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Ahs~mct-With the ever increasing demand for higher 
bandwidth and processing capacity of today's space 
exploration, space science, and defense nlissions, the ability 
to ef-ficiently apply comnlerciai-off-the-shelf (COTS) 
processors for on-board computing is now a critical need. In 
response to this need, NASA's New Millennium Program 
office has commissioned the development of Dependable 
Multiprocessor (DM) technology for use in payload and 
robotic missions. The Dependable Multiprocessor 
technology is a COTS-based, power efficient, high 
performance, highly dependable, fault tolerant cluster 
computer. To date, Honeywell has successfully 
demonstrated a TRL4 prototype of the Dependable 
Multiprocessor [ I ] ,  and is now working on the devclopmcnt 
of a TRLS prototype. For the present effort Honeywell has 
teamed up with the University of Florida's High- 
performance Conlputing and Simulation (HCS) Lab, and 
together the team has demonstrated major elements of the 
Dependable Multiprocessor TRLS system. This paper 
provides a detail description of the basic Dependable 
Multiprocessor technology, and the TRLS technology 
prototype currentty under developtnent. 

Raphael Some 
NASA Jet Propulsion Lab 

rsome~$jpl.nasa.gov 

onboard computers in these remote systems have contained 
minimal functionality; partially in order to satisfy design 
size and power constraints, but also to minimize complexity 
as a means of coping with high dependability requirements. 
Hence, these traditional space computers have been capable 
of doing little more than executing small sets of real-time 
spacecraft control procedures, with little or no processing 
bandwidth left over for instrument data processing. This 
approach has worked fairly well until now, as instruments 
have consisted of low complexity imagers, with 
compressible output streams transmittable to ground stations 
for post processing knowledge extraction. As the 
capabilities of instruments on exploration platforms 
increase, more processing and autonomy will be necessary 
onboard to fully exploit their vast output data streams [ 2 ] .  
Autonomous spacecraft will further increase the knowledge 
returns though opportunistic explorations conducted outside 
the Earth-bound operator control loop. In response, NASA 
has initiated several projects to develop technologies that 
address the onboard processing gap. One such program is 
the NASA New Millenniun~ Program's ST8 Project [3]. 

The vision of the New Millennium Program's Dependable 
Multiprocessor experiment is to migrate COTS-based 
computers to space, thereby enabling new classes of science 
[4]. In support of this vision, the Honeywell and University 
of Florida team is developing the Dependable 
Multiprocessor (DM) technology. Dependable 
Multiprocessor technology conlbines a set of innovative 
solutions to enable efficient use of high performance COTS 
processors in the harsh space environment, while 
maintaining the required system reliability and availability. 
Dependable Multiprocessor is a sophisticated technology 
composed of four chief conlponents [S]. 

First, Dependable Multiprocessor is an architecture and 
NASA has a long and relatively productive history of space methodology enabling the use, in space, of COTS-based, 
exploration as exemplified by recent rover nussions to Mars. high performance, scalable, multi-computer systems. A 
v .  

I raditionatly, space exploration missions have essentially distinguishing feature of the architecture, critical to 
been remote control platforms with all major decisions achieving high performance and efficiency, is the use of 
made by operators located in control centers on Earth. The reconfigurable co-processors. Furthermore, through 
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accommodation for upgrades to future COTS parts, the 
Dependable Multiprocessor architecture can evolve along 
Second, Dependable Multiprocessor is a parallel processing 
environment for science codes that incorporates an 
application development and runtinie environment familiar 
to science application developers. By adopting these 
standard environments, Dependable Multiprocessor can 
significantly reduce the cost and schedule associated with 
porting of applications from the laboratory to the spacecraft 
payload data processor. 

Third, Dependable Multiprocessor is a set of algorithms for 
system and fault tolerance management. These algorithms 
allow Dependable Multiprocessor based systems to 
dynamically manage resources in response to environment, 
application criticality, and system mode, in order to 
maintain mlssion required dependability and maximal 
system efficiency. 

Lastly, Dependable Multiprocessor is a methodology and 
associated tools that allow developers of Dependable 
Multiprocessor systems to predict their implementation's 
behavior in the target environment, including: predictions of 
availability, dependability, fault ratesitypes, and system 
level performance. 

Dependable Multiprocessor builds on earlier projects at JPL, 
Honeywell and Raytheon, which were sponsored by NASA, 
DARPA, and USAF. 

The Advanced Onboard Signal Processor (AOSP), 
developed by Raytlieon Corporation, for the USAF in the 
late 70's and mid 80's made significant breakthroughs in 
understanding the effects of natural and man-made radiation 
on computing systems and components and in developing 
architectural, hardware and software techniques for 
detection, isolation, and mitigation of these effects. AOSP, 
though never flown, was instrumental in developing the 
fundamental concepts, modeling and testing techniques 
behind much of the current work in fault tolerant high 
performance distributed computing. 

