Modular Avionics for the New Space Vision: The JPL Perspective

Gary Bolotin
NASA – JPL
gary.s.bolotin@jpl.nasa.gov
Agenda

• What are the challenges?
• Development of multi-purpose, re-configurable modular building blocks
• Development of adaptable re-configurable architectures for long-life, high reliability, and mission adaptation
• Key Future Challenges
 – Partitioning and the Orthogonalization of Tasks
 – Sharing and Isolation
 – Fault Tolerance
 – Fault tolerance, COTS, and rad-hard parts
 – Autonomous System Recovery Functions
• Conclusion: How JPL will address the challenge
What Are the Challenges?

- Standard Interfaces
- Development of multi-purpose, re-configurable modular building blocks
- Development of adaptable, autonomously re-configurable architectures for long-life, high reliability, and mission adaptation
Industry Standard Interfaces

- cPCI
- IEEE 1394
- I2C
- 802.11
Multi-purpose, re-configurable modular building blocks

- X2000 Avionics & Power Electronics
- Architecture Platform Electronics
- Mobility Avionics: A Re-configurable Building Block
X2000 Avionics Hardware
Building Blocks

SFC—System Flight Computer
- Power PC 750 compact peripheral component interconnect (CPCI)-based
- 128 Mbytes DRAM; 256 kbytes EEPROM
- Baseline 240 MIPS; variable speed
- Contractor: BAE Systems

SIO—System Input/Output
- Peripheral component interconnect (PCI) 1394/iC bridge; 2 universal asynchronous receiver/transmitters (UARTs)
- Includes node reset control; general fault protection logic; discrete
- Assembly developed by JPL

NVM—Nonvolatile Memory
- 2 Gbits/slice Flash Memory
- Includes power management control and erase/write cycle tally
- Contractor: SEAKR Engineering, Inc.

SIA—System Interface Assembly
- Includes 1553, SPI, and high-speed serial interfaces
- Assembly developed by JPL

TIF—T Zero (T2) Interface
- Contains critical safety relays controlled from LCE
- T Zero-launch vehicle interface circuits
- Assembly developed by JPL

PCA—Power Converter Assembly
- Two 30-W primary-to-secondary power converter modules (PCMs) on 1 slice
- Two versions: dual 3.3-V PCMs or one 3.3-V PCM and one 5-V PCM
- Contractor: Lockheed Martin Commercial Space Systems (CSS)

PSS—Power Switch Slice
- Used to switch power loads, valves, and pyros (all three functions)
- 16 switches/slice
- Redundant I/C bus
- Contractor: Lockheed Martin CSS

PCS—Power Control Slice
- Primary spacecraft power bus regulation
- Includes shunt regulator control
- Redundant I/C bus
- Contractor: Lockheed Martin CSS

TAS—TRIO Assembly Slice
- Temperature and analog collection
- 6 Temperature remote I/O (TRIO) application-specific integrated circuits (ASICs) split between two I/C buses
- 96 Telemetry channels; 10-bit A/D
- Contractor: Johns Hopkins University, Applied Physics Laboratory

Compact PCI Backplane

Compact PCI Chassis
The Europa Orbiter total dose environment is harsh compared to current experience.
- At Europa an astronaut inside an EVA suit receives a lethal dose every 12 minutes.
- The Europa Orbiter must operate with high reliability during the 30 day mission.
 - Science objectives
 - Achieve quarantine orbit
- Impact
 - High technology, high risk, high cost electronics development (X2000) to reduce risk
 - Total shielding = 39 kg
Standardized Building Blocks

X2000 Avionics Architecture

MCM Stacks
- Non-Volatile Mass Mem MCM
 - Memory MCM
 - Flight Data Sys MCM
 - Primary for C&DH
 - backup for ACS
 - backup for payload
 - repeater
- Non-Volatile Mass Mem MCM
 - Memory MCM
 - Flight Data Sys MCM
 - backup for C&DH
 - Primary for ACS
 - backup for payload
 - repeater
- Non-Volatile Mass Mem MCM
 - Memory MCM
 - Flight Data Sys MCM
 - backup for C&DH
 - Primary for ACS
 - backup for payload
 - repeater

