
Reusable and Extensible High Level Data Distributions

Roxana E. Diaconescua, Bradford Chamberlainb, Mark L.Jamesc, Hans PZimac
aCACR, California Institute of Technology, Pasadena, CA 91 125

bCray Inc., Seattle, WA 981 04
cJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91 109

ABSTRACT
This paper presents a reusable design of a data distribution frame-

work for data parallel high performance applications. We are im-

plementing the design in the context of the Chapel high productiv-

ity programming language. Distributions in Chapel are a means to

express locality in systems composed of large numbers of processor

and memory components connected by a network. Since distribu-

tions have a great effect on,the performance of applications, it is

important that the distribution strategy can be chosen by a user. At

the same time, high productivity concerns require that the user is

shielded from error-prone, tedious details such as communication

and synchronization.

We propose an approach to distributions that enables the user to re-

fine a language-provided distribution type and adjust it to optimize

the performance of the application. Additionally, we conceal from

the user low-level communication and synchronization details to

increase productivity. To emphasize the generality of our distribu-

tion machinery, we present its abstract design in the form of a de-

sign pattern, which is independent of a concrete implementation.

To illustrate the applicability of our distribution framework design,

we outline the implementation of data distributions in terms of the

Chapel language.

1. INTRODUCTION
Today's massively parallel High Productivity Computing Systems

(HPCS) are characterized by a modular structure, with a large num-

ber of processing and memory units connected by a high-speed net-

work. Locality of access as well as load balancing are primary con-

cerns in these systems that are typically used for high performance

scientific computation. Data distributions address these issues by

providing a range of methods for spreading large data sets across

the components of a system. Over the past two decades, many lan-

guages, systems, tools, and libraries have been developed for the

support of distributions. Since the performance of data parallel ap-

plications is directly influenced by the distribution strategy, users

often resort to low-level programming models which allow fine-

tuning of the distribution aspects affecting performance, but, at the

same time, are tedious and error-prone.

In this paper we propose a novel design for the high-level speci-

fication of distributions in data parallel applications. Our design

is shaped by previous experiences in language and run-time sup-

port for distributions as well as by design patterns in manually dis-

tributed code. The elements of our distribution machinery are in-

troduced in the Chapel [4] programming language. They include

domains, index sets, generalized arrays and user-dejined distribu-

tions. To stress the generality of our design, we first present the

abstract distribution design pattern and its elements, indevendent

of the Chapel language. Then, we discuss the implementation of

the design in the context of the language.

This paper is organized as follows. Section 2 introduces the distri-

bution design pattern using the presentation format introduced by

Gamma et.al. [lo]. Section 3 discusses the implementation of the

distribution design in the context of the Chapel language. Section 4

reviews related work. Section 5 concludes the paper.

2. THE DISTRIBUTION DESIGN PATTERN
2.1 Intent
The intent of our distribution design pattern is to capture the com-

mon elements of data distributions in scientific computing. Data
\

distributions define the interface for distributing the elements of

a collection across multiple units of locality without constraining

the type of elements or indices in the collection. We use the term

unit of locality to denote the building block for a computer system

that is made of multiple similar components. Each component has

memory and operation capabilities.

2.2 Motivation
Consider a high-performance computing architecture consisting of

a large number of units of locality. Memory is collocated with

the unit, causing local accesses to be less expensive than remote

accesses. Examples of such configurations include non-uniform

memory access (NUMA) architectures, clusters of processors, and

emerging peta-scale architectures such as Cascade [4].

A data distribution partitions a collection of data and distributes

its elements across units of locality. To achieve lugh performance,

this means a distribution strategy must account for access locality

as well as load balance. Although some approaches towards auto-

matic data distribution have been explored in the past, in general

it is useful to let the user choose the distribution strategy based on

existing knowledge about a parallel application. However, once

the distribution strategy is chosen, the system should take over the

low-level, error-prone tasks such as communication generation and

synchronization enforcement.

A distribution decision should specify, for a particular data item,

its associated unit of locality and the layout within that unit. Some-

times, depending on the structure of data, the latter can be deter-

mined automatically.

