
High Performance, Dependable Multiprocessor l U b 3 l

Jeremy Ramos , Jolm Samson Ian Troxel, Rajagopal Subramaniyan, Adam
Honeywell Aerospace, Defense and Space Jacobs, James Greco, Grzegorz Cieslewski,

13350 US Highway 19 North John Curreri, Michael Fischer, Eric Grobelny,
Clearwater, Florida 33764-7290 Alan George
john.r.samson@~l~oneywell.com HCS Research Laboratory

ECE Department, University of Florida
Gainesville, Florida 3261 1-6200

george@hcs.ufl.edu

Vikas Aggarwal, Minesh Patel
Tandel Systems

mpatel@?tandelsys.com

Ahs~mct-With the ever increasing demand for higher
bandwidth and processing capacity of today's space
exploration, space science, and defense nlissions, the ability
to ef-ficiently apply comnlerciai-off-the-shelf (COTS)
processors for on-board computing is now a critical need. In
response to this need, NASA's New Millennium Program
office has commissioned the development of Dependable
Multiprocessor (DM) technology for use in payload and
robotic missions. The Dependable Multiprocessor
technology is a COTS-based, power efficient, high
performance, highly dependable, fault tolerant cluster
computer. To date, Honeywell has successfully
demonstrated a TRL4 prototype of the Dependable
Multiprocessor [I] , and is now working on the devclopmcnt
of a TRLS prototype. For the present effort Honeywell has
teamed up with the University of Florida's High-
performance Conlputing and Simulation (HCS) Lab, and
together the team has demonstrated major elements of the
Dependable Multiprocessor TRLS system. This paper
provides a detail description of the basic Dependable
Multiprocessor technology, and the TRLS technology
prototype currentty under developtnent.

Raphael Some
NASA Jet Propulsion Lab

rsome~$jpl.nasa.gov

onboard computers in these remote systems have contained
minimal functionality; partially in order to satisfy design
size and power constraints, but also to minimize complexity
as a means of coping with high dependability requirements.
Hence, these traditional space computers have been capable
of doing little more than executing small sets of real-time
spacecraft control procedures, with little or no processing
bandwidth left over for instrument data processing. This
approach has worked fairly well until now, as instruments
have consisted of low complexity imagers, with
compressible output streams transmittable to ground stations
for post processing knowledge extraction. As the
capabilities of instruments on exploration platforms
increase, more processing and autonomy will be necessary
onboard to fully exploit their vast output data streams [2] .
Autonomous spacecraft will further increase the knowledge
returns though opportunistic explorations conducted outside
the Earth-bound operator control loop. In response, NASA
has initiated several projects to develop technologies that
address the onboard processing gap. One such program is
the NASA New Millenniun~ Program's ST8 Project [3].

The vision of the New Millennium Program's Dependable
Multiprocessor experiment is to migrate COTS-based
computers to space, thereby enabling new classes of science
[4]. In support of this vision, the Honeywell and University
of Florida team is developing the Dependable
Multiprocessor (DM) technology. Dependable
Multiprocessor technology conlbines a set of innovative
solutions to enable efficient use of high performance COTS
processors in the harsh space environment, while
maintaining the required system reliability and availability.
Dependable Multiprocessor is a sophisticated technology
composed of four chief conlponents [S].

First, Dependable Multiprocessor is an architecture and
NASA has a long and relatively productive history of space methodology enabling the use, in space, of COTS-based,
exploration as exemplified by recent rover nussions to Mars. high performance, scalable, multi-computer systems. A
v .

I raditionatly, space exploration missions have essentially distinguishing feature of the architecture, critical to
been remote control platforms with all major decisions achieving high performance and efficiency, is the use of
made by operators located in control centers on Earth. The reconfigurable co-processors. Furthermore, through

I . The project formerly was knonn as the Environmentally-Adaptive Fault-'l'olerant Computing (b.AF.I'C') project.
2 . Paper 151 1
3 . Copyr~ght 0-7803-9546-8/06/S20.0082006 IEEE; This paper has not been published elsewhere and is offered for exclus~ve publicaliun except that
I [oi~ey\vell reser\.es the right to reproduce the material In whole or In part for i t s o \ n use and, where IIoneyucll is obligated by contract

accommodation for upgrades to future COTS parts, the
Dependable Multiprocessor architecture can evolve along
Second, Dependable Multiprocessor is a parallel processing
environment for science codes that incorporates an
application development and runtinie environment familiar
to science application developers. By adopting these
standard environments, Dependable Multiprocessor can
significantly reduce the cost and schedule associated with
porting of applications from the laboratory to the spacecraft
payload data processor.

Third, Dependable Multiprocessor is a set of algorithms for
system and fault tolerance management. These algorithms
allow Dependable Multiprocessor based systems to
dynamically manage resources in response to environment,
application criticality, and system mode, in order to
maintain mlssion required dependability and maximal
system efficiency.

Lastly, Dependable Multiprocessor is a methodology and
associated tools that allow developers of Dependable
Multiprocessor systems to predict their implementation's
behavior in the target environment, including: predictions of
availability, dependability, fault ratesitypes, and system
level performance.

Dependable Multiprocessor builds on earlier projects at JPL,
Honeywell and Raytheon, which were sponsored by NASA,
DARPA, and USAF.

The Advanced Onboard Signal Processor (AOSP),
developed by Raytlieon Corporation, for the USAF in the
late 70's and mid 80's made significant breakthroughs in
understanding the effects of natural and man-made radiation
on computing systems and components and in developing
architectural, hardware and software techniques for
detection, isolation, and mitigation of these effects. AOSP,
though never flown, was instrumental in developing the
fundamental concepts, modeling and testing techniques
behind much of the current work in fault tolerant high
performance distributed computing.

Advanced Architecture Onboard Processor (AAOP), a
follow on effort to AOSP, also developed at Raytheon
Corporation, engineered alternative concepts and new
approaches to spacecraft onboard data processing. The
AAOP architecture found its way into both commercial and
military platforn~s, but was never commercialized or
popularized as it was, in large measure, overkill for most
applications.

The DARPA sponsored Space Touchstone computer,
deveIoped at Honeywell was ground breaking in its goal of
using COTS components and a COTS system architecture in
high performance, highly reliable, airispace-home
computing.

side commercial technologies thereby ensuring its longevity.