Advanced Architecture Onboard Processor (AAOP), a 
follow on effort to AOSP, also developed at Raytheon 
Corporation, engineered alternative concepts and new 
approaches to spacecraft onboard data processing. The 
AAOP architecture found its way into both commercial and 
military platforn~s, but was never commercialized or 
popularized as it was, in large measure, overkill for most 
applications. 

The DARPA sponsored Space Touchstone computer, 
deveIoped at Honeywell was ground breaking in its goal of 
using COTS components and a COTS system architecture in 
high performance, highly reliable, airispace-home 
computing. 

side commercial technologies thereby ensuring its longevity. 

NASA's Remote Exploration and Experimentation (REE) 
project [6], at JPL, extended fault tolerant computing to the 
world of parallel and cluster processing. Among other 
advances, REE addressed, in a general manner, the issue of 
low cost and tailored fault tolerance. The KEE project 
developed fault tolerant middleware for cluster computers, 
methods and tools for test and characterization of 
components and systems, Software Implemented Fault 
Tolerance techniques and libraries. The project developed 
fundamental concepts upon which to develop fault tolerant 
high performance parallel processing, and more specifically, 
fault tolerant, low cost, high performance, power ratio, 
embedded clusters. 

Figure 1 depicts the Dependable Multiprocessor hardware 
architecture, which is based on Honeywell's Integrated 
Payload concept [7]. The Dependable Multiprocessor is 
essentially a reconfigurable cluster computer with 
centralized control. The essential hardware elements of the 
system are a redundant radiation hardened System 
Controller, a cluster of COTS based reconfigurable Data 
Processors, redundant COTS based Packet Switched 
networks, and a radiation hardened Mass Data Store. 
Additional peripherals or custom modules may be added to 
the network to extend the system's capability; however, 
these peripherals are outside of the scope of the base 
architecture. To increase system reliability it is possible to 
employ redundancy of the System Controller and network 
as depicted in the block diagram. Likewise N-of-M sparing 
of Data Processors may be used for added reliability. 
Redundancy, however, may not be affordable or necessary 
for all missions, and therefore it is not a required 
architectural element. Command and Telemetry is 
exchanged directly between the active System Controller 
and the Spacecraft Control Computer via direct 1553 
spacecraft interfaces. The primary dataflow in the system is 
from instrument to Mass Data Store, through the cluster, 
back to the Mass Data Store, and finally to the ground via 
the spacecraft's Communication Subsystem. 

The primary mechanism for hardware scalability provided 
by the architecture is the number of Data Processors inserted 
into the network. First adopters are expected to need up to 
30 nodes in their clusters, a node count that is well within 
the capabilities of Gigabit Ethernet. Alternative approaches 
to scalability include forming a cluster-of-clusters. This 
alternative may be more suitable for eventual product 
development since standard cluster configurations can be 
developed as fully intcgratcd products, and later combined 
to form a larger machine as required by a particular mission. 



Figure 1. Dependable Multiprocessor. 

VirtexII 6000 FPGA co-processor [lo], and their associated 
3.1. System Controller standard support chips, e.g., COTS bridge, and I10 chips, 

clocks, and memories. 
All central control software for the cluster executes on the 
System Controller node. Due to the critical nature of Table 1. RHPPC SBC Key Features 
centralized control we have selected the Honeywell 
Radiation Hardened PPC (RHPPC) Single Board Computer 
(SBC) for implementation of the System Controller. By 
implementing the System Controller in highly reliable and 
radiation hardened electronics we reduce the likelihood of 
experiencing major system control faults due to single event 
upsets (SEUs). The RHPCC SBC is based on the Motorola 
PowerPC 603e microprocessor technology, its key features 
are summarized in Table 1 [8]. 

3.2. Data Processors and FPGAs 

The core processing elements of the cluster are the Data 
Processors. As depicted in Figure 2 the Data Processor's 
architecture is similar to a standard single board computer, 
with the exception of the FPGA co-processing element. In 
support of our COTS goal the Data Processor employs a 
COTS IBM PowerPC 750FX microprocessor [9], a Xilinx 
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Figure 2. Data Processor 
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The FPGA co-processor is a key to achieving high- 
performance and efficiency in the cluster. The FPGA 
provides a capability for implementing algorithms directly 
in hardware, thereby exploiting algorithmic parallelism. 
This typically results in speedup of 10-to-100x with 
significant reductions in power [ l l ] .  Additionally, FPGAs 
make the cluster a highly flexible platform, allowing on- 
demand configuration of hardware. Via FPGA 
reconfiguration, the Data Processor can support a variety of 
application specific modules such as Digital Signal 
Processing cores, data compression, and vector processors. 
This overall flexibility allows application designers to adapt 
the cluster hardware for a variety of mission-level 
requirements. For DSP and algorithm intensive applications, 
greater efficiency and performance may be achieved by 
using more custom hardware modules in the FPGAs. Then 
again, for applications that are logic-intensive, 
microprocessors are more suitable targets. Some key 
features of the Data Processor are listed in Table 1-2. 

