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Introduction (1 of 2) =

In-situ exploration of Titan was given high priority in the:
- Solar System Exploration (SSE) Decadal Survey (NRC, 2003), and in the
— SSE Roadmap (NASA, 2005) included missions concepts for Titan exploration
— The Cassini-Huygens mission further increased scientific interest in Titan

In-situ exploration could be achieved through multiple mission architectures,
ranging from New Frontiers (~$§700M) class to Flagship class ($1.4B+)
— NF class: may utilize a single element (e.g., an orbiter or an in-situ explorer)
Flagship class: may use multiple elements, including both an orbiter and in-situ elements,
or a larger in-situ element.

In-situ concepts could be (with increasing complexity):

— Probe / Static lander: similar in functionality to Huygens, but may vary in size;

— Balloon: only vertical control for surface access, its mass (and thus payload mass) would
be limited, compared to a surface based asset.

— Surface rover: significant traversing, similar to MER / MSL

— Aerobot: all axis control and good surface access, but again, limited in payload mass
compared to a surface based mission.

~ Helicopter: possibly the highest complexity

Further trade options:
— in-situ only vs. in-situ/orbiter combination

— telecom with orbiter relay vs. Direct-To-Earth
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Study Objectives & Assumptions

Demonstrate a simple, credible & affordable rover mission concept
for Titan in-situ exploration, enabled by an Advanced RPS

Mission class: Target small Flagship class (2xNF) or if possible
New Frontiers class (Note: with Delta IV-H architecture: large Flagship; ~4xNF)

Use flight & design heritage when possible
(e.g., MSL (rover); Viking (aeroshell/landing); Team-X fetch rover sampling mechanism)

Launch date: 2015 (with technology cutoff in 2012)
Launch vehicle: Atlas 501 w/5m fairing

(Delta IV-H was also assessed, but resulted in an oversized mission)
Aeroshell: 4.5 m (Viking heritage)

Delivered mass to Titan: ~780kg (w/ Delta 1V-H ~4200kg)
Trip time: 7.6 years (with EJ gravity assist)
MSL class rover with

inflatable 4 wheels (D, ,,.,=1.5m)

Surface operation: 3 years
Double string design
30% contingency on mass allocation
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Science Goals and Objectives

«  Objective 1:
Determine the composition of Titan’s
surface materials

*  Objective 2:
Characterize the organic chemistry
taking place at Titan’s surface

i

« Objective 3:
Describe the interactions between the
surface materials and the atmosphere

+  Objective 4:
Describe the morphology of Titan’s
surface

* Objective 5:
Describe the surface meteorology

Ref: J. Shirley, JPL, 2005
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Mission Architecture Trades — 1 of 3:

Trajectory options with a Delta IV Heavy L/V

S0

2012 VEEJ 87 10.6 15 730 - 7600 82 ~6800 ~1600

2013 E 7.0 419 -22 3500 650 2800 6.6 ~2000 ~480

013 E 8.0 477 -22 3500 550 2900 55 ~2100 ~550
2013-14 - 6.1 105.2 10 500* - 480 49 ~2180 ~75

2015 EJ 1.6 257 -12 5730 106 5000 59 G! 00 —Ill.‘d?—)

2016 J 69 80.8 15 1200* - 1150 4.6 ~950 ~240 1

Ref: R Haw, JPL, 2005

- Initial calculations for a Delta IV-H L/V (shown above);

- It is higher than the mass allocation requirement calculated for a single rover;

- The delivered mass is scaled for an Atlas 501 (based on assumptions on cruise phase mass fraction,
deep space maneuver mass fraction and an added conservative 30% contingency on the total mass);

- (It is recommended to recalculate these mass values for this smaller L/V case in future analyses.)

- The entry velocity is comparable to that at Mars, therefore, the same TPS could be used for
the aeroshell as on the Mars In-situ landers.
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Mission Architecture Trades — 2 of 3:
Launch Vehicle Options
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+  Atlas 501 (w/ 5 m fairing) could deliver ~800 kg to Titan (baselined option)
(note, corresponding to the mass after being adjusted for cruise phase, DSM etc.)

