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ABSTRACT 
This paper presents a reusable design of a data distribution frame- 

work for data parallel high performance applications. We are im- 

plementing the design in the context of the Chapel high productiv- 

ity programming language. Distributions in Chapel are a means to 

express locality in systems composed of large numbers of processor 

and memory components connected by a network. Since distribu- 

tions have a great effect on,the performance of applications, it is 

important that the distribution strategy can be chosen by a user. At 

the same time, high productivity concerns require that the user is 

shielded from error-prone, tedious details such as communication 

and synchronization. 

We propose an approach to distributions that enables the user to re- 

fine a language-provided distribution type and adjust it to optimize 

the performance of the application. Additionally, we conceal from 

the user low-level communication and synchronization details to 

increase productivity. To emphasize the generality of our distribu- 

tion machinery, we present its abstract design in the form of a de- 

sign pattern, which is independent of a concrete implementation. 

To illustrate the applicability of our distribution framework design, 

we outline the implementation of data distributions in terms of the 

Chapel language. 

1. INTRODUCTION 
Today's massively parallel High Productivity Computing Systems 

(HPCS) are characterized by a modular structure, with a large num- 

ber of processing and memory units connected by a high-speed net- 

work. Locality of access as well as load balancing are primary con- 

cerns in these systems that are typically used for high performance 

scientific computation. Data distributions address these issues by 

providing a range of methods for spreading large data sets across 

the components of a system. Over the past two decades, many lan- 

guages, systems, tools, and libraries have been developed for the 

support of distributions. Since the performance of data parallel ap- 

plications is directly influenced by the distribution strategy, users 

often resort to low-level programming models which allow fine- 

tuning of the distribution aspects affecting performance, but, at the 

same time, are tedious and error-prone. 

In this paper we propose a novel design for the high-level speci- 

fication of distributions in data parallel applications. Our design 

is shaped by previous experiences in language and run-time sup- 

port for distributions as well as by design patterns in manually dis- 

tributed code. The elements of our distribution machinery are in- 

troduced in the Chapel [4] programming language. They include 

domains, index sets, generalized arrays and user-dejined distribu- 

tions. To stress the generality of our design, we first present the 

abstract distribution design pattern and its elements, indevendent 

of the Chapel language. Then, we discuss the implementation of 

the design in the context of the language. 

This paper is organized as follows. Section 2 introduces the distri- 

bution design pattern using the presentation format introduced by 

Gamma et.al. [lo]. Section 3 discusses the implementation of the 

distribution design in the context of the Chapel language. Section 4 

reviews related work. Section 5 concludes the paper. 

2. THE DISTRIBUTION DESIGN PATTERN 
2.1 Intent 
The intent of our distribution design pattern is to capture the com- 

mon elements of data distributions in scientific computing. Data 
\ 

distributions define the interface for distributing the elements of 

a collection across multiple units of locality without constraining 

the type of elements or indices in the collection. We use the term 

unit of locality to denote the building block for a computer system 

that is made of multiple similar components. Each component has 

memory and operation capabilities. 



2.2 Motivation 
Consider a high-performance computing architecture consisting of 

a large number of units of locality. Memory is collocated with 

the unit, causing local accesses to be less expensive than remote 

accesses. Examples of such configurations include non-uniform 

memory access (NUMA) architectures, clusters of processors, and 

emerging peta-scale architectures such as Cascade [4]. 

A data distribution partitions a collection of data and distributes 

its elements across units of locality. To achieve lugh performance, 

this means a distribution strategy must account for access locality 

as well as load balance. Although some approaches towards auto- 

matic data distribution have been explored in the past, in general 

it is useful to let the user choose the distribution strategy based on 

existing knowledge about a parallel application. However, once 

the distribution strategy is chosen, the system should take over the 

low-level, error-prone tasks such as communication generation and 

synchronization enforcement. 

A distribution decision should specify, for a particular data item, 

its associated unit of locality and the layout within that unit. Some- 

times, depending on the structure of data, the latter can be deter- 

mined automatically. 