Table 2. Data Processor Key Features 

COTS Based 
750 fx @ 650 MHz Delivering 1300 MIPS . 
VirtexII 6000 co-prt - 
PC1 32-blt 33 MHz - 
Gigabit Ethernet - 
1 GB DRAM w~th  bCC 
12MB EEPROM with SECDED EDAC 
256 MB Flash 
JTAG test interface 
UART interface for development 
6U x 220 mm Euro Card Fonn Factor 
Mass <3 lbs 
Max Power Draw 20W 

3.3.  Network lnterconnect 

Gigabit Ethernet (GigE) [I21 is the prevalent networking 
system for cluster architectures. GigE is a low cost packet 
switched network that offers bandwidths up to 1 Ghps. 
Additionally, GigE has a promising growth path to 10 GigE 
a new standard that will support bandwidths up to 10 Ghps. 
GigE offers many network topology options allowing 
system-level architectural optimization. Furthermore, many 

COTS microprocessors and peripherals include GigE 
network interfaces, allowing for direct connection to a GigE 
network without additional hardware. 

In Dependable Multiprocessor, GigE is the data exchange 
medium. Sideband, low bandwidth, low latency buses can 
be used for control. This allows for optimization of the 
GigE network to address the high throughput needs of the 
parallel processing science applications. 

3.4. Mass Data Storage 

The last hardware element of the system which we will 
discuss herein is the Mass Data Store. In general terms the 
Mass Data Store is the cluster's data server. Its functions 
include providing the primary cluster data inputloutput 
interface, and reliable data warehousing. Data in the Mass 
Data Store may he checkpoint data stored by the 
application, raw data from instruments, application 
parameters, or results ready for transmission. As with the 
System Controller, the Mass Data Store should be radiation 
hardened. This minimizes the likelihood that data will be 
corrupted by faults, ensuring reliable input and output of 
data from the system. A new product under development at 
Honeywell is ideal for Mass Data Store implementation. 
The Honeywell Satellite Data Server (SDS) architecture 
incorporates memory arrays, and processing into an 
integrated reliable server solution. Furthermore, the SDS 
architecture is highly scalable and readily adaptable to 
mission needs. 

3.5. TRLS Testbed Architecture 

The focus of the current project phase is the development of 
a TRL5 system prototype, including hardware and software. 
As depicted in Figure 3 the TRL5 prototype hardware 
consists of a cluster computer, a development workstation, 
reset controller, and power supply. 

The cluster computer is implemented using seven Orion 
Technologies Inc CPC7510 Single Board Computers in a 
CompactPC1 chassis interconnected over redundant Gigabit 
Ethernet switches [13]. Four of the single board computers 
are configured as Data Processors, two as redundant System 
Controllers. and one as a Mass Data Store. 
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Figure 3. TRL5 Prototype Testbed Hardware Block Diagram. 

The CPC7510 is a hot swappable, high-performance, IBM 
750fx PowerPC Single Board Computer designed for high- 
availability applications. The CPC7510 is extremely 
versatile with two PMC slots, variable operating frequencies 
between 650 MHz and 1 GHz, and support for chassis 
controller or peripheral slot placement. Other key features of 
the CPC7510 are summarized in Table 3. 

As a System Controller in our testbed the CPC7510 has 
been outfitted, via the PMC, with a third Ethernet Network 
Interface for experimental control interfacing from the 
development workstation. As a Data Processor the standard 
CPC7510 includes an ADM-XRC-I1 PMC. The ADM- 
XRC-I1 is a high performance FPGA co-processing PMC 
from Alpha Data Parallel Systems [14], and is representative 
of the flight FPGA co-processor. The final configuration of 
the CPC7510 includes a hard drive PMC to emulate the 
storage capacity of a Mass Data Store. 

Software development, experiment control, instrumentation 
data collection, and Spacecraft Control Computer emulation 
are achieved with the development workstation. The 
development workstation is a standard Dell PC configured 
with a Xeon 3 GHz CPU running the Fedora Core 4 Linux 
OS. The basic configuration has been altered to include 
support for 8 serial ports using an Axxon Serial Port Mux 8 
VO board, and three GigE ports with an Intel Dual Gigabit 
Ethernet NIC. 

Additional elements of the testbed include a software 
controlled, instrumented power supply, which is used to 
take detail measurements of power usage, and a reset 
control device, integrated by Tandel Systems, which 
provides the ability for the software on either the 
development workstation or the active System Controller to 
reset each node in the system individually. 