— This would allow for direct entry with a Viking type (4.5 m) acroshell, which is sufficient
for the required 778 kg entry mass (including aeroshell, lander, palate, EDL system).

— The smaller L/V would not only provide significant savings for the L/V compared to
Delta IV-H, but the savings would cascade through the design potentially making the
mission NF class.

» In comparison, Delta IV Heavy could deliver ~4200kg to Titan
~ This would result in a large Flagship class mission (estimated at over 4xNF cost cap).
— This could include a larger orbiter up to ~3400 kg and the same lander as above; or could

use multiple landers 8
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W Mission Architecture Trades — 3 of 3: JPL
, Study Trade Space and Selected Options
Trade Element (with decision driver)
Launch vehicle (lower cost) [Detarvai | [ Atass01 |
Trajectory (mission timeframe) . [High thrust direct I I HT Gravity Assist I [ Low thrust direct l | LT GA |
Launch opportunity (rrogram/4RPS) | [ 2012 VEEI-GA | [ 2013-14 direet | [ 2013 -GA [ [ 2015 E3-Ga | [ 2016 1.6 |
Architecture (fower cost) I Orbiter only I [ In-situ only l [ Orbiter & In-situ I
Orbiter (lower cost) [ with Orbiter | | Without Orbiter |
0
In-situ Architecture (mobility) Static Lander Surface Rover Balloon | Aerobot (Vision 1 Helicopter
(Huygens probe) l ]\l | Missions study) |—|
Rover Size (heritage/lower cost) [ Pathfinder class | [ MER class | [ MSL class | [ Larger than MSL class |
e
# or in-situ assets (fower cost) . [ singte n-situ Asset | | Multipte In-situ Assets |
S
Telecom Architecture (fower cost) I Orbiter Relay Telecom | —l Direct-to-Earth Telecom |
et
Power options Architecture (study obj.) 1 I Standard RPS | Ad d RPS | | Small Fission | Solar
e

RPS options (space proven static conv.) { | Adv.RTG |'—'l TPV H Stirling ,'-'l Brayton |

Key drivers for this technology-focused study were: lower cost (trying to fit the mission

into the New Frontiers category), missions and design heritage, RPS availability, science goal
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@ Strawman Instrument Suite for the Titan Rover Concept

Met Package 0.7 kg 11x16x6cm 800mW 57.4 kbit/day | Marsnet Study | Including wind sensor, pressure,
temperature

Radiation Monitor 2kg 20x10x5 iw 10 kbit/day MARIE Scaled down. Energy resolution
needs to be specified to measure
13C

Acoustic Monitor 0.1 kg 5x5x1 150 mW 100 kbit/day MPL Mars Assumes slightly larger capability

Microphone than mars microphone

Sampling Camera/ 0.5 kg 5x5x5 200 mW 1 Mbit/analysis | MPL RAC Could be extended to MECA-type

Microscope AFM

Chemistry Package | 20kg | 50x50x30 | 40Wfors WAG -based | Exact mix of techniques tbd

(GCMS/ES-IMS hrs/analysis on Huygens

ICE etc.) GCMS

Raman 1.5kg 3 Whr; 2.5 Replaced Miniature Chemistry

Spectrometer min/sample Package on original list

Panoramic Camera S5kg w MP

LIBS 14kg 2W

Ultrasonic Corer 6.8 kg 20w Taken from Wayne Zimmerman's
MSR Fetch Rover study

Total instrument payload: ~38kg, not including the 30% contingency required

by design principles; nor the mast, drill & sample collection system mass
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Deployment of the Inflatable Wheels

Design concept

Pre-Decisional - For Discussion Purposes Only

Design concept

TG, 2008

Titan Rover Concept Operations: ARPS Duty Cycle

JP0L
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2 hrs telecom (per day with and advance RTG)

The other two RPS options (TPV; Brayton) would
allow for similar operations, 3 Stirlings even better

Baseline Advanced RPS (assumptions):

5 GPHS modules; Mass: 25.5kg; 1 ~9%

Power (BOM): 112We/1250Wt; Spec.power: 4.4W/kg
Operates in atmosphere: 1.5bar N,; T, .=94K
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@ Titan Rover Concept Operations and Design Considerations S0

