 120K block temperature

Braun 1*10^{17}/cm^3; orange 2*10^{17}/cm^3

- Small variation of voltage and current over 1127 to 1242 GHz
- doping 5*10^{17}/cm^3
- nominal anode size is 0.4umx0.9um
- Calculated breakdown voltage: U_{br}=-9.4V

400 GHz Doubler, 300 K, 50 mW

(a) 300K block temperature
(b) 120K block temperature

Braun 1*10^{17}/cm^3; orange 2*10^{17}/cm^3; green 3*10^{17}/cm^3

JPL – SWAT (Submillimeter-Wave Advanced Technology) – 14th International Symposium on Space Terahertz Technology April 22-24, 2003 fwm
RF Input Power Burn-out Test Setup

Test setup
RF-source: 100GHz Gun-oscillator
Hot-Plate, DUT, Power Amplifier
RF Input Power Burn-out Test on a 200GHz doubler

Reverse bias voltage at -10μA vs. Time at ambient and elevated (400K) temperature

-20
-18
-16
-14
-12
-10
-8

Reverse Voltage [V]

6mA
3mA, 295K, 200mW
at -8.5V

3mA, 400K, 173mW

Time [hours]

Output Power [mW]

0 1000 2000 3000

JPL - SWAT (Submillimeter-Wave Advanced Technology) - 14th International Symposium on Space Terahertz Technology April 22-24, 2003 fwm
RF Input Power Burn-out Test on a 200GHz doubler

Tests performed on 200GHz device shown:

(1) RF input power variations
(2) Reverse currents < -20μA
(3) Forward currents > 6mA
(4) RF Burn-out over 2000h, 200mW, 99.1GHz, 295K

Results: (a) No observable change in RF output power, (b) Reverse voltage dips then stabilizes at lower voltage

(5) RF Burn-out over 100h, 173mW, 99.1GHz at 400K

Results: (a) No observable change in RF output power, (b) Reverse voltage stabilizes further

(6) Reverse Bias Current Stress Test

Results: (a) Bias voltage settled at higher value; Impact not understood (b) RF not checked

(7) DC Burn-out under forward bias

Result: Device shorted at a bias current > 30mA
Degradation in RF output power when I/V shows marked change only

400GHz SN004 10209952
Power Degradation due to ESD damage
Pin = 150 mW, T = 295K
RHL, July 23, 2002

- severely changed I/V curve
- approx. 10% reduced RF output power
- Unknown effect on long term stability
Degradation of Reverse Bias Voltage at constant Reverse Bias Current vs. Time at different temperatures

Reverse Voltage measured at >500 min at different:

a) ambient temperatures

b) reverse currents

- Fast exponential degradation of reverse Bias Voltage within first 200 minutes
 - Expected increase in degradation with increasing temperature not consistently observed (more tests needed)
- Asymptotic convergence to reverse Bias Voltage between -4V and -7V
 - Variation in behavior observed with devices from same batch
Establishing a Safe Bias Range at high RF power

Results

- No changes in I/V parameters after testing
- Determination of a safe bias range probably possible
- Further measurements necessary and planned especially on the 400GHz doubler

- 200GHz doubler with 3.0x9.6um² anodes (M20 type)
- variable input power @295K
- Test: Bias Voltage vs. RF Input Power
 - Measured: bias voltage at -5uA, 0A, 7mA, and optimized output power
 - -5uA average current (drives the diode close to reverse breakdown)
10mW applies 0.3V shift

Reverse limit

Probably safe range

Suggested safe range with margin

Establishing a Safe Bias Range with high RF power
Preliminary Conclusions

- Limits for reverse currents cannot be set.
 Based on current data we want to avoid any reverse bias current. We know 1μA is too high.
- Leakage current gets suppressed when operated at 120K.
- Migration and verification:
 - Reverse Bias Voltage will be limited
 - Health check with I/V curve
 - Minimal reverse voltage shall be x0.75 of the calculated breakdown voltage V_{br}
 - Degradation of the Reverse Bias voltage at given current will be used as indication of ESD incidents or other Damages (high RF power, heat)
 - Calculation of diodes parameter to verify initial health check result in forward direction
- RF output power starts to degrade when diode I/V curve is very strongly degraded only
 - Experienced on 400GHz doubler and 200GHz doubler