Table 3. Data Processor Key Features 4. MIDDLEWARE ARCHITECTURE 

Orion Technologies (OTI) Linux Kernel 
PowerPC 750FX v2.3 @ 6OnnaTT- - - 
64/32 1 164 univers - - 
Marve :ry I1 ( M v o r m ~ )  
133Mhz rronr s ~ d e  host inte " 
128 MB high-speed DDR SI 
Dual Gigabit Ethernet interf 
Dual PMC slots (64-bit 133MHz, 32-bit 66MHz) 
Dual serial RS-232 interface - 
6U x 220 mm Euro Card Fo 
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A top-level overview of the Dependable Multiprocessor 
software architecture is illustrated in Figure 4. The system is 
composed of three primary layers: mission layer, 
middleware layer, and platform layer. A key feature of this 
architecture is the integration of generic software fault 
tolerant techniques implemented in the middleware 
framework. The Dependable Multiprocessor framework is 
independent of and transparent to the specific mission 
application, and independent of and transparent to the 
underlying platform. This transparency is achieved at the 
interface to the mission layer through well-defined, high- 



level, Application Programming Interfaces (APIs), and at middleware services available to future mission applications 
the platform layer through a System Abstraction Layer by facilitating its porting to new platforms. 
(SAL) which isolates the middleware from the underlying 
platform. This isolation and encapsulation makes the 
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Figure 4. Dependable Multiprocessor Software Architecture Diagram. 

The lowest layer of the system is the platform layer, which 
includes a COTS operating system, hardware specific 
software such as network drivers, and the hardware 
elements. The basic platform software is implemented using 
MontaVista's version of the Linux Operating System, and is 
common to all of the processors in the cluster. Other 
Operating Systems may also be used, but Linux facilitates 
leverage of many existing software tools. The central 
component of the system is the middleware layer which 
contains the essential Dependable Multiprocessor system 
services which provide the fault tolerance, job management 
and other applications services detailed in the following 
sections. 

4.  I .  High-Availability Middleware 

The High Availability (HA) Middleware, the foundation 
component for the Dependable Multiprocessor Middleware, 
is composed of numerous services. For Dependable 
Multiprocessor, we focus on Availability Management, 
Distributed Messaging, and Cluster Management. In the 
Dependable Multiprocessor implementation, the 
functionality of these basic elements are extended and 
augmented by Dependable Multiprocessor-specific 
components to be covered in subsequent sections of this 
paper. The primary functions of the High Availability 
Middleware are resource monitoring, fault detection, fault 
diagnosis, fault recovery, fault reporting, cluster 
configuration, event logging, and distributed messaging. 
High Availability is based on a small, reliable, cross- 

platform kernel that provides the foundation for all standard 
services, and its extensions. The kernel loads other, as well 
as customer-specific APIs. The kemel also provides a 
portability layer limiting user dependencies on the 
underlying operating system and hardware. 

Availability Management Service (AMS) provides the core 
availability management framework and is hosted on the 
cluster computer's System Controller. A system model and 
state model implemented in the AMS allow control 
extensions, such as the Dependable Multiprocessor Fault 
Tolerance Manager, to manage abstractions of resources to 
meet mission availability objectives. Managed resources can 
include applications, operating system, chassis, I10 cards, 
redundant CPUs, networks, peripherals, clusters, and other 
middleware. These system resources and their relationships 
are represented in a system model as objects, which AMS 
then uses to manage the system by way of its internal state 
machine. The AMS state model records the state of each 
object, such as healthy, failed, shutting down, active, 
standby, locked, unlocked, enabled, and disabled. This 
information is made available to the Fault Tolerance 
manager, which, in turn uses it to assess the system's health. 

The Distributed Messaging Service (DMS) is a vital service 
offered by the HA Middleware. Its function is to provide a 
reliable messaging layer for communications in the 
Dependable Multiprocessor cluster. Distributed messaging 
is designed to address the need for intra- and inter- process 
communications between system elements for numerous 



application needs such as checkpointing, client/server 
communications, event notification, fault management, and 
time-critical communications. The messaging service 
provides an effective and uniform way for distributed 
messaging components to efficiently communicate and 
coordinate their activities. 

Communication using DMS begins when an application 
opens a DMS connection creating a path between interested 
subscribers to the data. When an application opens a 
connection, it specifies a desired channel allowing DMS to 
segment connections into smaller logical networks. The 
application can then transmit a message to the registered 
subscribers on that channel. Instead of managing 
conlmunications within a network at the lower socket and 
address level that requires the developer to build headers, 
DMS enables application developers to group similar 
information together into logical classifications. Unlike 
sockets for which APIs must be provided with the exact IP 
addresses and ports for all communicating machines. 
However, by classifying messages into families and types, 
DMS can route data to intended destinations without having 
to explicitly address each message. Machines "register" to 
receive messages of specific families and types, and on 
specific channels, so the sending machine does not need to 
know the destination. This architecture also facilitates the 
implementation of network failover that is transparent to the 
application. DMS identities, classifies, and manages the 
addresses in order to streamline message delivery. The 
message publisher can select between two types of 
connections: standard or direct. These connections can be to 
another application, an extension, or a server pool. 