Consider a program that solves a Poisson equation to compute the 

pressure field over the points of a discrete domain using the Fi- 

nite Elemeilt Method. Depending on the concrete application, vari- 

ous discretization strategies may be considered for a given domain. 

Thus, the same algorithm may be used with a regular mesh de- 

scribed by cubic elements, or with an irregular mesh consisting of 

tetrahedral elements. In both cases, the underlying parallel struc- 

ture of the application is identical. Moreover, the data access, 

and consequently, synchronization structures are identical as well. 

However, since in a conventional approach the different data repre- 

sentations are encoded in the algorithm, these similarities may not 

be detectable by looking at the source code. 

Thus, we wish to introduce the appropriate abstractions to cap- 

ture these similarities and separate the algorithm from details of its 

data representation. Specifically, we would like to decouple indices 

from collections of data items using index sets and domains. Index 

sets provide names for the components of collections. Domains are 

entities that specify an index set and its distribution. Data collec- 

tions are defined over domains and will be distributed accordingly. 

In the previous example, the regular mesh can be a three dimen- 

sional domain with an index set that is a regular Cartesian product. 

Collections of data items over the domain include the pressure vec- 

tor which is defined at every point in the mesh domain and can be 

represented as an array over the domain. A data distribution speci- 

fies, for each component of the index set - ( i , j , k) - the unit 

of locality it belongs to and, potentially, the offset within that unit. 

The irregular mesh can be a domain indexed by references to ele- 

ment objects. In this case, the index set is a collection of element 

objects which name the components of data items defined over the 

irregular domain. A data distribution specifies, for each component 

of the index set (Element e), the unit of locality it belongs to 

and, potentially, the offset within that location. 

In addition, we would like to capture the behavior of the distribu- 

tion machinery via a common interface which has various imple- 

mentations defining commonly used classes of distributions such 

as block, cyclic, and indirect, as well as novel user-defined dis- 

tributions. Two key operations exported by the distribution inter- 

face are the definition of the mapping of indices to units of local- 

ity (Map (Index) ) and their layout ( L o c a l L a y o u t  ( Index) ) 

within the units of locality. In general, our approach provides a 

much richer capability that supports the needed sophisticated data 

representations that would, for example, be required for the imple- 

mentation of distributed sparse data collections. 

The domain interface includes a Distribute method which is 

parmetexized by the distribution class. This method specifies the 

distribution for the domain it is invoked on. 

2.3 Applicability 
Distributions for data parallel applications have been extensively 

used in software tools, libraries and applications. The various ap- 

proaches include manually specified distributions, automatically 

distributed applications with compiler and run-time support, com- 

ponent and object-oriented frameworks, and skeletons for scientific 

applications. 

Our design can be used for data parallel applications when: 

a numerical algorithm should be reusable regardless of the 

geometry or physical structure of its input data, 

multiple distribution strategies need to be studied to investi- 

gate the best approach, and 

low-level communication and synchronization details should 

be concealed from the user. 
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Figure 1: Distribution elements. 
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Figure 1 depicts the elements involved in defining a distribution. A graph structure. 

Domain 

Distribute(Distribution) 

Domain has one Index set associated withit and one Dis tribution. Distribution 
A ~istribution class interface includes operations that allow is a mapping from index values to units of locality. A distri- 
the specification of the mapping of an index to a unit of locality. bution allows a user to specify data locality and alignment by 
Thus, Map ( Index) specifies the unit, while LocalLayout ( Index) ovenidina its default behavior, Its interface includes: 
specifies the local address within that unit. The Distribution 

class can be extended to specify commonly used distributions or 

- 

- a mapping from indices to units of locality 

novel user-defined distributions. A data collection Data can be de- - a mapping from indices to offsets within units of local- 

fined over LIat d~main. The collection rnaps the domain index set ity. We call this a local layout. 

to the variables in the collection. Since the index set is distributed, Concrete Distribution 
the addresses of the variables in the collections will be distributed ovenides the mapping operations to implement a particular 
as well. distribution (i.e. Map and LocalLayout). The concrete 

distribution is a specialization of the Distribution type. 
2.5 Participants 

Domain Data Collection 

is a description of a collection of names for data. These are abstractions of mappings from index sets to variables. 