NASA's Remote Exploration and Experimentation (REE)
project [6], at JPL, extended fault tolerant computing to the
world of parallel and cluster processing. Among other
advances, REE addressed, in a general manner, the issue of
low cost and tailored fault tolerance. The KEE project
developed fault tolerant middleware for cluster computers,
methods and tools for test and characterization of
components and systems, Software Implemented Fault
Tolerance techniques and libraries. The project developed
fundamental concepts upon which to develop fault tolerant
high performance parallel processing, and more specifically,
fault tolerant, low cost, high performance, power ratio,
embedded clusters.

Figure 1 depicts the Dependable Multiprocessor hardware
architecture, which is based on Honeywell's Integrated
Payload concept [7]. The Dependable Multiprocessor is
essentially a reconfigurable cluster computer with
centralized control. The essential hardware elements of the
system are a redundant radiation hardened System
Controller, a cluster of COTS based reconfigurable Data
Processors, redundant COTS based Packet Switched
networks, and a radiation hardened Mass Data Store.
Additional peripherals or custom modules may be added to
the network to extend the system's capability; however,
these peripherals are outside of the scope of the base
architecture. To increase system reliability it is possible to
employ redundancy of the System Controller and network
as depicted in the block diagram. Likewise N-of-M sparing
of Data Processors may be used for added reliability.
Redundancy, however, may not be affordable or necessary
for all missions, and therefore it is not a required
architectural element. Command and Telemetry is
exchanged directly between the active System Controller
and the Spacecraft Control Computer via direct 1553
spacecraft interfaces. The primary dataflow in the system is
from instrument to Mass Data Store, through the cluster,
back to the Mass Data Store, and finally to the ground via
the spacecraft's Communication Subsystem.

The primary mechanism for hardware scalability provided
by the architecture is the number of Data Processors inserted
into the network. First adopters are expected to need up to
30 nodes in their clusters, a node count that is well within
the capabilities of Gigabit Ethernet. Alternative approaches
to scalability include forming a cluster-of-clusters. This
alternative may be more suitable for eventual product
development since standard cluster configurations can be
developed as fully intcgratcd products, and later combined
to form a larger machine as required by a particular mission.

Figure 1. Dependable Multiprocessor.

VirtexII 6000 FPGA co-processor [lo], and their associated
3.1. System Controller standard support chips, e.g., COTS bridge, and I10 chips,

clocks, and memories.
All central control software for the cluster executes on the
System Controller node. Due to the critical nature of Table 1. RHPPC SBC Key Features
centralized control we have selected the Honeywell
Radiation Hardened PPC (RHPPC) Single Board Computer
(SBC) for implementation of the System Controller. By
implementing the System Controller in highly reliable and
radiation hardened electronics we reduce the likelihood of
experiencing major system control faults due to single event
upsets (SEUs). The RHPCC SBC is based on the Motorola
PowerPC 603e microprocessor technology, its key features
are summarized in Table 1 [8].

3.2. Data Processors and FPGAs

The core processing elements of the cluster are the Data
Processors. As depicted in Figure 2 the Data Processor's
architecture is similar to a standard single board computer,
with the exception of the FPGA co-processing element. In
support of our COTS goal the Data Processor employs a
COTS IBM PowerPC 750FX microprocessor [9], a Xilinx

]cement Cc
with Singb

-
Imponent E
e Error Co

3.3V and 5.0 V Power
RHPPC delivering 100 MIP" -
Per~pheral Enhar -
4MB EEPROM
Error Detection
5 12KB EEPROM
128 MB DRAM with SuperEDAC
6U x 220mm Euro Card Form Factor
Max Power Draw 15W
Mass 231bs
Redundant 1553 (interface ru o p a w ~ ~ '

32-b~t 33MHz PC1 (interface to uusrcl dnd MIB
electronics)

,*Tor q-4-
o,c."

Figure 2. Data Processor

3

The FPGA co-processor is a key to achieving high-
performance and efficiency in the cluster. The FPGA
provides a capability for implementing algorithms directly
in hardware, thereby exploiting algorithmic parallelism.
This typically results in speedup of 10-to-100x with
significant reductions in power [l l] . Additionally, FPGAs
make the cluster a highly flexible platform, allowing on-
demand configuration of hardware. Via FPGA
reconfiguration, the Data Processor can support a variety of
application specific modules such as Digital Signal
Processing cores, data compression, and vector processors.
This overall flexibility allows application designers to adapt
the cluster hardware for a variety of mission-level
requirements. For DSP and algorithm intensive applications,
greater efficiency and performance may be achieved by
using more custom hardware modules in the FPGAs. Then
again, for applications that are logic-intensive,
microprocessors are more suitable targets. Some key
features of the Data Processor are listed in Table 1-2.

Table 2. Data Processor Key Features

COTS Based
750 fx @ 650 MHz Delivering 1300 MIPS .
VirtexII 6000 co-prt -
PC1 32-blt 33 MHz -
Gigabit Ethernet -
1 GB DRAM w~th bCC
12MB EEPROM with SECDED EDAC
256 MB Flash
JTAG test interface
UART interface for development
6U x 220 mm Euro Card Fonn Factor
Mass <3 lbs
Max Power Draw 20W

3.3. Network lnterconnect

Gigabit Ethernet (GigE) [I21 is the prevalent networking
system for cluster architectures. GigE is a low cost packet
switched network that offers bandwidths up to 1 Ghps.
Additionally, GigE has a promising growth path to 10 GigE
a new standard that will support bandwidths up to 10 Ghps.
GigE offers many network topology options allowing
system-level architectural optimization. Furthermore, many

COTS microprocessors and peripherals include GigE
network interfaces, allowing for direct connection to a GigE
network without additional hardware.

In Dependable Multiprocessor, GigE is the data exchange
medium. Sideband, low bandwidth, low latency buses can
be used for control. This allows for optimization of the
GigE network to address the high throughput needs of the
parallel processing science applications.

