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Figure 7. The percentage of Ti02 and FeO can be 
determined by measuring the real and imaginary part of the 
permittivity. The measured data are for lunar soils 
obtained from the Apollo missions. 
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Figure 8. Dependence of the percent Ti02 and FeO on the 
imaginary permittivity. 

ELECTRICAL RESISTIVITY 

The resistivity of lunar soils is quite high being between 
10l2 to 10l6 ohm-cm at 23 "C [2]. The resistivity is 
temperature dependent and there is a significant 
photoconductivity effect. The lunar soils show at lo6 
decrease in resistivity in the UV [2]. 

In this section our instrument capability is illustrated using 
silica sand and basalt with various amounts of moisture. 
These measurements are focused at characterizing the 
moisture estimated to be found in Martian soils. This 
requirement has taught us the techniques for making high 
resistivity soil measurements. 

1.3 Moisture detection 

Results for coarse silica sand and basalt sand are shown in 
Fig. 9. This data shows that measurements were acquired 
over the range from 0.1 % to 15% moisture by weight using 
the resistivity sensor found on E-Tongue 3 [4]. 
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Figure 9. Resistivity of two types of moist sand at room 
temperature. 

1.4 Permafrost 

The same procedure used to prepare the samples for the 
room temperature measurements shown in Fig. 9 were use 
used in acquiring the temperature data shown in Fig. 10 for 
the coarse silica sand sample. In addition to the sand 
measurements, water measurements were also acquired. 
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Figure 10. Temperature dependence of course silica sand 
with temperature. 

These results show an increase in the resistivity of the 
mixture a s  the temperature i s  decreased b elow 0 "C. The 
resistivity behavior of the water and sand with temperature 
are similar to those noted by Scott [ 5 ] .  They too observed 
that large increase in resistivity with decreasing 
temperature. This data a lso shows our c apability to  make 
measurements at low temperatures and at high resistivity 
values. C urrently, the e quipment i s 1 imited t o  resistivities 
less than IO9 ohm-cm. This limit is due the choice of 
scaling resistors. We plan to expand our measurement 
range well into the Gohm-cm range. 

ELECTROMETER 

1.5 Electrometer 

The electrometer shown in Fig. 11 was developed for the 
MECA project [6].  Results of roclng experiments are 
shown in Fig. 12-15. They indicated that soils have 
different signatures and can be used to determine when the 
rover wheel is traversing a new soil. 

1.6 Ottawa Sand 

Fig. 12 Uttawa sand: No sand dust on insulators. 
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Fig. 12b. Ottawa sand. Results governed by contact 
triboelectrification 

1.7 Basalt 

Fig. 13a. Basalt: No basalt dust on insulators 
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Fig. 13b. Basalt response. 
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1.8 Titanium Dioxide 

TiOAICu~Char~eCrown22C31 R 

0 150 50 TIME,t(sec) loo T('C)=26.0 ELE810011533 16Jan-00 

Fig. 14b. Titanium dioxide response. Dust coats insulators 

1.9 Hematite 

1 

Hematite: Dust covers insulators. This 15a. Fig. 
especially apparent for TR13 (Teflon). 
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Fig. 15b. Hematite. Dust coats insulators 

By taking data from Figs. 12-15 after 100 s rubbing 
exposure, a histogram was c onstructed a s s een i n  F ig. 1 6 

that sh ows that the response for e ach mineral i s different 
and unique. This figure provides the basis for signature 
analysis of the electrometer data. 

Electrorneter4913.xls 

Figure 16. Response surface for the electrometer exposed 
to four minerals. 

The electrometer has been fabricated into a wheel and 
tested by Calle and co-workers [7] at the Kennedy Space 
Center. They have performed measurements using the JSC 
Mars soil simulant [SI and the results indicate that different 
insulators have different responses to the simulant 
indicating the viability of the measurement. 

MAGNETOMETER 

To further characterize the lunar materials, the magnetic 
properties of the lunar regolith will be measured using a 
magnetometer. The magnetometer will have a sensitivity of 
The magnetic susceptibility of a mineral is a measure of the 
induced magnetism in that material. 

The magnetic properties of lunar soils and minerals 
returned from the Apollo missions was characterized by a 
number of investigators [9]. The magnetic susceptibility of 
these materials is shown in Fig. 17 long with values for 
terrestrial minerals. The value for the susceptibility can 
have either a positive or negative value. The positive 
susceptibility indicates minerals with high retained 
magnetism; whereas negative susceptibility indicate 
indicates minerals with little or retained magnetism. 

The lunar minerals are plotted in Fig. 17 along with 
minerals likely to be found on lunar surface. As seen in the 
figure, the lunar minerals have a significant magnetic 
susceptibility. Another observation is that the lunar soils 
have the largest susceptibility when compared with other 
lunar minerals. 
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Figure 17. Magnetic susceptibility of lunar and terrestrial minerals. 

REFERENCES 
CONCLUSION 

Lunar minerals are mostly silicates and oxides. This lack of 
diversity of minerals on the moon can be exploited in a 
number of ways. First, the real permittivity of the lunar 
soils is proportional to density. This greatly simplifies 
density measurements. Second, the imaginary part of the 
permittivity can be used to identify the presence of 
important minerals such as Ti02 and FeO. Third, because 
the moon is very dry, electrostatic measurements can be 
used to identify difference in mineral types. Forth, The 
lunar soils have a reasonably h g h  magnetic susceptibility 
which indicates the presence of important minerals. 
Finally, the measurements proposed here can be 
incorporated into the wheel of a rover and used to prospect 
for minerals important for ISRU. 
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