The Cluster Management Service (CMS) interacts with, and 
is dependent upon, other High Availabikity Middleware 
services. CMS manages the physical nodes or instances of 
High Availability Middleware, while AMS manages the 
logical representation of these and other resources in the 
availability system model. CMS is responsible for 
discovering, incorporating, and monitoring the nodes within 
the cluster along with their associated network interfaces. 
The addition or failure of nodes and their network interfaces 
IS communicated to AMS, and the FT Manager through the 
Distributed Messaging Service. CMS also works in 
co~ijunction with AMS to provide manager node 
redundancy, thus eliminating the manager node as a possible 
single point of failure. 

High Availability Middleware provides some additional 
minor services such as data base management, logging 
services, and tracing. The in-memory management database 
is a high performance distributed replicated data base for 
configuration, data storage, and retrieval. The database 
supports distributed architectures and offers portable and 
extensibte database architecture. It ~ncludes facilities such as 
table creation, row insertion, reading and deleting, and 
search with indexed retrieval. The High Availability 
Middleware Logging Services are used to capture the 
activlty of the system for later download. Logs are used to 

help perform fault analysis and root cause determination. 
Any service and application code can use the Logging 
Services, which provide a variety of features, including 
multiple and fixed-size circular (automatic overwrite) logs. 
Developers use the trace facility primarily during the 
engineering process as well as for capturing system 
behavior during operation. It sends output to a file or other 
output device. 

For Dependable Multiprocessor, custom extensions had to 
be developed to allow Dependable Multiprocessor-specific 
middleware services to fully utilize High Availability 
Middleware's capabilities. These extensions primarily allow 
the Fault Tolerance Manager (FTM) Dependable 
Multiprocessor component, described in Section 4.3, to 
interface with High Availability Middleware to improve the 
service's system monitoring capability. In particular, the 
extensions allow the FTM to detect when a service or 
application (including HAM itself), has initialized correctly 
or failed. Also, one of the High Availability Middleware 
extensions is the mechanism by which the FTM starts other 
middleware services in a fault-tolerant manner. 

4.2. Control Procc.s.\ 

The Control Process (CP) provides a unified view of the 
embedded cluster to the spacecraft control computer and the 
ground-based station user. It directly communicates to an 
independent process running on the active system controller 
via a communication link to the embedded cluster. This 
process, residing on the system controller, translates the 
commands from the CP into DMS messages that can be 
interpreted by the other Dependable Multiprocessor system 
components, and relays the status and other information 
from the embedded cluster to the CP. The CP monitors the 
system health via a system-wide heartbeat, generated by the 
fault-tolerance manager as described in Section 4.3. This 
heartbeat is employed by the CP to detect system-level 
failures, to which the CP responds by performing required 
diagnostics and failing over to the standby system controller 
after a system-wide reboot. In addition to monitoring system 
status, the CP also presents a mechanism to remotely initiate 
and monitor diagnostic features provided by the Dependable 
Multiprocessor middleware. 

4.3 Furilt-Tolc~rcrncc Mmger  and Agents 

The Fault Tolerance Manager (FTM) is the central fault 
recovery function for the Dependable Multiprocessor 
system. The FTM works closely with the HA Middleware 
Availability Management Services (AMS) to detect and 
recover from system and application faults. Every 
Dependable Multiprocessor system process has an 
associated system model object, the health of which is 
constantly monitored by the AMS service as described in 
Section 4.1. If an object's health state transit~ons, the FTM 
is updated, thus triggering an appropriate recovery action. 
At runtime, the FTM refers to a set of recovery policies 
from soft reboot to power off for various system and 



application failures. For application recovery, the user can 
define a number of recovery modes based on runtime 
conditions. This configurability is particularly important 
when executing parallel applications with FEMPI (discussed 
in further detail in Section 4.5). The job manager frequently 
directs the recovery policies in the case of application 
failures. Additional information is provided on the FTM-Job 
Manager interaction in the next section. 

In addition to the HA middleware, the central FTM relies on 
distributed software agents to gather system and application 
liveliness information. The distributed nature of the agents 
ensures that the ccntral FTM does not become a monitoring 
bottleneck, especially since the FTM and other central 
Dependable hlultiprocessor software core components 
execute on a relatively low performance radiation hardened 
processor. Numerous mechanisms are in place to ensure the 
integrity of remote agents running on non-radiation 
protected data processors as described in Section 4.1. In 
addition to iniplementing recovery policies, the FTM also 
maintains a fault history of various metrics for use in the 
diagnosis and recovery process. This information is also 
used to make decisions about system configuration and 
application scheduling, and thus, to ensure maximum 
availability. Also, the FTM is the central software 
conlponent through which the embedded system sends 
heartbeats to the spacecraft. 