3.4. Mass Data Storage

The last hardware element of the system which we will
discuss herein is the Mass Data Store. In general terms the
Mass Data Store is the cluster's data server. Its functions
include providing the primary cluster data inputloutput
interface, and reliable data warehousing. Data in the Mass
Data Store may he checkpoint data stored by the
application, raw data from instruments, application
parameters, or results ready for transmission. As with the
System Controller, the Mass Data Store should be radiation
hardened. This minimizes the likelihood that data will be
corrupted by faults, ensuring reliable input and output of
data from the system. A new product under development at
Honeywell is ideal for Mass Data Store implementation.
The Honeywell Satellite Data Server (SDS) architecture
incorporates memory arrays, and processing into an
integrated reliable server solution. Furthermore, the SDS
architecture is highly scalable and readily adaptable to
mission needs.

3.5. TRLS Testbed Architecture

The focus of the current project phase is the development of
a TRL5 system prototype, including hardware and software.
As depicted in Figure 3 the TRL5 prototype hardware
consists of a cluster computer, a development workstation,
reset controller, and power supply.

The cluster computer is implemented using seven Orion
Technologies Inc CPC7510 Single Board Computers in a
CompactPC1 chassis interconnected over redundant Gigabit
Ethernet switches [13]. Four of the single board computers
are configured as Data Processors, two as redundant System
Controllers. and one as a Mass Data Store.

L-p~~~~~ ~p~~~ ~

Figure 3. TRL5 Prototype Testbed Hardware Block Diagram.

The CPC7510 is a hot swappable, high-performance, IBM
750fx PowerPC Single Board Computer designed for high-
availability applications. The CPC7510 is extremely
versatile with two PMC slots, variable operating frequencies
between 650 MHz and 1 GHz, and support for chassis
controller or peripheral slot placement. Other key features of
the CPC7510 are summarized in Table 3.

As a System Controller in our testbed the CPC7510 has
been outfitted, via the PMC, with a third Ethernet Network
Interface for experimental control interfacing from the
development workstation. As a Data Processor the standard
CPC7510 includes an ADM-XRC-I1 PMC. The ADM-
XRC-I1 is a high performance FPGA co-processing PMC
from Alpha Data Parallel Systems [14], and is representative
of the flight FPGA co-processor. The final configuration of
the CPC7510 includes a hard drive PMC to emulate the
storage capacity of a Mass Data Store.

Software development, experiment control, instrumentation
data collection, and Spacecraft Control Computer emulation
are achieved with the development workstation. The
development workstation is a standard Dell PC configured
with a Xeon 3 GHz CPU running the Fedora Core 4 Linux
OS. The basic configuration has been altered to include
support for 8 serial ports using an Axxon Serial Port Mux 8
VO board, and three GigE ports with an Intel Dual Gigabit
Ethernet NIC.

Additional elements of the testbed include a software
controlled, instrumented power supply, which is used to
take detail measurements of power usage, and a reset
control device, integrated by Tandel Systems, which
provides the ability for the software on either the
development workstation or the active System Controller to
reset each node in the system individually.

Table 3. Data Processor Key Features 4. MIDDLEWARE ARCHITECTURE

Orion Technologies (OTI) Linux Kernel
PowerPC 750FX v2.3 @ 6OnnaTT- - -
64/32 1 164 univers - -
Marve :ry I1 (M v o r m ~)
133Mhz rronr s ~ d e host inte "
128 MB high-speed DDR SI
Dual Gigabit Ethernet interf
Dual PMC slots (64-bit 133MHz, 32-bit 66MHz)
Dual serial RS-232 interface -
6U x 220 mm Euro Card Fo

","I"L

al-mode PI
..7,."<n\

:s
rm Factor

II-to-PC1 1
system c

-
,ridge
ontroller

A top-level overview of the Dependable Multiprocessor
software architecture is illustrated in Figure 4. The system is
composed of three primary layers: mission layer,
middleware layer, and platform layer. A key feature of this
architecture is the integration of generic software fault
tolerant techniques implemented in the middleware
framework. The Dependable Multiprocessor framework is
independent of and transparent to the specific mission
application, and independent of and transparent to the
underlying platform. This transparency is achieved at the
interface to the mission layer through well-defined, high-

level, Application Programming Interfaces (APIs), and at middleware services available to future mission applications
the platform layer through a System Abstraction Layer by facilitating its porting to new platforms.
(SAL) which isolates the middleware from the underlying
platform. This isolation and encapsulation makes the

Mlrrion Speclflc Companentr Self Rel~ant Components $ ~ ~ ~ u ~ ~ ~ , " r ~ n c e R Z - uep~ca ton Servcer
CF - Checkpont Service and API

Dependable Multprocesrol a Platfan Components FEMPl - FauI Taleran! Embedded CMS - Cluster Management Services
S P B C ~ ~ C C ~ m p ~ n e n t s . A ~ ~ I , ~ ~ ~ ~ ~ cOmponenft M e s ~ a ~ s Parsng lntedace AMS - iivaabiity ~ a n a g s m e n t serv~cer

FCP6 - FPGA CO-PrOCeSSOr Sewices OMS - Oi~tr#buted Me$ragng Servlcsr

Figure 4. Dependable Multiprocessor Software Architecture Diagram.

The lowest layer of the system is the platform layer, which
includes a COTS operating system, hardware specific
software such as network drivers, and the hardware
elements. The basic platform software is implemented using
MontaVista's version of the Linux Operating System, and is
common to all of the processors in the cluster. Other
Operating Systems may also be used, but Linux facilitates
leverage of many existing software tools. The central
component of the system is the middleware layer which
contains the essential Dependable Multiprocessor system
services which provide the fault tolerance, job management
and other applications services detailed in the following
sections.

4. I . High-Availability Middleware

The High Availability (HA) Middleware, the foundation
component for the Dependable Multiprocessor Middleware,
is composed of numerous services. For Dependable
Multiprocessor, we focus on Availability Management,
Distributed Messaging, and Cluster Management. In the
Dependable Multiprocessor implementation, the
functionality of these basic elements are extended and
augmented by Dependable Multiprocessor-specific
components to be covered in subsequent sections of this
paper. The primary functions of the High Availability
Middleware are resource monitoring, fault detection, fault
diagnosis, fault recovery, fault reporting, cluster
configuration, event logging, and distributed messaging.
High Availability is based on a small, reliable, cross-

platform kernel that provides the foundation for all standard
services, and its extensions. The kernel loads other, as well
as customer-specific APIs. The kemel also provides a
portability layer limiting user dependencies on the
underlying operating system and hardware.