names are referred to as the indices of the domain. All in- Arrays are one example of such mapping. 

dices for a domain are values with some common type. It 2.6 Collaborations 
consists of: A user who wants to use distribution for a data parallel program, 

- an index set, 
must create a concrete distribution by providing the mapping and 

local layout information. 
- a distribution of that index set, and 

When a domain is created, the user specifies its index set type and - a set of associated data collections. All these collec- 
its distribution type. The Distribute method can be applied to 

tions share the index set and its distribution with the 

domain but can have different data types. 
the domain with the created distribution as parameter. As a con- 

sequence, all data collections defined on the domain will be dis- 

Index tributed according to the specified distribution. Accesses to dis- 

defines the type of indices: this includes integer tuples (in tributed data are implemented to handle any required communica- 

the case of regular Cartesian product index sets) and object tion transparently. 
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Figure 2: The interaction between distribution elements. 

Figure 2 depicts the collaborations between a domain, its distribu- 

tion and a data collection defined on the domain. A program may 

contain domain declaration statements which trigger the creation 

of a domain based on the user provided information on its index 

type and distribution type. In Figure 2 the Dis tribut ionA is 

a user-defined concrete distribution for a domain. When instanti- 

ating a domain with a particular distribution type, the index set of 

the domain is mapped according to the Map and LocalLayout 

operations for every index in the index set. Data (Domain) is a 

data collection defined on the domain. Each access to a data item 

given by an index is translated to reflect its distribution. 

2.7 Consequences 
There are a number of benefits and liabilities of our design for user- 

defined data distributions: 

1. The distribution class herarchy allows a user to define distri- 

butions which are more suitable for an application than hard- 

wired distributions. A user needs to specify the mapping of 

indices to units of locality and the local layout within the 

units. More sophisticated control of the data arrangement 

can be specified if required. 

2. The domain abstraction allows the user to define domains 

which are closer to the physical domain by extending index 

types to include object references. Also, the index set of a 

domain may have an inherent linear order (as in the case of 

Cartesian products of integers), or may be arbitrarily ordered 

(as, e.g., object references). 

3. Data collections are associated with domains, and thus their 

structure is defined in the domain rather than in the data it- 

self. As a consequence, the programmer can define collec- 



tions of data with complex and irregular structure without 

complicating the data representation itself. 

4. Giving the user full freedom in specifying the distribution in- 

creases the burden on ensuring good run-time performance. 

Our approach provides support for the optimization of data 

distributions according to various criteria such as memory 

overhead, iteration strategies, and data access performance. 

Specialized distributions can be made part of standard li- 

braries. 

3. IMPLEMENTATION 
0;- design is i m ~ l e ~ e n t e d  nsing the Chapel language and concep- 

tually runs on a Chapel abstract machine. Most of the elements de- 

scribed in the previous sections are part of the language and there- 

fore are implemented as first-class entities. 

An execution of the Chapel Abstract Machine determines an ex- 

ecution locale set, which is an arrangement of identical locales. 

Locales represent the units of locality in Chapel. The size of the ex- 

ecution locale set is determined at the time the program begins exe- 

cution, and remains invariant thereafter. Data and computations can 

be mapped to locales with the understanding that entities mapped to 

the same locale are closer to each other than when they are mapped 

to different locales. Different data objects that are mapped in the 

same way to a set of locales are said to be aligned. If a computation 

is mapped to the same locale as a data object accessed by it we say 

that there is an afinity between the computation and the data ob- 

ject, resulting in a local access; otherwise, the access is remote. In 

terms of the performance metrics, a local access is less expensive, 

i.e., budened with less overhead, than a remote access. 

A distribution maps indices to locales and a location within each 

locale. The execution locale set is globally declared as: 

var Locales: array [l..numlocalesl of Locale; 

3.1 Domains and Arrays 
Domains are first-class entities that have a set of indices which may 

be bounded or unbounded. In the former case the domain is called 

definite, while in the latter, indefinite. 

2. Indefinite domains have unbounded index sets and any of the 

index types listed above. 