Consider a program that solves a Poisson equation to compute the

pressure field over the points of a discrete domain using the Fi-

nite Elemeilt Method. Depending on the concrete application, vari-

ous discretization strategies may be considered for a given domain.

Thus, the same algorithm may be used with a regular mesh de-

scribed by cubic elements, or with an irregular mesh consisting of

tetrahedral elements. In both cases, the underlying parallel struc-

ture of the application is identical. Moreover, the data access,

and consequently, synchronization structures are identical as well.

However, since in a conventional approach the different data repre-

sentations are encoded in the algorithm, these similarities may not

be detectable by looking at the source code.

Thus, we wish to introduce the appropriate abstractions to cap-

ture these similarities and separate the algorithm from details of its

data representation. Specifically, we would like to decouple indices

from collections of data items using index sets and domains. Index

sets provide names for the components of collections. Domains are

entities that specify an index set and its distribution. Data collec-

tions are defined over domains and will be distributed accordingly.

In the previous example, the regular mesh can be a three dimen-

sional domain with an index set that is a regular Cartesian product.

Collections of data items over the domain include the pressure vec-

tor which is defined at every point in the mesh domain and can be

represented as an array over the domain. A data distribution speci-

fies, for each component of the index set - (i , j , k) - the unit

of locality it belongs to and, potentially, the offset within that unit.

The irregular mesh can be a domain indexed by references to ele-

ment objects. In this case, the index set is a collection of element

objects which name the components of data items defined over the

irregular domain. A data distribution specifies, for each component

of the index set (Element e), the unit of locality it belongs to

and, potentially, the offset within that location.

In addition, we would like to capture the behavior of the distribu-

tion machinery via a common interface which has various imple-

mentations defining commonly used classes of distributions such

as block, cyclic, and indirect, as well as novel user-defined dis-

tributions. Two key operations exported by the distribution inter-

face are the definition of the mapping of indices to units of local-

ity (Map (Index)) and their layout (L o c a l L a y o u t (Index))

within the units of locality. In general, our approach provides a

much richer capability that supports the needed sophisticated data

representations that would, for example, be required for the imple-

mentation of distributed sparse data collections.

The domain interface includes a Distribute method which is

parmetexized by the distribution class. This method specifies the

distribution for the domain it is invoked on.

2.3 Applicability
Distributions for data parallel applications have been extensively

used in software tools, libraries and applications. The various ap-

proaches include manually specified distributions, automatically

distributed applications with compiler and run-time support, com-

ponent and object-oriented frameworks, and skeletons for scientific

applications.

Our design can be used for data parallel applications when:

a numerical algorithm should be reusable regardless of the

geometry or physical structure of its input data,

multiple distribution strategies need to be studied to investi-

gate the best approach, and

low-level communication and synchronization details should

be concealed from the user.

- _ _ _ _ - _ - L - - - - - - -
Block I

I

I Map(lndex)

) LocalLayout(lndex))

o..*

--------L-.----, - - - - - - - - - - J - - - -

I Cyclic : General I
I ... ,

I Map(lndex) /Map(lndex)

Figure 1: Distribution elements.

Distribution

Distribution(Domain)
...

Map(1ndex)

LocalLayout(lndex)

1 1 0..1

2.4 structure references, such as instances of a node class in a dynamic

1 1
Index Set

Figure 1 depicts the elements involved in defining a distribution. A graph structure.

Domain

Distribute(Distribution)

Domain has one Index set associated withit and one Dis tribution. Distribution
A ~istribution class interface includes operations that allow is a mapping from index values to units of locality. A distri-
the specification of the mapping of an index to a unit of locality. bution allows a user to specify data locality and alignment by
Thus, Map (Index) specifies the unit, while LocalLayout (Index) ovenidina its default behavior, Its interface includes:
specifies the local address within that unit. The Distribution

class can be extended to specify commonly used distributions or

-

- a mapping from indices to units of locality

novel user-defined distributions. A data collection Data can be de- - a mapping from indices to offsets within units of local-

fined over LIat d~main. The collection rnaps the domain index set ity. We call this a local layout.