Availability Management Service (AMS) provides the core
availability management framework and is hosted on the
cluster computer's System Controller. A system model and
state model implemented in the AMS allow control
extensions, such as the Dependable Multiprocessor Fault
Tolerance Manager, to manage abstractions of resources to
meet mission availability objectives. Managed resources can
include applications, operating system, chassis, I10 cards,
redundant CPUs, networks, peripherals, clusters, and other
middleware. These system resources and their relationships
are represented in a system model as objects, which AMS
then uses to manage the system by way of its internal state
machine. The AMS state model records the state of each
object, such as healthy, failed, shutting down, active,
standby, locked, unlocked, enabled, and disabled. This
information is made available to the Fault Tolerance
manager, which, in turn uses it to assess the system's health.

The Distributed Messaging Service (DMS) is a vital service
offered by the HA Middleware. Its function is to provide a
reliable messaging layer for communications in the
Dependable Multiprocessor cluster. Distributed messaging
is designed to address the need for intra- and inter- process
communications between system elements for numerous

application needs such as checkpointing, client/server
communications, event notification, fault management, and
time-critical communications. The messaging service
provides an effective and uniform way for distributed
messaging components to efficiently communicate and
coordinate their activities.

Communication using DMS begins when an application
opens a DMS connection creating a path between interested
subscribers to the data. When an application opens a
connection, it specifies a desired channel allowing DMS to
segment connections into smaller logical networks. The
application can then transmit a message to the registered
subscribers on that channel. Instead of managing
conlmunications within a network at the lower socket and
address level that requires the developer to build headers,
DMS enables application developers to group similar
information together into logical classifications. Unlike
sockets for which APIs must be provided with the exact IP
addresses and ports for all communicating machines.
However, by classifying messages into families and types,
DMS can route data to intended destinations without having
to explicitly address each message. Machines "register" to
receive messages of specific families and types, and on
specific channels, so the sending machine does not need to
know the destination. This architecture also facilitates the
implementation of network failover that is transparent to the
application. DMS identities, classifies, and manages the
addresses in order to streamline message delivery. The
message publisher can select between two types of
connections: standard or direct. These connections can be to
another application, an extension, or a server pool.

The Cluster Management Service (CMS) interacts with, and
is dependent upon, other High Availabikity Middleware
services. CMS manages the physical nodes or instances of
High Availability Middleware, while AMS manages the
logical representation of these and other resources in the
availability system model. CMS is responsible for
discovering, incorporating, and monitoring the nodes within
the cluster along with their associated network interfaces.
The addition or failure of nodes and their network interfaces
IS communicated to AMS, and the FT Manager through the
Distributed Messaging Service. CMS also works in
co~ijunction with AMS to provide manager node
redundancy, thus eliminating the manager node as a possible
single point of failure.

High Availability Middleware provides some additional
minor services such as data base management, logging
services, and tracing. The in-memory management database
is a high performance distributed replicated data base for
configuration, data storage, and retrieval. The database
supports distributed architectures and offers portable and
extensibte database architecture. It ~ncludes facilities such as
table creation, row insertion, reading and deleting, and
search with indexed retrieval. The High Availability
Middleware Logging Services are used to capture the
activlty of the system for later download. Logs are used to

help perform fault analysis and root cause determination.
Any service and application code can use the Logging
Services, which provide a variety of features, including
multiple and fixed-size circular (automatic overwrite) logs.
Developers use the trace facility primarily during the
engineering process as well as for capturing system
behavior during operation. It sends output to a file or other
output device.

For Dependable Multiprocessor, custom extensions had to
be developed to allow Dependable Multiprocessor-specific
middleware services to fully utilize High Availability
Middleware's capabilities. These extensions primarily allow
the Fault Tolerance Manager (FTM) Dependable
Multiprocessor component, described in Section 4.3, to
interface with High Availability Middleware to improve the
service's system monitoring capability. In particular, the
extensions allow the FTM to detect when a service or
application (including HAM itself), has initialized correctly
or failed. Also, one of the High Availability Middleware
extensions is the mechanism by which the FTM starts other
middleware services in a fault-tolerant manner.

4.2. Control Procc.s.\

The Control Process (CP) provides a unified view of the
embedded cluster to the spacecraft control computer and the
ground-based station user. It directly communicates to an
independent process running on the active system controller
via a communication link to the embedded cluster. This
process, residing on the system controller, translates the
commands from the CP into DMS messages that can be
interpreted by the other Dependable Multiprocessor system
components, and relays the status and other information
from the embedded cluster to the CP. The CP monitors the
system health via a system-wide heartbeat, generated by the
fault-tolerance manager as described in Section 4.3. This
heartbeat is employed by the CP to detect system-level
failures, to which the CP responds by performing required
diagnostics and failing over to the standby system controller
after a system-wide reboot. In addition to monitoring system
status, the CP also presents a mechanism to remotely initiate
and monitor diagnostic features provided by the Dependable
Multiprocessor middleware.

4.3 Furilt-Tolc~rcrncc Mmger and Agents

The Fault Tolerance Manager (FTM) is the central fault
recovery function for the Dependable Multiprocessor
system. The FTM works closely with the HA Middleware
Availability Management Services (AMS) to detect and
recover from system and application faults. Every
Dependable Multiprocessor system process has an
associated system model object, the health of which is
constantly monitored by the AMS service as described in
Section 4.1. If an object's health state transit~ons, the FTM
is updated, thus triggering an appropriate recovery action.
At runtime, the FTM refers to a set of recovery policies
from soft reboot to power off for various system and

application failures. For application recovery, the user can
define a number of recovery modes based on runtime
conditions. This configurability is particularly important
when executing parallel applications with FEMPI (discussed
in further detail in Section 4.5). The job manager frequently
directs the recovery policies in the case of application
failures. Additional information is provided on the FTM-Job
Manager interaction in the next section.

In addition to the HA middleware, the central FTM relies on
distributed software agents to gather system and application
liveliness information. The distributed nature of the agents
ensures that the ccntral FTM does not become a monitoring
bottleneck, especially since the FTM and other central
Dependable hlultiprocessor software core components
execute on a relatively low performance radiation hardened
processor. Numerous mechanisms are in place to ensure the
integrity of remote agents running on non-radiation
protected data processors as described in Section 4.1. In
addition to iniplementing recovery policies, the FTM also
maintains a fault history of various metrics for use in the
diagnosis and recovery process. This information is also
used to make decisions about system configuration and
application scheduling, and thus, to ensure maximum
availability. Also, the FTM is the central software
conlponent through which the embedded system sends
heartbeats to the spacecraft.