4.4. Job Mlzt~ager uric/ Agents 

The Job Manager's (JM) primary functions are application 
scheduling, resource allocation, processes dispatching, and 
directing application recovery based on user-defined 
policies. The JM employs an opportunistic load balancing 
scheduler, which receives frequent system status updates 
from the FTM in order to nlaximize system availability. 
Jobs arc registered and tracked in the system by the JM via 
tables detailing the state of all jobs, be they pending, 
currently executing, or suspected as failed and under 
recovery. These various job buffers are frequently 
checkpointed to the mass data store to enable seamless 
recovery of the JM and all outstanding jobs. Should an 
unrecoverable failure of the control processor occur, the JM 
on the backup controller will load the checkpointed tables 
upon reboot and continue job scheduling from the last 
checkpoint. A more detailed explanation of the 
checkpointing mechanisms is provided in Section 4.7. To 
ensure the manager's integrity, the JM heartbeats to the 
FTM via the HA middleware. 

Much like the FTM, the centralized JM employs distributed 
software agents to gather system and application liveliness 
~nforn~ation. The JM also relies upon the agents to fork the 
cxecution of jobs, including forwarding information 
required by applications at mntime such as the job's 
~dcntification number, which is used to uniquely identify 
checkpointing files. The distributed nature of the agents 
ensures that the central JM does not become a bottleneck, 
especially since the JM and other central Dependable 

Multiprocessor software core components execute on a 
relatively slow radiation hardened processor. Numerous 
mechanisms are in place to ensure the integrity of remote 
agents running on non-radiation protected data processors as 
described in Section 4.1. 

In the event of an application failure, the JM refers to a set 
of user-defined policies to direct the recovery process. In 
the event one or more processes fail in a parallel application 
(i.e. one spanning multiple coordinating data processors), 
then special recovery actions must be taken as dictated by 
the particular algorithm. Several recovery options exist for 
parallel jobs including blank mode (i.e, continue with other 
processors assuming the extra workload), rebuild (i.e. the 
JM either migrates the failed processes to healthy processors 
or instructs the FTM to recover the faulty components in 
order to reconstruct the system as before), and shrink (i.e. 
the remaining processes continue by evenly dividing the 
remaining workload amongst themselves). As mentioned, 
the ability of a job to recover in any of these modes is 
dictated by the underlying application. A more detailed 
discussion of these recovery modes in provided in the next 
section. 

An additional feature the JM provides is the ability to 
schedule traditional-processor only and FPGA-accelerated 
jobs seanilessly. Portions of the JM have been borrowed 
from the CARMA runtime job management service 
framework and middleware [IG], but with much improved 
fault-tolerance capabilities. Also, custom components have 
been developed to interface with the HA middleware and 
other Dependable Multiprocessor services. 

4 . 5 .  FEMPI 

Fault tolerance is a critical factor for HPC system in space, 
and is required to meet the emerging high-availability and 
reliability requirements. Recovery from failure needs to be 
fast and automatic, while the impact of failures on the 
system as a whole should be minimal. The impact of 
failures can be minimized through several indirect 
approaches i.e. through mechai~isrns that do not address 
direct recovery from faults. The indirect approaches 
certainly avoid computation loss but in order to enable 
applications to meet high-availability and high-reliability 
requirements we need to consider other options. Some of 
the options include: incorporating fault-tolerant features 
directly into the applications, developing specialized 
hardware that are fault-tolerant, making use of and 
enhancing the fault-tolerant features of the operating 
system, and developing application-independent middleware 
that would provide fault-tolerant capabilities. Among these 
options, developing application-independent middleware 
has the minimal intrusion in the system and can support any 
general application including legacy applications that fall 
into the umbrella of the corresponding middleware model. 
In our system, we design and develop an application- 
independent fault-tolerant message passlng middleware 
called FEMPI (Fault-tolerant Embedded Message Passing 



Interface) i.e, we take a direct approach to providing fault- 
tolerance and to improving the availability of the HPC 
system in space. FEMPI is a light-weight fault-tolerant 
design (implementation) of the Message Passing Interface 
(MPI) standard. 

Because of its widespread usage, MPI [17] has emerged as 
the de-facto standard for development and execution of 
high-performance parallel applications. By its nature as a 
communication library that facilitates user-level 
communication among a group of processes, the MPI library 
needs to maintain global awareness of the processes that 
collectively constitute a parallel application. An MPI 
library consequently emerges as a logical and suitable place 
to incorporate certain fault-tolerant features in order to 
enable legacy and new applications to meet the emerging 
higb-availability and reliability requirements of HPC 
systems in space. Freeware implementations are also 
underway, but significantly lag commercial efforts. Fault- 
tolerance is absent in both the MPI (MPI-1 and MPI-2) 
standards, and to our knowledge no satisfactory products or 
research results offer an effective path to providing scalable 
computing applications with effective fault-tolerance. 
FEMPI is a fault-tolerant MPI implementation that provides 
process level fault tolerance at the MPI API level. 