to the variables in the collection. Since the index set is distributed, Concrete Distribution
the addresses of the variables in the collections will be distributed ovenides the mapping operations to implement a particular
as well. distribution (i.e. Map and LocalLayout). The concrete

distribution is a specialization of the Distribution type.
2.5 Participants

Domain Data Collection

is a description of a collection of names for data. These are abstractions of mappings from index sets to variables.

names are referred to as the indices of the domain. All in- Arrays are one example of such mapping.

dices for a domain are values with some common type. It 2.6 Collaborations
consists of: A user who wants to use distribution for a data parallel program,

- an index set,
must create a concrete distribution by providing the mapping and

local layout information.
- a distribution of that index set, and

When a domain is created, the user specifies its index set type and - a set of associated data collections. All these collec-
its distribution type. The Distribute method can be applied to

tions share the index set and its distribution with the

domain but can have different data types.
the domain with the created distribution as parameter. As a con-

sequence, all data collections defined on the domain will be dis-

Index tributed according to the specified distribution. Accesses to dis-

defines the type of indices: this includes integer tuples (in tributed data are implemented to handle any required communica-

the case of regular Cartesian product index sets) and object tion transparently.

Program Data(Domain) Domain DistributionA Index

Figure 2: The interaction between distribution elements.

Figure 2 depicts the collaborations between a domain, its distribu-

tion and a data collection defined on the domain. A program may

contain domain declaration statements which trigger the creation

of a domain based on the user provided information on its index

type and distribution type. In Figure 2 the Dis tribut ionA is

a user-defined concrete distribution for a domain. When instanti-

ating a domain with a particular distribution type, the index set of

the domain is mapped according to the Map and LocalLayout

operations for every index in the index set. Data (Domain) is a

data collection defined on the domain. Each access to a data item

given by an index is translated to reflect its distribution.

2.7 Consequences
There are a number of benefits and liabilities of our design for user-

defined data distributions:

1. The distribution class herarchy allows a user to define distri-

butions which are more suitable for an application than hard-

wired distributions. A user needs to specify the mapping of

indices to units of locality and the local layout within the

units. More sophisticated control of the data arrangement

can be specified if required.

2. The domain abstraction allows the user to define domains

which are closer to the physical domain by extending index

types to include object references. Also, the index set of a

domain may have an inherent linear order (as in the case of

Cartesian products of integers), or may be arbitrarily ordered

(as, e.g., object references).

3. Data collections are associated with domains, and thus their

structure is defined in the domain rather than in the data it-

self. As a consequence, the programmer can define collec-

tions of data with complex and irregular structure without

complicating the data representation itself.

4. Giving the user full freedom in specifying the distribution in-

creases the burden on ensuring good run-time performance.

Our approach provides support for the optimization of data

distributions according to various criteria such as memory

overhead, iteration strategies, and data access performance.

Specialized distributions can be made part of standard li-

braries.

3. IMPLEMENTATION
0;- design is i m ~ l e ~ e n t e d nsing the Chapel language and concep-

tually runs on a Chapel abstract machine. Most of the elements de-

scribed in the previous sections are part of the language and there-

fore are implemented as first-class entities.

An execution of the Chapel Abstract Machine determines an ex-

ecution locale set, which is an arrangement of identical locales.

Locales represent the units of locality in Chapel. The size of the ex-

ecution locale set is determined at the time the program begins exe-

cution, and remains invariant thereafter. Data and computations can

be mapped to locales with the understanding that entities mapped to

the same locale are closer to each other than when they are mapped

to different locales. Different data objects that are mapped in the

same way to a set of locales are said to be aligned. If a computation

is mapped to the same locale as a data object accessed by it we say

that there is an afinity between the computation and the data ob-

ject, resulting in a local access; otherwise, the access is remote. In

terms of the performance metrics, a local access is less expensive,

i.e., budened with less overhead, than a remote access.

A distribution maps indices to locales and a location within each

locale. The execution locale set is globally declared as:

var Locales: array [l..numlocalesl of Locale;

3.1 Domains and Arrays
Domains are first-class entities that have a set of indices which may

be bounded or unbounded. In the former case the domain is called

definite, while in the latter, indefinite.