4.4. Job Mlzt~ager uric/ Agents

The Job Manager's (JM) primary functions are application
scheduling, resource allocation, processes dispatching, and
directing application recovery based on user-defined
policies. The JM employs an opportunistic load balancing
scheduler, which receives frequent system status updates
from the FTM in order to nlaximize system availability.
Jobs arc registered and tracked in the system by the JM via
tables detailing the state of all jobs, be they pending,
currently executing, or suspected as failed and under
recovery. These various job buffers are frequently
checkpointed to the mass data store to enable seamless
recovery of the JM and all outstanding jobs. Should an
unrecoverable failure of the control processor occur, the JM
on the backup controller will load the checkpointed tables
upon reboot and continue job scheduling from the last
checkpoint. A more detailed explanation of the
checkpointing mechanisms is provided in Section 4.7. To
ensure the manager's integrity, the JM heartbeats to the
FTM via the HA middleware.

Much like the FTM, the centralized JM employs distributed
software agents to gather system and application liveliness
~nforn~ation. The JM also relies upon the agents to fork the
cxecution of jobs, including forwarding information
required by applications at mntime such as the job's
~dcntification number, which is used to uniquely identify
checkpointing files. The distributed nature of the agents
ensures that the central JM does not become a bottleneck,
especially since the JM and other central Dependable

Multiprocessor software core components execute on a
relatively slow radiation hardened processor. Numerous
mechanisms are in place to ensure the integrity of remote
agents running on non-radiation protected data processors as
described in Section 4.1.

In the event of an application failure, the JM refers to a set
of user-defined policies to direct the recovery process. In
the event one or more processes fail in a parallel application
(i.e. one spanning multiple coordinating data processors),
then special recovery actions must be taken as dictated by
the particular algorithm. Several recovery options exist for
parallel jobs including blank mode (i.e, continue with other
processors assuming the extra workload), rebuild (i.e. the
JM either migrates the failed processes to healthy processors
or instructs the FTM to recover the faulty components in
order to reconstruct the system as before), and shrink (i.e.
the remaining processes continue by evenly dividing the
remaining workload amongst themselves). As mentioned,
the ability of a job to recover in any of these modes is
dictated by the underlying application. A more detailed
discussion of these recovery modes in provided in the next
section.

An additional feature the JM provides is the ability to
schedule traditional-processor only and FPGA-accelerated
jobs seanilessly. Portions of the JM have been borrowed
from the CARMA runtime job management service
framework and middleware [IG], but with much improved
fault-tolerance capabilities. Also, custom components have
been developed to interface with the HA middleware and
other Dependable Multiprocessor services.

4 . 5 . FEMPI

Fault tolerance is a critical factor for HPC system in space,
and is required to meet the emerging high-availability and
reliability requirements. Recovery from failure needs to be
fast and automatic, while the impact of failures on the
system as a whole should be minimal. The impact of
failures can be minimized through several indirect
approaches i.e. through mechai~isrns that do not address
direct recovery from faults. The indirect approaches
certainly avoid computation loss but in order to enable
applications to meet high-availability and high-reliability
requirements we need to consider other options. Some of
the options include: incorporating fault-tolerant features
directly into the applications, developing specialized
hardware that are fault-tolerant, making use of and
enhancing the fault-tolerant features of the operating
system, and developing application-independent middleware
that would provide fault-tolerant capabilities. Among these
options, developing application-independent middleware
has the minimal intrusion in the system and can support any
general application including legacy applications that fall
into the umbrella of the corresponding middleware model.
In our system, we design and develop an application-
independent fault-tolerant message passlng middleware
called FEMPI (Fault-tolerant Embedded Message Passing

Interface) i.e, we take a direct approach to providing fault-
tolerance and to improving the availability of the HPC
system in space. FEMPI is a light-weight fault-tolerant
design (implementation) of the Message Passing Interface
(MPI) standard.

Because of its widespread usage, MPI [17] has emerged as
the de-facto standard for development and execution of
high-performance parallel applications. By its nature as a
communication library that facilitates user-level
communication among a group of processes, the MPI library
needs to maintain global awareness of the processes that
collectively constitute a parallel application. An MPI
library consequently emerges as a logical and suitable place
to incorporate certain fault-tolerant features in order to
enable legacy and new applications to meet the emerging
higb-availability and reliability requirements of HPC
systems in space. Freeware implementations are also
underway, but significantly lag commercial efforts. Fault-
tolerance is absent in both the MPI (MPI-1 and MPI-2)
standards, and to our knowledge no satisfactory products or
research results offer an effective path to providing scalable
computing applications with effective fault-tolerance.
FEMPI is a fault-tolerant MPI implementation that provides
process level fault tolerance at the MPI API level.

Fault tolerance and recovery is provided through three
stages including detection of a fault, notification of the fault,
and recovery from the fault. As with other Dependable
Multiprocessor software components FEMPI is built on top
Self Reliant. The services from SR in conjunction with the
FTM and JM are used to provide detection and notification
capabilities. SR allows processes to heartbeat through fault
handlers, and hence has the potential to detect the failure of
processes and nodes. The notification service will be
developed as an extension to SR. SR also guarantees
reliable communication between the nodes in the system
through DMS as described in Section 4.1.

Figure 5. FEMPI and Dependable Multiprocessor software
interfaces.

With MPI applications, failures can be broadly classified as
process failures (individual processes of MPI application
crashes) and network failures (communication failure
between two MPI processes). FEMPI ensures reliable
communication (reducing the changes of network failures)
with all the low-level communication through DMS. As far
as process failures are concerned, the entire application fails
or crashes on the failure of any process in regular fault-

intolerant MPI designs. FEMPI, on the other hand prevents
the entire application from crashing on individual process
failures. MPI Restore, a component of FEMPI, resides in
the System Controller and communicates with the FTM to
update the status of nodes. On a failure, MPI Restore
informs all the MPI processes regarding the failure. The
status of senders and receivers (of messages) are checked in
FEMPI before communication to avoid trying to establish
communication with failed processes. If the communication
partner (sender or receiver) fails after the status check and
before communication, then a timeout-based recovery is
used to recover out of the MPI function call.