Fault tolerance and recovery is provided through three 
stages including detection of a fault, notification of the fault, 
and recovery from the fault. As with other Dependable 
Multiprocessor software components FEMPI is built on top 
Self Reliant. The services from SR in conjunction with the 
FTM and JM are used to provide detection and notification 
capabilities. SR allows processes to heartbeat through fault 
handlers, and hence has the potential to detect the failure of 
processes and nodes. The notification service will be 
developed as an extension to SR. SR also guarantees 
reliable communication between the nodes in the system 
through DMS as described in Section 4.1. 

Figure 5. FEMPI and Dependable Multiprocessor software 
interfaces. 

With MPI applications, failures can be broadly classified as 
process failures (individual processes of MPI application 
crashes) and network failures (communication failure 
between two MPI processes). FEMPI ensures reliable 
communication (reducing the changes of network failures) 
with all the low-level communication through DMS. As far 
as process failures are concerned, the entire application fails 
or crashes on the failure of any process in regular fault- 

intolerant MPI designs. FEMPI, on the other hand prevents 
the entire application from crashing on individual process 
failures. MPI Restore, a component of FEMPI, resides in 
the System Controller and communicates with the FTM to 
update the status of nodes. On a failure, MPI Restore 
informs all the MPI processes regarding the failure. The 
status of senders and receivers (of messages) are checked in 
FEMPI before communication to avoid trying to establish 
communication with failed processes. If the communication 
partner (sender or receiver) fails after the status check and 
before communication, then a timeout-based recovery is 
used to recover out of the MPI function call. 

FEMPI survives the crash of n-l processes in an n-process 
job, and, if required, can re-spawnirestart them. It is still the 
responsibility of the HA Middleware to execute a recovery 
scheme, i.e. recover the data-structures and the data on the 
crashed processes. A program witten in MPI can run within 
FEMPI environment. 

4.6. FPGA Co-Processor Services 

Using FPGAs to accelerate scientific applications is still an 
emerging discipline within computer engineering. Until 
recently it has been confined to relatively few outside the 
computer science & engineering fields due to the 
complexity of hardware design. The reconfigurable 
computing discipline is fractured and populated with 
proprietary solutions. Universal standards that power the 
software industry, compile-time libraries, a universal run- 
time environment and reliable middleware, do not exist. 
Several vendors such as Nallatech and SRC provide top- 
down solutions for FPGA development, but these are based 
around proprietary interfaces and closed-source Application 
Program Interfaces (APIs). Often, a specific RC platform 
must be targeted before application development can begin. 
This is unheard of in the software industry where code 
written to language standards (e.g. ANSI-C) can be ported 
to multiple operating systems and instruction set 
architectures. Porting an application to another vendor's RC 
platform is often not a trivial task as substantial portions of 
the hardware and software need to be rewritten. 

The USURP framework is being developed by researchers 
at the University of Florida as a unified solution for multi- 
platform FPGA development. A compile-time 
hardwarelsoftware interface and a run-time communication 
standard were developed to support the framework (Fig. 6). 
As described in [IS], the compile-time hardwarelsoftware 
interface is responsible for unifying vendor software APIs, 
standardizing the hardware interface to external components 
and the communications bus, organization of data for the 
hardware accelerated core, and exposing the developer to 
common FPGA resources. The run-time communication 
standard handles determining whether the resources meet 
the application's requirements, configuring the FPGA, 
detectinghandling hardware faults and interrupts, and 
transferring data between the host PC and FPGA. 
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Figure 6. USURP hardwarelsoftware interface. 

The Hardware Abstraction API [I91 abstracts the FPGA 
from the application developer; the reconfigurable hardware 
becomes just another computing resource. To accomplish 
this, the USURP hardwarelsoftware interface and run-time 
communication standard are encapsulated in a familiar 
library of linear algebra and signal processing kernels. The 
Hardware Abstraction API is based on the GNU Scientific 
Library (GSL). GSL is an open-source library of numerical 
routines for scientific computing and remains popular in the 
science and engineering community due to its highly 
portable nature. RCGSL, our hardware-accelerated version 
of GSL, uses the same structures and syntax as GSL to 
provide the user with a familiar programming environment. 

The checkpointing service provides a user-level, 
uncoordinated protocol for storing and recovering system 
state, application data, and any data transferred to or from 
Mass Data Store (MDS). The service comprises a server 
process that runs on the MDS and an API for the 
applications that want to communicate data. 