2. Indefinite domains have unbounded index sets and any of the

index types listed above.

An example for an arithmetic domain declaration in Chapel is:

var rMesh : domain(3) = [l..m, l..n, l..pl;

This specifies a domain, rMesh, with an arithmetic index set of

rank 3. The index set is initialized by a Cartesian product.

Let us define an irregular mesh as being composed of geometrical
elements, their faces and vertices. The definition of such structure
in Chapel is:

class Element I.
var ldx : integer;

var nfe : integer;

var elmaces [l. .nfel : Face;

class Face {

var idx : integer;

var nvf : integer;

var faceVerts[l..nvfl : Vertex;

1

class Vertex I.
var idx : integer;

var dim : integer;

var conrds[l..diml : float;

An irregular domain over such mesh can be declared in Chapel as:

var iMesh : domain(E1ement);

Elements can be added to a domain and removed from a domain by

using Chapel predefined operations for indefinite domains add (elem)

and remove (elem).

Data collections are defined over domains. Chapel provides sup-

port for a generic notion of an array that includes Fortran arrays as a

specific instance. Therefore, for the previously declared arithmetic

and indefinite domains, we can define data collections as follows:

For each domain, there is a corresponding index type which in- var regArray lrMeshl : float;

cludes primitive types, enumerated types, and class reference. There var iregArray [iMeshl : float;,

are two categories of domains:

3.2 Distributions
1. Arithmetic domains have bounded index sets with an integer Distributions are a means to exploit locality in Chapel. A distribu-

index type. tion is a mapping from domain index sets to locales. A programmer

can describe afi?nity between data and computation by associating

them with abstract locales.

A distribution type is defined as a class that can be extended to

express user-defined distributions. The Chapel interface for a dis-

tribution is:

class distribution {

. . .
function SetDomain(d1 : domain);

function GetDomainO : domain:

function SetTarget(t : locale[l);

function GetTargetO : locale[];

function Map (i : index) : locale;

function LocalLayout(i : index) : location;

. . .
1

The Chapel compiler is written in the C++ programming language.

Internally, a domain is represented as a C++ class Domain, an

index as a C++ class Index, and a distribution as a C++ class

Distribution. The user ovenides the functionality of the Dis -

tribution class by providing a concrete domain to instantiate

the distribution and concrete implementation for the Map and Local -

Layout operations.

A user-defined block distribution can be written in Chapel 2s:

class block{

implements distribution;

block-size : integer;

--la is the target locale array

constructor createcd : domain, in la : locale[l,

in bs : integer) {

this. SetDomainld) ;

this.SetTarget(la);

block-size = bs;

. . .
I

function Map(in i: index) : locale {

return this.GetTarget0 (ceill (i-1) /block-size)+l);

I

function LocalLayoutlvar in i : index) : location {

return (mod(i-1, block\-sizelcl);

1

To simplify the presentation we leave out the lower and upper bounds

for the index sets. Thus, the code above implicitly assumes that the

lower bound is 1. The block size can either be specified by the user

or computed by the system.

Distributions can be specified for domains and, as a consequence,

all data collections defined on a given domain will be distributed

according to the specified distribution:

var rMesh:domain(3)=[l..m,l..n,l..pl dist(block,block,block)

on L3D;

var iMesh : domain(E1ement) disc(general1;.

The first declaration defines a dimensional distribution. Each di-
mension of the array regArray associated with the rMesh do-
main will be block distributed on the corresponding dimension of
the three-dimensional locale array, L 3 D. The irregular array iregArray
associated with the iMesh domain will be distributed according to
a general distribution specified by the user on the available locales.
The following code excerpt shows how this can be done:

var iMesh : domain (Element) dist(genera1);

for i in iMesh {

. . .
i.locale = f(i, . . .) ;

- this maps index i to a locale determined by function f

. . .
I

complete(D);

-- this statement "completes" the distribution by defining

-- the corresponding fields in the domain;
-- it can only be called after all indices in D have been

-- mapped:
I

Here, the function call f (. . .) references an arbitrary user-defined

function that establishes the point-to-point mapping between a do-

main index and a locale.