I/F state machine (Pwr Ctrl)
I/F state machine (PMAD)
I/F state machine (IF)
I/F state machine (Pyro)
I/F state machine (VDE)
I/F state machine (VDE)
I/F state machine (VDE)
I/F state machine (VDE)

repeater
repeater
repeater
repeater
repeater
repeater
repeater
repeater

5x2
10x2
12x2
12x2
12x2
6x2

Sensor bus (12C1)
32 bit bus
32 bit bus
pyro control
mN thruster
0.9 N thruster
20 N thruster
main engine

generic controller (sounder)
repeaters
repeaters
repeaters
repeaters
repeaters
repeaters
repeaters

Optical Comm
 repeater
generic controller (high res imager)
generic controller (altimeter)
generic controller (wide field imager)

test port & direct access
1394 Bus
1394 Bus
125 bus
125 bus

modulation & demodulation only encoding/decoding will be done by software at the flight computers
JPL Multi-Mission Architecture Platform

- Jet Propulsion Laboratory’s Multi Mission System Architectural Platform (MSAP) project is a program designed to provide JPL missions with a standard set of hardware and software components that can be adapted and customized to fit mission-specific needs.
Description of past accomplishments

• JPL has qualified the use of Xilinx Virtex devices for use on MER
• JPL has qualified the future use of Xilinx Virtex II devices
• JPL has developed SEU mitigation methods for the Xilinx Virtex II Pro
• For more information:
Resources we bring to the Table

- JPL has developed a reconfigurable avionics module that is a complete avionics subsystem capable of supporting surface mobility tasks at the state-of-the-art RAD750 performance level with over a 10x reduction in system power demand, mass and volume for moderate radiation missions.
- This module can be used alone for a small avionics system or used in a network as a building block for future avionics systems.
- JPL has worked closely with Xilinx, Monta Vista, in developing this product.

Description of past accomplishments

- Flight Qualifiable design
- Working Prototype Module
- Successful Alpha source testing of SEU mitigation methods
- Porting of JPL Stereo and CLARATY code base

For more information:
http://rtd/reports/rtd04/pdfs/R03009021.pdf
JIMO CDH Design Approach

• The Symmetric architecture
 – All computers are identical, and their roles can be configured easily
 – The high-speed system bus connects all nodes
 • Computers
 • Mass Memories
 • Bridges
 – The peripheral bus connects the C&DH to other subsystems equipments
 – Bridges connect the system bus with the peripheral bus
 – All computers have the same access to all MMs, equipments, sensors, and actuators

• The Advantages
 – Flexible and scalable
JIMO CDH Hardware Architecture
C&DH Fault Tolerance Approach

- Fault Containment
 - Capture heterogeneity of fault tolerance by the concept of *Fault Containment Region*

<table>
<thead>
<tr>
<th>Fault Containment Region</th>
<th>Fault Tolerance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Module C&DH</td>
<td>2</td>
</tr>
<tr>
<td>Mission Module C&DH</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>0</td>
</tr>
<tr>
<td>AACS</td>
<td>2</td>
</tr>
<tr>
<td>Telecom</td>
<td>1</td>
</tr>
<tr>
<td>PC&D</td>
<td>2</td>
</tr>
<tr>
<td>Thermal Management</td>
<td>1</td>
</tr>
<tr>
<td>Electric Propulsion</td>
<td>1/2</td>
</tr>
<tr>
<td>Reactor Module Control</td>
<td>2</td>
</tr>
<tr>
<td>Reactor</td>
<td>1</td>
</tr>
</tbody>
</table>
Partitioning and the Orthogonalization of Tasks