FEMPI survives the crash of n-l processes in an n-process
job, and, if required, can re-spawnirestart them. It is still the
responsibility of the HA Middleware to execute a recovery
scheme, i.e. recover the data-structures and the data on the
crashed processes. A program witten in MPI can run within
FEMPI environment.

4.6. FPGA Co-Processor Services

Using FPGAs to accelerate scientific applications is still an
emerging discipline within computer engineering. Until
recently it has been confined to relatively few outside the
computer science & engineering fields due to the
complexity of hardware design. The reconfigurable
computing discipline is fractured and populated with
proprietary solutions. Universal standards that power the
software industry, compile-time libraries, a universal run-
time environment and reliable middleware, do not exist.
Several vendors such as Nallatech and SRC provide top-
down solutions for FPGA development, but these are based
around proprietary interfaces and closed-source Application
Program Interfaces (APIs). Often, a specific RC platform
must be targeted before application development can begin.
This is unheard of in the software industry where code
written to language standards (e.g. ANSI-C) can be ported
to multiple operating systems and instruction set
architectures. Porting an application to another vendor's RC
platform is often not a trivial task as substantial portions of
the hardware and software need to be rewritten.

The USURP framework is being developed by researchers
at the University of Florida as a unified solution for multi-
platform FPGA development. A compile-time
hardwarelsoftware interface and a run-time communication
standard were developed to support the framework (Fig. 6).
As described in [IS], the compile-time hardwarelsoftware
interface is responsible for unifying vendor software APIs,
standardizing the hardware interface to external components
and the communications bus, organization of data for the
hardware accelerated core, and exposing the developer to
common FPGA resources. The run-time communication
standard handles determining whether the resources meet
the application's requirements, configuring the FPGA,
detectinghandling hardware faults and interrupts, and
transferring data between the host PC and FPGA.

Ver
A

-
ion

External
Hardware Memory

I

-

re Applicat
-

Hardware Abstract~on API

Extended
Hardware
Wrapper

Extended
FPGA Software

Interface API

Interface

Universal
Hardware

Universal
FPGA Software

interface API

Block 1 RAM 1
File

Fault
Manager

Wrapper Interrupt

User Appl~cation Core

Figure 6. USURP hardwarelsoftware interface.

The Hardware Abstraction API [I91 abstracts the FPGA
from the application developer; the reconfigurable hardware
becomes just another computing resource. To accomplish
this, the USURP hardwarelsoftware interface and run-time
communication standard are encapsulated in a familiar
library of linear algebra and signal processing kernels. The
Hardware Abstraction API is based on the GNU Scientific
Library (GSL). GSL is an open-source library of numerical
routines for scientific computing and remains popular in the
science and engineering community due to its highly
portable nature. RCGSL, our hardware-accelerated version
of GSL, uses the same structures and syntax as GSL to
provide the user with a familiar programming environment.

The checkpointing service provides a user-level,
uncoordinated protocol for storing and recovering system
state, application data, and any data transferred to or from
Mass Data Store (MDS). The service comprises a server
process that runs on the MDS and an API for the
applications that want to communicate data.

The main server process facilitates all data operations
between the applications and radiation hardened mass
memory. The HA Middleware Distributed Messaging
Service is used to reliably transfer data, utilizing its many-
to-one and one-to-one communication capabilities.
Checkpoint and data requests are serviced on the Mass Data

Store in parallel to allow for multiple simultaneous
checkpoint or data accesses.

The application-side API consists of a basic set of functions
that allow data to be transferred to the MDS in a fully
transparent fashion. These functions are similar to C-type
interfaces and provide a method to write, read, rename and
remove stored checkpoints and other data files. The API
also includes a function that assigns each application with a
unique name that is used for storing checkpoints for that
particular application. This name is generated based on the
name of the application and a unique job id and process id
defined by the central JM when the job is scheduled. Upon
failover or restart of an application, the application may
check the MDS for the presence of specific checkpoint data,
use the data if it is available, and complete the interrupted
processing. Checkpoint content and frequency is
determined by the process that chooses to checkpoint.

4.8.Algorithm -based Fault Tolerance (ABFT) Librniy

The Algorithm Based Fault Tolerance (ABFT) library is a
collection of mathematical routines that can detect and in
some cases correct data faults. Data faults are faults that
allow an application to complete, but may produce an
incorrect result. The seminal work in ABFT was done in
1984 by Huang and Abraham 1201. Subsequently the JPL-
lead REE project developed a parallel processing ABFT
library. The JPL BLAS-3, ABFT-enabled library includes
functions such as matrix multiply, LU decomposition, QR
decomposition, single value decompositions (SVD) and fast
Fourier transform (FFT). This library is been ported to the
Dependable Multiprocessor for use by application
developers as a fault detection mechanism. ABFT
operations function by checking on linear algebraic
computations by adding check-sum values in extra rows and
columns of the original matrices and then checking these
values at the end of the computation. The mathematical
relationships of these checksum values to the matrix data is
preserved over linear operations. An error is detected by re-
computing the checksums and comparing the new values to
those in the rows and columns added to the original matrix.
If an error is detected, an error code is returned by to the
calling application. The appeal of ABFT over simple
replication is that the additional work that must be done to
check operations is of a lower order of magnitude than the
operations themselves. For example, the check of an FFT is
O(n), where the FFT itself is O(nlogn).

In Dependable Multiprocessor ABFT-enabled functions will
be used by the application developer to perform automated,
transparent, low overhead error checking on linear
algebraic, computations. In the longer term, it is expected
that other, non-algebraic algorithms will similarly be ABFT-
enabled and added to the library. The user will determine,
from the returned error code, whether and how to address
the error. As part of this effort, we will add application level
APIs, which when called, will inform the Job Management
Agent (JMA) that a fault has occurred. The JMA will then

inform the Fault Tolerance Manager (FTM), and the FTM
will determine a course of action. A typical response would
be to stop the application and restart from a check pointed
values.