Concurrent execution is supported via the Chapel f orall con-
struct. Distributed collections are iterated over using this statement.
The iteration space is split according to the data distribution and lo-
cal accesses are grouped within the same locale:

It is beyond of the scope of this paper to include details on code

generation and optimization for the Chapel compiler. Because the

implementation is an ongoing effort we are still in the process of

evaluating our approach for user-defined distributions and its im-

pact on efficiency.

4. RELATED WORK
There has been significant effort in the area of distributions for data

parallel applications and we will review two of those approaches:

(1) Early work on distributions in support of Fortran related lan-

guages and (2) Object-based systems, libraries and skeletons for

scientific programs.

4.1 Distribution Support for Fortran and Re-
lated Languages

1 The first language to allow users to control the local layout of data

was IVTRAN [20], which was developed for the SIMD machine

ILLIAC IV. Kali [19] (and its predecessor BLAZE) were among

the first languages to introduce distribution declarations in the con-

text of distributed-memory systems. Kali allows the dimensions

of an array to be orthogonally mapped onto an explicitly declared

processor array using simple regular distributions such as block and

cyclic, and more complex distributions such as irregular in which

the mapping of each array element is explicitly specified. Sim-

ple forms of user-defined distribution were also permitted. Parallel

computation was specified by means of forall loops within a global

name space.

SUPERB [22] is an interactive restructuring tool, which translates

Fortran 77 programs into message-passing Fortran for distributed-

memory architectures. The user specifies the distribution of the

program's data via an interactive language; based on compiler-

provided analysis, the user selects a transformation strategy for

the coarse-grain parallelization of the program for a distributed-

memory machme.

The Fortran D project [9, 151 follows a slightly different approach

to specifying distributions. The distribution of data is specified by

first aligning data arrays to virtual arrays known as decompositions.

The decompositions are then distributed across an implicit set of

processors using relative weights for the dimensions. The language

allows an extensive set of alignments along with simple regular and

irregular distributions.

Vienna Fortran [5] is the first language to provide a complete speci-

fication of mapping constructs in the context of Fortran. In addition

to simple regular and irregular distributions, Vienna Fortran defines

a generalized block distribution which allows arbitrarily sized con-

tiguous segments of data to be mapped to the processors. The lan-

guage also proposes a mechanism for user-defined distribution and

alignment functions, and defines multiple methods of passing dis-

tributed data across procedure boundaries.

HPF-2 [14] defines a set of directives for Fortran 95 largely based

on previous work in Fortran D and Vienna Fortran. It provides sig-

nificant support for irregular distributions (including general block

and indirect mappings) as well as the possibility to map pointers,

components of derived types, and objects to subsets of processors

directly.

Newer developments, such as the global array languages Coar-

ray Fortran, UPC, and Titanium take a reasonable intermediate ap-

proach, providing a higher level of abstraction than MPI but deal-

ing only with standard distributions and requiring explicit control

of communication.

The ZPL language supports a concept of dimensional distributions

which are organized into five types, each of which has its own prop-

erties: block, cyclic, multi-block, non-dist, and irregular. These

types give the compiler the information it needs to generate loop

nests and communication, abstracting the details of the distribution

from the compiler's knowledge. This strategy was detailed in [7],

in which a few block distributions were implemented as a proof-of-

concept.

4.2 Distribution Support in Object-Based Sys-
tems

Hawk [13] is a system based on ORCA [2, I] that has the notion

of partitioned objects for supporting regular, data parallel appli-

cations. There is one thread of control per data access. In this

Distributed Shared Memory (DSM) software implementation the

entire data is replicated on each address space and only parts of it

are truly owned. The parts that are not owned are invalid and up-

dated by a consistency protocol. Due to the replication strategy, the

system is inefficient for intensive data applications.

EPEE [16, 211 is an Eiffel parallel execution environment aimed

at offering a high level API developer a platform for incorporat-

ing new components as common behavioral patterns are detected.