An example for an arithmetic domain declaration in Chapel is: 

var rMesh : domain(3) = [l..m, l..n, l..pl; 

This specifies a domain, rMesh, with an arithmetic index set of 

rank 3. The index set is initialized by a Cartesian product. 

Let us define an irregular mesh as being composed of geometrical 
elements, their faces and vertices. The definition of such structure 
in Chapel is: 

class Element I. 
var ldx  : integer; 

var nfe : integer; 

var elmaces [l. .nfel : Face; 

class Face { 

var idx : integer; 

var nvf : integer; 

var faceVerts[l..nvfl : Vertex; 

1 

class Vertex I. 
var idx : integer; 

var dim : integer; 

var conrds[l..diml : float; 

An irregular domain over such mesh can be declared in Chapel as: 

var iMesh : domain(E1ement); 

Elements can be added to a domain and removed from a domain by 

using Chapel predefined operations for indefinite domains add ( elem) 

and remove (elem). 

Data collections are defined over domains. Chapel provides sup- 

port for a generic notion of an array that includes Fortran arrays as a 

specific instance. Therefore, for the previously declared arithmetic 

and indefinite domains, we can define data collections as follows: 

For each domain, there is a corresponding index type which in- var regArray lrMeshl : float; 

cludes primitive types, enumerated types, and class reference. There var iregArray [ iMeshl : float;, 

are two categories of domains: 

3.2 Distributions 
1. Arithmetic domains have bounded index sets with an integer Distributions are a means to exploit locality in Chapel. A distribu- 

index type. tion is a mapping from domain index sets to locales. A programmer 



can describe afi?nity between data and computation by associating 

them with abstract locales. 

A distribution type is defined as a class that can be extended to 

express user-defined distributions. The Chapel interface for a dis- 

tribution is: 

class distribution { 

. . .  
function SetDomain(d1 : domain); 

function GetDomainO : domain: 

function SetTarget(t : locale[l); 

function GetTargetO : locale[]; 

function Map (i : index) : locale; 

function LocalLayout(i : index) : location; 

. . . 
1 

The Chapel compiler is written in the C++ programming language. 

Internally, a domain is represented as a C++ class Domain, an 

index as a C++ class Index, and a distribution as a C++ class 

Distribution. The user ovenides the functionality of the Dis - 

tribution class by providing a concrete domain to instantiate 

the distribution and concrete implementation for the Map and Local - 

Layout operations. 

A user-defined block distribution can be written in Chapel 2s: 

class block{ 

implements distribution; 

block-size : integer; 

--la is the target locale array 

constructor createcd : domain, in la : locale[l, 

in bs : integer) { 

this. SetDomainld) ; 

this.SetTarget(la); 

block-size = bs; 

. . . 
I 

function Map(in i: index) : locale { 

return this.GetTarget0 (ceill (i-1) /block-size)+l); 

I 

function LocalLayoutlvar in i : index) : location { 

return (mod(i-1, block\-sizelcl); 

1 

To simplify the presentation we leave out the lower and upper bounds 

for the index sets. Thus, the code above implicitly assumes that the 

lower bound is 1. The block size can either be specified by the user 

or computed by the system. 

Distributions can be specified for domains and, as a consequence, 

all data collections defined on a given domain will be distributed 

according to the specified distribution: 

var rMesh:domain(3)=[l..m,l..n,l..pl dist(block,block,block) 

on L3D; 

var iMesh : domain(E1ement) disc(general1;. 

The first declaration defines a dimensional distribution. Each di- 
mension of the array regArray associated with the rMesh do- 
main will be block distributed on the corresponding dimension of 
the three-dimensional locale array, L 3 D. The irregular array iregArray 
associated with the iMesh domain will be distributed according to 
a general distribution specified by the user on the available locales. 
The following code excerpt shows how this can be done: 

var iMesh : domain (Element) dist(genera1); 

for i in iMesh { 

. . .  
i.locale = f(i, . . .  ) ;  

- this maps index i to a locale determined by function f 

. . . 
I 

complete(D); 

-- this statement "completes" the distribution by defining 

-- the corresponding fields in the domain; 
-- it can only be called after all indices in D have been 

-- mapped: 
I 

Here, the function call f ( . . . ) references an arbitrary user-defined 

function that establishes the point-to-point mapping between a do- 

main index and a locale. 