Traverse 1.5 m diameter wheels (4) with inner tire; Material: PBO (polybenzoxaxole)/Xylon;
Could traverse up to ~150 m/hrs; up to ~0.5 kmvday; & up to ~500 km/3-years (dependent

on science and mission requirements; surface environments; and navigation/autonomy):

Data volume Rover Science Data Volume: ~28.8 Mbits of science data is downlinked per day

Communications On rover: 8.4 GHz X-band 0.5 m 2 axis articulated HGA; Emergency LGA;
Direct-to-Earth comm. thus landing location limited to the pole region;
Assumed 180x12m DSN antenna array:

Autonomy & Requires autonomous hazard avoidance; HGA pointing for DTE; Trajectory request
Navigation uploaded from Earth (direction/distance), rover follows suit and avoids obstacles;

No orbiter; All-sky camera; Pointing requires 3600 arcsec of control & 1800 arcsec
knowledge to DTE comm.; Use input from IMU/PanCam/accelerometer and cameras to
navigate

Structures MSL chassis; Sampling arm with drill and sample carousel; Arm would carry ultrasonic
corer inside a rotatable pod; PanCam style 1.5m mast, stereo+2 nav.cam; all-sky cam

Thermal design 7.6 year cruise phase — RPS excess heat removal from aeroshell (SGPHS, 1250Wt)
Virtually finless RPS on surface (94K); Utilize RPS waste heat for WEB

Extreme Radiation: Jupiter flyby 30-200 kRad w/o shielding; Ionizing Dose: 10 kRad TID behind

environments 100 mils of aluminum with an RDM of 2

Cold: 94K on the surface; flexible materials / actuators / joints on arm, mast
Tholin: could stick to lens, optics

Planetary protection | Not addressed in this limited scope / small budget study
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Mass Breakdown =
v ._ ;- Lo _‘; p_l: g '. =

e o 4 1csign Concept Note: Changing the type of ARPS
Structures & Mechanisms) 128 167 ; would not significantly impact
Power 35 46 the total rover mass:
P 31 20 With ARTG: 376 kg
Cabling = = Wl'lh I'I?V_: 366 kg
= " = With Stirling: 392 kg

Seeonn With Brayton: 380 kg
Attitnde Control 13 17
Command & Data +3 +4
Total Bus 251 326 ARPS are only enhancing;
Total Instrument Payload +38 +49 Advanced RTG mass: ~25.5 kg
Total Rover (Dry) 289 376 MMRTG mass: ~43.0 kg

thus using it causes a 17.5 kg
Pallet Lander +130 5 i
rover mass increase (more impact

Totnl Eandod Mase i3 on cruise stage thermal design)
Acroshell Mass +272
Total Entry Mass 8

The mass advantage with advanced RPS’s could
o5% be traded against additional payload mass

@ instuments
' Attinde Control

i Launch mass (C3=25.7 km?¥/s?):
(Strceen 8 achaiers On an Atlas 501: 1455 kg

S cute Cruise stage+DSM: 677 kg
(conservative estimate from trajectory
caleulations for aDelta IV-Heavy)
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Conclusions and Recommendations S0

Demonstrated the feasibility of an MSL class Titan rover concept, enabled by a single
Advanced Radioisotope Power System:

ARTG (baselined for this study); TPV; Brayton;
or three Advanced SRGs (due to required redundancy)

When launched on an Atlas 501 class L/V, the system could be sized to potentially fit
into Small Flagship or maybe into New Frontiers cost cap

Technology challenges could include:
— Direct to Earth communication (assumed the upgraded DSN with 180x12m)

—  Extreme environments issues, such as materials for the cold (94K) surface operations incl.
inflatable wheels, actuators, joints; sticky tholin deposits on imaging systems

— Development of advanced RPSs (technology investment)
— Autonomy and Navigation issues

Advanced RPSs are enhancing:
— using an MMRTG would increase the rover mass by less than 5%.

— However, the mass savings with an Advanced RPS could be traded for additional payload,
thus enhancing science return.
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in order to better understand the trade space and the size and affordability of such a mission
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Thanks for your attention
Any questions?
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