The environment provides the programmer with a set of classes

for handling data distribution issues. For instance, mechanisms

for dstributing bi-indexable objects (e.g., arrays, grids, matrices,

tables) based on a block-wise partitioning are encapsulated in a

class Distribution 2D. This idea is similar to the approach taken by

C02P3S [IS]. This is a system that allows the user to specify par-

allel design patterns and, based on the specification, generates data

parallel programs, including communication and synchronization

code. The effort required to write such patterns may be significant,

but once written, they can be reused.

Charm++ [17] is a concurrent object-oriented system based on C++.

Parallelism is explicitly expressed as an extension to the C++ lan-

guage. Parallel processes (chares) communicate through message

objects that are explicitly packedlunpacked by user. The system

also features special shared objects and remote accesses through

remote procedure calls. Thus, communication and synchromzation

may be controlled by the programmer. Synchronization is ensured

for shared objects.

ICC++ [6] is a C++ dialect for high performance parallel comput-

ing. Data collections are represented as arrays encapsulated within

objects. Distribution can be explicitly specified by overloading the

access [] operator to a collection object. Irregular distributions

can also be manually specified by supplying a map file which is a

sequence of integer indices along with virtual processor numbers.

created for large

PC++ [3] is an object parallel language based on C++ and HPF-

like. Unlike templates in HPF, distributions in PC++ are first class

objects. A Distribution is characterized by its number of di-

nensions, the size in each dimension and the function by which the

distribution is mapped to processors. Current distribution functions

allowed in PC++ include BLOCK, CYCLIC, and WHOLE.

The Mentat [12] system provides data-driven support for object-

oriented programming. The idea is to support a data-flow graph

computation model in which nodes are actors and arcs are data de-

pendences. The programmer must specify the classes whose mem-

ber functions are sufficiently computationally complex to warrant

parallel execution. The data-flow model is enhanced to support

larger granularity and a dynamic topology. Parallelism is supported

through having multiple actors executing on multiple processors.

HPC++ [l l] is based on PTSL (Parallel Standard Template Li-

brary), aparaUel extension of STL, Java style thread class for shared-

memory architectures, and HPF like directives for loop level paral-

lelism. A context is a virtual address space on a node. Parallelism

within a context is loop level parallelism. Parallelism across multi-

ple contexts allows one thread of execution on each context. Low

level synchronization primitives (including semaphores and bani-

ers) coexist with high level collections and iterators.

Distributed recursive sets [8] are nested data collections that allow

expressing complex data structures in data parallel applications.

The collections are automatically distributed by a system using a

graph-based partitioning scheme.

There are two major developments in Chapel that distinguish it

from previous work:

1. The generalization of the array concept and the ability to de-

fine domains indexed by arbitrary primitive and user-defined

data types.

2. The generality of the distribution machinery which is a com-

bination of system-supported and user-defined distributions.

The distribution framework in Chapel allows user access to

distribution decisions by letting the user define novel distri-

butions based on a system provided distribution type.

5. CONCLUSION
This paper presented a highly reusable data distribution design for

data intensive, high performance applications. The design can be

used as-is by application writers, object-oriented frameworks and

skeleton writers, and generally, high-level languages and tools writ-

ers. The elements of the distribution design pattern are novel con-

cepts introduced by the Chapel high productivity language.

we showed how domains and their index sets allow the construc-

tion of complex data structures, with index types including a vari-

ety of primitive or user-defined types. Further, we showed how data

collections can be associated with domains, inheriting their index

set and its distribution.

We believe that our design balances the system support and user

control over distributions having the potential of delivering both

promises of high productivity and performance guarantees. As our

Chapel compiler and run-time infrastructure evolves, we hope to

provide empirical evidence on these aspects.

6. ACKNOWLEDGMENT
This paper is based upon work supported by the Defense Advanced

Research Projects Agency under its Contract No. NBCH3039003.

The research described in this paper was partially carried out at

the Jet Propulsion Laboratory, California Institute of Technology,

under contract with the National Aeronautics and Space Adminis-

tration.

7. REFERENCES

[l] H. E. Bal and M. F. Kaashoek. Object distribution in Orca

using compile-time and run-time techmques. In A. Paepcke,

editor, Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications

(OOPSLA193), volume 28 of SIGPLAN Notices, pages

162-177, New York, NY, 1993. ACM Press.

