RADIATOR DEVELOPMENT FOR OXYGEN STORAGE ON THE MOON

Talso Chui Martin Barmatz, Burt Zhang, Fang Zhong

Jet Propulsion Laboratory California Institute of Technology

This work was supported by NASA

February 8, 2006 Habitation 2006, Orlando, Florida.

- Vision for Exploration includes "use of lunar resources to support sustained human space exploration..."
- In a favorable orbit, dark sky could be a valuable resource.
 - Provides economical cryogenics capability by radiative cooling.
 - Spitzer Space Telescope dewar shell maintained at 35 K.
- Lunar orbit is favorable.
- Design of radiator to specific lunar environment.
- Applications:
 - Zero-boil-off storage of oxygen and methane.
 - Air revitalization by freezing out CO_2 and other impurities.
 - Separation of lunar volatiles by selective distillation.
- Conclusion

• Orbit of Spitzer Space Telescope – Earth trailing solar orbit.

• Near Earth orbits are not favorable except Polar orbit.

- On the Moon, the Sun is always within 1.55° from its equatorial plane.
- The Earth is always within 6.7° from its equatorial plane.
- A large patch of sky is permanently dark regardless of location on the Moon.

- No need of electric power.
- Operates better during lunar night.
 - Solar powered cooler would not work at night.
- Reliable and un-interrupted cooling.
- Requires initial pointing at deployment. No adjustment need afterward.

Radiator Versus Cryocooler

- Radiator cooling power limited by radiator surface area.
- Passive radiative cooler for low cooling power applications above 60 K.
 - Zero-boil-off storage tank for oxygen and nitrogen.
 - Air revitalization by freezing out impurities.
- Active cryocooler for higher cooling power applications and lower temperature applications.
 - Storage & liquid fraction of H₂.
 - Large scale liquid fraction of O₂
- Both technologies used together increases efficiency.

Design Concept of a 1-m² Radiator for Purifying O₂.

•

۲

•

- 1 human converts 0.85 kg/day of O_2 to CO_2 .
- Latent heat of $O_2 = 2.13 \times 10^5 \text{ J/kg}$.
- Need 2 W to condense 0.85 kg/day of O_2 .
- Need 2 W to cool O_2 from 300 K to 90 K.
- 4 W total. With 80% heat recovery by heat exchanger, 0.8 W cooling power needed.
- $1-m^2$ radiator, cooling power = 3.75 W.
- 0.5 W heat loss to outer radiators.
- 3.25 W power available.
- Can support 4 astronauts continuously.
- Can use adsorber to increase temp. of operation and thus efficiency.

et Propulsion Laboratory

- 1 human produces 649 liter of CO_2 in a day.
- $5 \text{ cm}^3 \text{ of CO}_2$ / liter (0.5%) of air is considered safe.
- 1.3×10^5 L of air (5300 mole) to be scrubbed in a day.
- Freezing point of $CO_2 = 195$ K.
- Removed CO₂ by activated charcoal at 250 K.
- $\Delta T = 300 250 = 50$ K.
- $C_p = 5R/2 = 20.8 \text{ J/mole.}$
- Cooling power = (5300 mole) x $C_p x \Delta T / 3600$ = 1500 W.
- Requires 150 W with 90% efficient heat exchanger.
- $1-m^2$ radiator, cooling power = 220 W @ 200K.
- Recover CO₂ by heating charcoal absorber.
- Latent heat = 571 kJ/kg. Turn 1 kW heater on for 15 minutes every day to reactivate charcoal.

10

- Micron-size dust are pervasion on the Moon.
- Reduces radiator efficiency.
- Effects needs to be characterized.

- Lunar orbit is favorable for radiative cooling.
- A large patch of lunar sky is permanently dark.
- Radiator provides reliable and un-interrupted cooling.
- Applications:
 - Zero-boil-off cryogen storage.
 - Separation of lunar volatiles for resource utilization.
 - Purify oxygen for astronauts.
 - Scrub air for habitation.