- How does one best split up such a system into semiautonomous functions housed in different modules with carefully designed and fully understood interfaces? First it is necessary to choose an intercommunication approach that is not only exceptionally reliable, but will be consistent with standards over the next several decades. A highly redundant and damage tolerant (physically distributed) switching fabric is our recommended approach. Next, we propose to extend “plug and play” technology to unique CEV and space needs. This involves developing standard but extensible functional interfaces (for commands, timing, data) for various subsystem types that in effect creates a “virtual subsystem.” The virtual subsystem hides many of the complexities inside and provides an interface that simplifies system integration and test, guarantees hard real-time performance to functions that need it, and it supports the necessary redundancy, self-test, fault-tolerance and autonomy needed for a dependable system. This approach is necessary so that functions can be changed or hardware/software replaced without complicating and compromising the dependability of the rest of the system. Stated simply, changing or adding a function or module should not require re-validation of others that are not directly related.
Sharing and Isolation

- **Physical sharing** Whenever different functions share physical resources such as interconnection buses, shared memory and processor resources, some must wait for others – even if they do not interact in any other way. Sufficient bandwidth and a careful system-level timing (and intercommunications) strategy will be provided so that plugging in or changing system modules and functions will not affect the real-time performance of unrelated functions.

- **Information sharing** by processes that interact and their impact on real-time applications must be thoroughly understood. Perhaps the best approach here will be to develop a directed graph based analysis tool that insures correct data is produced in a timely fashion, and that can be used iteratively during the design process.

- **Isolation of some highly protected (e.g. life critical) functions** will be necessary either by use of firewalls or possibly by disconnection from other parts of the system.
Fault Tolerance

- Fault-Tolerance is the process by which the on-board computers detect and recover from errors and faults. The flight-critical parts of the system will require extremely high reliability and even tolerance to localized physical damage, not unlike modern commercial aircraft. Unlike an airliner that lands within 15 hours, the CEV must maintain its high reliability for months. Massively redundant fault-tolerance techniques currently employed for commercial aircraft will be further developed and expanded upon, including design diversity in hardware and software to prevent design errors or undetected fabrication flaws from causing system failure. The ability to include additional redundancy will be included to extend the reliable life of the CEV system. For less critical high performance processing requirements (for which checkpointing and rollback are acceptable) can be implemented in a fashion that uses less redundancy and thus makes more resources available to increase computing performance. JPL and its contractors have developed architectures and techniques for doing this that are at TRL 4.
Fault tolerance, COTS, and rad-hard parts

- In order to achieve acceptable performance, to have available modern software development tools, and to be able to use standards that are amenable to system evolution over time, complex components (processors, memories, etc.) will be implemented with COTS parts whenever possible. Fault-tolerance techniques have been demonstrated at JPL and by others allow dependable performance in the presence of Single Event Upsets. Small rad-hardened glue chips also will be needed to provide simple “hard core” functions, such as performing final output voting to prevent spurious errors from reaching actuators, performing simple embedded control functions, or implementing state machines to initiate restarts upon detecting system failure.
Autonomous System Recovery Functions

- Given that a dependable computing capability is achieved, then Autonomy software can be used to detect failures in their host electromechanical subsystems and take system level actions to compensate for fault conditions. Creating virtual subsystems with built-in self test capability (1 above) both facilitates system integration and also is a major aid to the autonomous recovery process. Autonomous recovery consists of determining what spacecraft functions are not working properly, substituting spares when possible to resume nominal operation, or determining alternate spacecraft operating modes upon loss of resources. It also includes modifying commands and operations to accommodate for time outages when a repair has been attempted. JPL has been a leader in developing this capability
Conclusion

- What are the challenges?
- Development of multi-purpose, re-configurable modular building blocks
- Development of adaptable re-configurable architectures for long-life, high reliability, and mission adaptation
- Key Future Challenges
 - Partitioning and the Orthogonalization of Tasks
 - Sharing and Isolation
 - Fault Tolerance
 - Fault tolerance, COTS, and rad-hard parts
 - Autonomous System Recovery Functions
- Conclusion: How JPL will address the challenge