[2] H. E. Bal, M. F. Kaashoek, A. S. Tanenbaum, and J. Jansen.

Replication Techniques for Speeding up Parallel

Applications on Distributed Systems. Concurrency Practice

and Experience, 4(5):337-355, August 1992.

[3] E Bodin, P. Beckmm, D. Gannon, S. Narayana, and S. X.

Yang. Distributed PC++: Basic Ideas for an object parallel

language. Scientific Programming, 2(3), 1993.

[4] D. Callahan, B. Chamberlain, and H. Zima. The Cascade

High Productivity Language. In Ninth International

Workshop on High-Level Parallel Programming Models and

Supportive Environments (HZPS'04), pages 52-60. April

2004.

[5] B. M. Chapman, P. Mehrotra, and H. P. Zima. Programming

in Vienna Fortran. Scientific Programming, 1(1):3 1-50,

1992.

[6] A. Chien, U. Reddy, I. Pievyak, and J. Doiby. ICC++ -A

C++ dialect for high performance parallel computing.

Springer LNCS, 1049:76-94, 1996.

[7] S. J. Deitz. High-Level Programming Language Abstractions

for Advanced and Dynamic Parallel Computations. PhD

thesis, University of Washington, 2004.

[S] R. E. Diaconescu. Object Based Concurrency for Data

Parallel Applications: Programmability and Effectiveness.

PhD thesis, Norwegian Umversity of Science and

Technology, Trondheim, Norway, August 2002. [NTNU

2002:830, ID1 Report 9/02, ISBN 82-471-5483-8, ISSN

0809-103x1.

[9] G. Fox, Hiranandani, S., Kennedy, K., Koelbel, C., Kremer,

U., Tseng, C.-W., and M.-Y Wu. Fortran D language

specification. Technical Report CRPC-TR90079, Houston,

TX, December 1990.

[lo] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Sofiware.

Addison-Wesley Professional Computing. Addison-Wesley,

18th printing edition. September 1999.

[I l l D. Gannon, P. Beckman, E. Johnson, T. Green, and

M. Levine. HPC++ and the HPC++Lib Tookit. In Compiler

Optimizations for Scalable Parallel Systems Languages,

pages 73-108,2001.

[12] A. S. Grimshaw. The mentat computation model data-driven

support for object-oriented parallel processing. Technical

Report (3-93-30, University of Virginia, May 1993.

[13] S. B. Hassen, I. Athanasiu, and H. E. Bal. A flexible

operation execution model for shared distributed objects. In

Proceedings of the OOPSLA'96 Conference on

Object-oriented Programming Systems, Languages, and

Applications, pages 30-50. ACM, October 1996.

[14] High Performance Fortran Forum. High Performance Fortran

language specification, version 2.0. Technical report, Jan.

1997.

[15] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling

fortran d for mimd distributed-memory machines. Commun.

ACM, 35(8):6&80, 1992.

[16] J.-M. Jzquel. An object-oriented framework for data

parallelism. ACM Computing Surveys, 32(31):31-35, March

2000.

[I71 L. XJ. Kale and S. Krishnan. CEAPdvi++: A Portable

Concurrent Object Oriented System Based On C++. In

Proceedings of the OOPSLA '93 Conference on

Object-oriented Programming Systems, Languages and

Applications, pages 91-108, 1993.

[18] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer,

D. Szafron, and K. Tan. From patterns to frameworks to

parallel programs. Parallel Comput., 28(12):1663-1683,

2002.

[19] P. Mehrotra and J. V. Rosendale. Programming distributed

memory architectures using Kali. In Advances in Languages

and Compilers for Parallel Computing. MIT Press, 1991.

[20] R. E. Millstein. Control structures in illiac iv fortran.

Commun. ACM, 16(10):621-627, 1973.

[21] N. Sato, S. Matsuoka, J.-M. Jezequel, and A. Yonezawa. A

methodology for specifying data distribution using only

standard object-oriented features. In Proc. of Zntenzational

Conference on Supercomputing, pages 116-123. ACM, 1997.

[22] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for

semi-automatic MIMDISIMD parallelization. Parallel

Computing, 6:l-18, 1988.

End of File