4.8. Replicrrtion Services

Replication and comparison is a well known method to
detect errors in a system. One typical replication technique
is hardware replication, wherein the application is replicated
on one or more processing resources and the results of the
computation anlongst all the processors are compared. In
Triple Modular Redundancy (TMR), if two or more results
agree, that result is taken as correct. If two or more disagree,
then an uncorrectable fault as been observed and additional
action is needed. Another technique is process level
replication, in which n~ultiple identical processes are
instantiated on a single processing resource and their results
compared for consistency

In this experiment, since resources are limited, process level
replication is implemented where two identical processes
arc spawned on a sir~gle processing resource. The user will
insert provided application level APIs at locations in the
program where results are exchanged. The results of the
application replicas are then compared for consistency
before forwarding. In the event of a miscornpare an error
code is returned to the calling application. The user will
determine, from the returned error code, whether and how to
address the error. Similar to ABFT, the user will invoke an
application level API to inform the JMA that an error has
occurred and that corrective action is required.

NASA's strategic plans for space exploration present
significarlt challenges to space computer developers.
Traditional methods and architectures fall short of the
requirements for next generation nlissions The Dependable
Multiprocessor (DM) technology addresses this need and
provides the foundation for future space processors. The
Dependable Multiprocessor is an integrated parallel
computing system that addresses all of the essential
functions of a cluster computer for spacecraft payload
processing. A TRL4 prototype of the technology has been
demonstrated, and a TRL5 prototype will be completed in
Spring of 2006. The next step in the development of
Dependable Multiprocessor includes a TRL6 prototype,
scheduled for completion in 2007, followed by a TRL7
prototype validation flight experiment in 2009 [21].

[I] Jeremy Ramos, et. al.., "En~ironmentally Adaptive Fault
Tolerant Computing," IEEE Aerospace Conference, March
2005

[3] R. Some and D. Katz, "NASA Advances Robotic Space
Exploration," IEEE Computer, IEEE Press, Volume 36,
Issue 1, Jan 2003, Pages. 52 to 61.

[4] New Millennium Program Web site
ht~:/lnmp.ipl.nasa.~ov!

151 Jeremy Ramos, Roger Sowada, and David Lupia,
"Scientific Computing in Space Using COTS Processors,"
Proc, of International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD),
Washington, DC, September 7-9, 2005.

[6] R. Some and D. Ngo, "REE: A COTS-Based Fault
Tolerant Parallel Processing Supercomputer for Spacecraft
Onboard Scientific Data Analysis," Proc. Digital Avionics
Systems Conf., IEEE Press, 1999, pp. 7.B.3-1 to 7.B.3-12.

[7] E. R. Prado et al.,"A Standard Approach to Spaceborne
Payload Data Processing," IEEE Aerospace Conference,
March 200 1.

[8] Gary R. Brown, "Radiation Hardened PowerPC 603e TM
Based Single Board Computer," 20th Digital Avionics
Systems, 2001. Oct 2001

[9] IBM Corporation, "PowerPC 750FX Microprocessor
User's Manual," Feb 2003 http:/lwww-
30G.ibrn.comlchips/techlib/techlib.nsf/productslPowerPC~7
50FX-Microprocessor

[I01 Xilinx Corporation, "QPro Vinex 2.5V Radiation
Hardened FPGA," Xilinx Web site ht tp: / lw~vw.xi l i~~x.co~ni ,
Nov. 2001

[I l l J.S. Donaldson, "Push the DSP Performance
Envelope", Xilinx Xcell Journal, Spring 2003

[I21 IEEE Standard 802.3ab and IEEE Standard802.3~

[13] Orion Technologies, Inc. CPC7510 Single Board
Computer webpage http:i'/otisolutions.com/cpc75 I 0.html

[I41 Alpha Data Parallel Systems ADM-XRC-I1 webpage
http://www.alpha-data.com/aDependable Multiprocessor-
xrc-ii.html

[15] GoAhead Web site http:i!'wnw.

[I61 Ian A. Troxel, Aju M. Jacob, Alan D. George, Raj
Subramaniyan and Matthew A. Radlinski, "CARMA: A
Comprehensive Management Framework for EIigh-
Performance Reconfigurable Computing," Proc.
International Conference on Military and Aerospace
Prograrnmabie Logic Devices (MAPLD), Washington, DC,
September 8-10, 2004.

[2] "NASA 2003 Strategic Plan," NP-2003-01-298-HQ

[I71 Message Passing Interface Forum, MPI: A Message-
passing Interface Standard, Technical Report CS-94-230,
Computer Science Department, University of Tennessee,
April 1, 1994.

[l8] J. Greco, B. M. Holland, I. A. Troxel, G. Barfield, V.
Aggarwal, and A. D. George, "USURP: A Standard for
Design Portability in Reconfigurable Computing",
submitted to IEEE Sym. on FCCM, Napa Valley, CA, April
24-26,2006,

[I91 J. Greco, G. Cieslewski, A. Jacobs, I. Troxel, and A.
George, "Hardwarelsoftware Interface for High-
performance Space Computing with FPGA Coprocessors,"
Proc. IEEE Aerospace Conference, Big Sky, MN, March 4-
1 1,2006 (to appear).

[20] K. Huang and J. Abraham, "Algorithm-Based Fault
Tolerance for Matrix Operations", IEEE Trans. on
Computers, Vol. C-33, No. 6, pp. 518-528, June 1984.

[21] John R. Samson, Jr. et. al., "Technology Validation:
NMP ST8 Dependable Multiprocessor Project,"
Proceedings of the 2006 IEEE Aerospace Conference,
March 2006.

The authors would like to thank the following people and
organizations for their contributions to the Dependable
Multiprocessor effort: Brian Heigl, Paul Arons, Gavin
Kavanaugh, and Mike Nitso, from GoAhead Software, Inc.
Other members of the team are Dr. Ravishankar Iyer and
Dr. Zbigniew Kilharcyk from the University of Illinois and
Armored Computing.

The Dependable Multiprocessor effort is funded under
NASA NMP ST-8 contract NMO-710209.