The main server process facilitates all data operations 
between the applications and radiation hardened mass 
memory. The HA Middleware Distributed Messaging 
Service is used to reliably transfer data, utilizing its many- 
to-one and one-to-one communication capabilities. 
Checkpoint and data requests are serviced on the Mass Data 

Store in parallel to allow for multiple simultaneous 
checkpoint or data accesses. 

The application-side API consists of a basic set of functions 
that allow data to be transferred to the MDS in a fully 
transparent fashion. These functions are similar to C-type 
interfaces and provide a method to write, read, rename and 
remove stored checkpoints and other data files. The API 
also includes a function that assigns each application with a 
unique name that is used for storing checkpoints for that 
particular application. This name is generated based on the 
name of the application and a unique job id and process id 
defined by the central JM when the job is scheduled. Upon 
failover or restart of an application, the application may 
check the MDS for the presence of specific checkpoint data, 
use the data if it is available, and complete the interrupted 
processing. Checkpoint content and frequency is 
determined by the process that chooses to checkpoint. 

4.8.Algorithm -based Fault Tolerance (ABFT) Librniy 

The Algorithm Based Fault Tolerance (ABFT) library is a 
collection of mathematical routines that can detect and in 
some cases correct data faults. Data faults are faults that 
allow an application to complete, but may produce an 
incorrect result. The seminal work in ABFT was done in 
1984 by Huang and Abraham 1201. Subsequently the JPL- 
lead REE project developed a parallel processing ABFT 
library. The JPL BLAS-3, ABFT-enabled library includes 
functions such as matrix multiply, LU decomposition, QR 
decomposition, single value decompositions (SVD) and fast 
Fourier transform (FFT). This library is been ported to the 
Dependable Multiprocessor for use by application 
developers as a fault detection mechanism. ABFT 
operations function by checking on linear algebraic 
computations by adding check-sum values in extra rows and 
columns of the original matrices and then checking these 
values at the end of the computation. The mathematical 
relationships of these checksum values to the matrix data is 
preserved over linear operations. An error is detected by re- 
computing the checksums and comparing the new values to 
those in the rows and columns added to the original matrix. 
If an error is detected, an error code is returned by to the 
calling application. The appeal of ABFT over simple 
replication is that the additional work that must be done to 
check operations is of a lower order of magnitude than the 
operations themselves. For example, the check of an FFT is 
O(n), where the FFT itself is O(nlogn). 

In Dependable Multiprocessor ABFT-enabled functions will 
be used by the application developer to perform automated, 
transparent, low overhead error checking on linear 
algebraic, computations. In the longer term, it is expected 
that other, non-algebraic algorithms will similarly be ABFT- 
enabled and added to the library. The user will determine, 
from the returned error code, whether and how to address 
the error. As part of this effort, we will add application level 
APIs, which when called, will inform the Job Management 
Agent (JMA) that a fault has occurred. The JMA will then 



inform the Fault Tolerance Manager (FTM), and the FTM 
will determine a course of action. A typical response would 
be to stop the application and restart from a check pointed 
values. 

4.8. Replicrrtion Services 

Replication and comparison is a well known method to 
detect errors in a system. One typical replication technique 
is hardware replication, wherein the application is replicated 
on one or more processing resources and the results of the 
computation anlongst all the processors are compared. In 
Triple Modular Redundancy (TMR), if two or more results 
agree, that result is taken as correct. If two or more disagree, 
then an uncorrectable fault as been observed and additional 
action is needed. Another technique is process level 
replication, in which n~ultiple identical processes are 
instantiated on a single processing resource and their results 
compared for consistency 

In this experiment, since resources are limited, process level 
replication is implemented where two identical processes 
arc spawned on a sir~gle processing resource. The user will 
insert provided application level APIs at locations in the 
program where results are exchanged. The results of the 
application replicas are then compared for consistency 
before forwarding. In the event of a miscornpare an error 
code is returned to the calling application. The user will 
determine, from the returned error code, whether and how to 
address the error. Similar to ABFT, the user will invoke an 
application level API to inform the JMA that an error has 
occurred and that corrective action is required. 

NASA's strategic plans for space exploration present 
significarlt challenges to space computer developers. 
Traditional methods and architectures fall short of the 
requirements for next generation nlissions The Dependable 
Multiprocessor (DM) technology addresses this need and 
provides the foundation for future space processors. The 
Dependable Multiprocessor is an integrated parallel 
computing system that addresses all of the essential 
functions of a cluster computer for spacecraft payload 
processing. A TRL4 prototype of the technology has been 
demonstrated, and a TRL5 prototype will be completed in 
Spring of 2006. The next step in the development of 
Dependable Multiprocessor includes a TRL6 prototype, 
scheduled for completion in 2007, followed by a TRL7 
prototype validation flight experiment in 2009 [21]. 
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