Concurrent execution is supported via the Chapel f orall con- 
struct. Distributed collections are iterated over using this statement. 
The iteration space is split according to the data distribution and lo- 
cal accesses are grouped within the same locale: 



It is beyond of the scope of this paper to include details on code 

generation and optimization for the Chapel compiler. Because the 

implementation is an ongoing effort we are still in the process of 

evaluating our approach for user-defined distributions and its im- 

pact on efficiency. 

4. RELATED WORK 
There has been significant effort in the area of distributions for data 

parallel applications and we will review two of those approaches: 

(1) Early work on distributions in support of Fortran related lan- 

guages and (2) Object-based systems, libraries and skeletons for 

scientific programs. 

4.1 Distribution Support for Fortran and Re- 
lated Languages 

1 The first language to allow users to control the local layout of data 

was IVTRAN [20], which was developed for the SIMD machine 

ILLIAC IV. Kali [19] (and its predecessor BLAZE) were among 

the first languages to introduce distribution declarations in the con- 

text of distributed-memory systems. Kali allows the dimensions 

of an array to be orthogonally mapped onto an explicitly declared 

processor array using simple regular distributions such as block and 

cyclic, and more complex distributions such as irregular in which 

the mapping of each array element is explicitly specified. Sim- 

ple forms of user-defined distribution were also permitted. Parallel 

computation was specified by means of forall loops within a global 

name space. 

SUPERB [22] is an interactive restructuring tool, which translates 

Fortran 77 programs into message-passing Fortran for distributed- 

memory architectures. The user specifies the distribution of the 

program's data via an interactive language; based on compiler- 

provided analysis, the user selects a transformation strategy for 

the coarse-grain parallelization of the program for a distributed- 

memory machme. 

The Fortran D project [9, 151 follows a slightly different approach 

to specifying distributions. The distribution of data is specified by 

first aligning data arrays to virtual arrays known as decompositions. 

The decompositions are then distributed across an implicit set of 

processors using relative weights for the dimensions. The language 

allows an extensive set of alignments along with simple regular and 

irregular distributions. 

Vienna Fortran [5] is the first language to provide a complete speci- 

fication of mapping constructs in the context of Fortran. In addition 

to simple regular and irregular distributions, Vienna Fortran defines 

a generalized block distribution which allows arbitrarily sized con- 

tiguous segments of data to be mapped to the processors. The lan- 

guage also proposes a mechanism for user-defined distribution and 

alignment functions, and defines multiple methods of passing dis- 

tributed data across procedure boundaries. 

HPF-2 [14] defines a set of directives for Fortran 95 largely based 

on previous work in Fortran D and Vienna Fortran. It provides sig- 

nificant support for irregular distributions (including general block 

and indirect mappings) as well as the possibility to map pointers, 

components of derived types, and objects to subsets of processors 

directly. 

Newer developments, such as the global array languages Coar- 

ray Fortran, UPC, and Titanium take a reasonable intermediate ap- 

proach, providing a higher level of abstraction than MPI but deal- 

ing only with standard distributions and requiring explicit control 

of communication. 

The ZPL language supports a concept of dimensional distributions 

which are organized into five types, each of which has its own prop- 

erties: block, cyclic, multi-block, non-dist, and irregular. These 

types give the compiler the information it needs to generate loop 

nests and communication, abstracting the details of the distribution 

from the compiler's knowledge. This strategy was detailed in [7], 

in which a few block distributions were implemented as a proof-of- 

concept. 

4.2 Distribution Support in Object-Based Sys- 
tems 

Hawk [13] is a system based on ORCA [2, I] that has the notion 

of partitioned objects for supporting regular, data parallel appli- 

cations. There is one thread of control per data access. In this 

Distributed Shared Memory (DSM) software implementation the 

entire data is replicated on each address space and only parts of it 

are truly owned. The parts that are not owned are invalid and up- 

dated by a consistency protocol. Due to the replication strategy, the 

system is inefficient for intensive data applications. 