Jeremy Ramos earned the B.S. in Computer a Science and Engineering, and is currently a
p-\ Ph.D. student at the University of South

Florida. Mr. Ramos bas been a Honeywell
j\ ,. Aerospace employee since 1999, and is

presently a Technical Director and Systems
Engineer. His most recent assignments at Honeywell
included the Honeywell Reconfigurable Space Computer
(HRSC) project, and the New Millennium Space

John Samson is a principal engineering
fellow at Honeywell Aerospace in
Clearwater, Florida. Dr. Samson has 35+
years of experience in onhoard processing
for space and airborne applications and has

t published more than 40 papers in the area of
onboard processing systems and architectures. He is a
senior member of the IEEE and an associate fellow in the
AIAA.

Ian Troxel is a Ph.D. candidate in
Electrical and Computer Engineering at the

i University Florida. He is a research
assistant who co-leads the advanced space
computing and the reconfigurable

computing research groups at the High-performance
Computing and Simulation Research Laboratory. His
research interests include reconfigurable and embedded
computing and he is a student member of the IEEE.

Rajagopal Subramaniyan is a Ph.D. student
in Electrical and Computer Engineering at
the University of Florida. He co-leads the

r . -- ''f high-performance computing and i;:. ' i-7 ,..a
communication group and is also a member
of the advanced space computing group at

the High-Performance Computing and Simulation Research
Laboratory. His research interests include high-
performance computing, systems and networks.

Adam Jacobs is a Ph.D. student in Electrical
and Computer Engineering at the University
of Florida. He is a research assistant in the

, .
Advanced Space Computing and
Reconfigurable Computing groups at the
High-Performance Computing and

Simulation Research Laboratory. His research interests
include fault-tolerant FPGA architectures and high-
performance computing. He is a student member of the
IEEE.

James Greco is a Ph.D. student in the
Electrical & Computer Engineering
Department at the University of Florida.
He is a research assistant and member of
the Advanced Space Computing and

Recontigurable Computing groups in the High-performance
Computing & Simulation Research Laboratory. His
research interests include reconfigurable computing in HPC
and the hardware acceleration of signal processing
applications. He is a student member of IEEE.

Technology 8 Dependable Multiprocessor project. His
numerous technical contributions have resulted in several Grzegorz Cieslewski is a graduate student

patent applications, and a patent award. Prior to his at the University of Florida where he is . .
engineering career Mr. Ramos served for 7+ years with the " currently pursuing a Ph.D. degree in
United States A m y as a Technician in the Army Ordnance Electrical and Computer Engineering. As a

Core. Mr. Ramos' research interests include computer research assistant he is a member of
architecture, system simulation, and reconfiguiahle Advanced Space Computing and Reconfigurable
computing. He is a member of the IEEE. Computing groups at High-performance Computing &

Simulation Research Laboratory. His research interests University of South Florida. His research and technical
include computer architecture, reconfigurable, fault-tolerant interests include software and system fault tolerance,
and distributed computing as applied to linear algebra artificial intelligence and machine learning, embedded and
problems and signal processing. He is a student member of real-time systems and high-performance, parallel and
IEEE. distributed comuutine. Dr. Patel is Lead Software Architect . -

for the Dependable Multiprocessor project.
John Curreri is a graduate student at the
University of Florida where he is currently Vikas Aggarwal is a systems engineer with
pursuing a Masters degree in Electrical and "andel Systems in Clearwater, Florida. He
Computer Engineering. As a research received his B.Tech. degree in Electronics and
assistant he is a member of Advanced Communications Engineering from G.G.S.
Space Computing group at High- Indraprastha University, Delhi, India. He then

oerfomance Comoutine & Simulation Research moved over to United States and received his . ., ~ ~ ~~~~ ~ ~

Laboratory. His research interests include parallel, MS degree in Electrical and Computer Engineering from
reconfigurable and fault-tolerant computing. He is a student University of Florida. His research interests include
member of IEEE. reconfigurable and embedded computing and system fault-

Michael Fischer is pursuing a Master's
Degree in Electrical and Computer
Engineering at the University Florida. He is
a research assistant who is a member of the
advanced space computing group at the

High-performance Computing and Simulation Research
Laboratory. His research interests include fault tolerance
and availability of embedded systems.

.:. Eric Grobelny is a Ph.D. student in
Electrical and Computer Engineering at
the University of Florida. He works as a

/I
I@ research assistant at the High-

performance Computing & Simulation
Research Laboratory. His main focus of

research is in performance prediction of parallel scientific
applications for clustered and embedded systems through
modeling and simulation. He is also the team leader of the
Mission Assurance group which focuses on disaster
recovery and business continuity in high-performance
computing environments.

tolerance, high-performance, parallel and distributed
computing.

Raphael Some has more than 27 years
.. experience in technology planning,
1 development, and commercialization. He is

a Project Manager at the NASA/Caltech Jet
Propulsion Laboratory, where he serves as
an avionics and microelectronics

technologist for NASA's New Millennium Program. Prior
positions at JPL include chief engineer and systems
engineering manager of the REE (space-bome, COTS
based, fault-tolerant supercomputer) project and initiator of
JPL's self-organizing wireless Smart Sensor Web. He is a
member of the IEEE and holds a variety of patents and has
published numerous papers in micro-electronics packaging,
computer architecture and fault tolerance. In addition to
reliable computing and advanced microelectronics materials
and processes, his current research interests include: the
development of methods and tools for evaluation of
technology portfolios; the dynamical control of
gravitationally assisted descents of lo-friction, steeply
sloped surfaces using elongated, weight bearing, foot-

Alan D. George is Professor of Electrical extenders; and the dynamics of high-speed navigation of
and Computer Engineering at the University complex curvilinear routes on two-wheeled motorized
of Florida, where he serves as Director and vehicles.
Founder of the HCS Research Laboratory.
He, received the B.S. degree in Computer
Sc~ence and the M.S. in Electrical and

Cou~puter Engineering from the University of Central
Florida, and the Ph.D. in Computer Science from the Florida
State University. Dr. George's research interests focus on
high-performance architectures, networks, services, and
systems for parallel, reconfigurable, distributed, and fault-
tolerant computing. He is a senior member of IEEE and
SCS, and can be reached by e-mail at george@hcs.ufl.edu.

Minesh I. Patel is a systems and software q-"' architect and consultant with TandeI Systems
&.g .; in Clearwater, Florida. He received his BSEE
;.'a : and BSCpE in electrical and computer
-,J engineering and his MSCpE and Ph.D. in

1. Computer Science and Engineering from the