EPEE [16, 211 is an Eiffel parallel execution environment aimed 

at offering a high level API developer a platform for incorporat- 

ing new components as common behavioral patterns are detected. 

The environment provides the programmer with a set of classes 

for handling data distribution issues. For instance, mechanisms 

for dstributing bi-indexable objects (e.g., arrays, grids, matrices, 

tables) based on a block-wise partitioning are encapsulated in a 

class Distribution 2D. This idea is similar to the approach taken by 



C02P3S [IS]. This is a system that allows the user to specify par- 

allel design patterns and, based on the specification, generates data 

parallel programs, including communication and synchronization 

code. The effort required to write such patterns may be significant, 

but once written, they can be reused. 

Charm++ [17] is a concurrent object-oriented system based on C++. 

Parallelism is explicitly expressed as an extension to the C++ lan- 

guage. Parallel processes (chares) communicate through message 

objects that are explicitly packedlunpacked by user. The system 

also features special shared objects and remote accesses through 

remote procedure calls. Thus, communication and synchromzation 

may be controlled by the programmer. Synchronization is ensured 

for shared objects. 

ICC++ [6] is a C++ dialect for high performance parallel comput- 

ing. Data collections are represented as arrays encapsulated within 

objects. Distribution can be explicitly specified by overloading the 

access [ ] operator to a collection object. Irregular distributions 

can also be manually specified by supplying a map file which is a 

sequence of integer indices along with virtual processor numbers. 

created for large 

PC++ [3] is an object parallel language based on C++ and HPF- 

like. Unlike templates in HPF, distributions in PC++ are first class 

objects. A Distribution is characterized by its number of di- 

nensions, the size in each dimension and the function by which the 

distribution is mapped to processors. Current distribution functions 

allowed in PC++ include BLOCK, CYCLIC, and WHOLE. 

The Mentat [12] system provides data-driven support for object- 

oriented programming. The idea is to support a data-flow graph 

computation model in which nodes are actors and arcs are data de- 

pendences. The programmer must specify the classes whose mem- 

ber functions are sufficiently computationally complex to warrant 

parallel execution. The data-flow model is enhanced to support 

larger granularity and a dynamic topology. Parallelism is supported 

through having multiple actors executing on multiple processors. 

HPC++ [ l l ]  is based on PTSL (Parallel Standard Template Li- 

brary), aparaUel extension of STL, Java style thread class for shared- 

memory architectures, and HPF like directives for loop level paral- 

lelism. A context is a virtual address space on a node. Parallelism 

within a context is loop level parallelism. Parallelism across multi- 

ple contexts allows one thread of execution on each context. Low 

level synchronization primitives (including semaphores and bani- 

ers) coexist with high level collections and iterators. 

Distributed recursive sets [8] are nested data collections that allow 

expressing complex data structures in data parallel applications. 

The collections are automatically distributed by a system using a 

graph-based partitioning scheme. 

There are two major developments in Chapel that distinguish it 

from previous work: 

1. The generalization of the array concept and the ability to de- 

fine domains indexed by arbitrary primitive and user-defined 

data types. 

2. The generality of the distribution machinery which is a com- 

bination of system-supported and user-defined distributions. 

The distribution framework in Chapel allows user access to 

distribution decisions by letting the user define novel distri- 

butions based on a system provided distribution type. 

5. CONCLUSION 
This paper presented a highly reusable data distribution design for 

data intensive, high performance applications. The design can be 

used as-is by application writers, object-oriented frameworks and 

skeleton writers, and generally, high-level languages and tools writ- 

ers. The elements of the distribution design pattern are novel con- 

cepts introduced by the Chapel high productivity language. 

we showed how domains and their index sets allow the construc- 

tion of complex data structures, with index types including a vari- 

ety of primitive or user-defined types. Further, we showed how data 

collections can be associated with domains, inheriting their index 

set and its distribution. 

We believe that our design balances the system support and user 

control over distributions having the potential of delivering both 

promises of high productivity and performance guarantees. As our 

Chapel compiler and run-time infrastructure evolves, we hope to 

provide empirical evidence on these aspects. 
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