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Abstract—The design, error budget, and preliminary test results of a 50-56 GHz synthetic 
aperture radiometer demonstration system are presented.  The instrument consists of a 
fixed 24-element array of correlation interferometers, and is capable of producing 
calibrated images with 0.8 degree spatial resolution within a 17 degree wide field of 
view.  This system has been built to demonstrate performance and a design which can be 
scaled to a much larger geostationary earth imager.  As a baseline, such a system would 
consist of about 300 elements, and would be capable of providing contiguous, full 
hemispheric images of the earth with 1 Kelvin of radiometric precision and 50 km spatial 
resolution.  An error budget is developed around this goal and then tested with the 
demonstrator system.  Errors are categorized as either scaling (i.e. complex gain) or 
additive (noise and bias) errors.  Sensitivity to gain and/or phase error is generally 
proportional to the magnitude of the expected visibility, which is high only in the shortest 
baselines of the array, based on model simulations of the earth as viewed from 
geostationary earth orbit (GEO).  Requirements range from approximately 0.5% and 0.3 
degrees of amplitude and phase uncertainty, respectively, for the closest spacings at the 
center of the array, to about 4% and 2.5 degrees for the majority of the array.  The latter 
requirements are demonstrated with our instrument using relatively simple references and 
antenna models, and by relying on the intrinsic stability and efficiency of the system.  
The 0.5% requirement (for the short baselines) is met by measuring the detailed spatial 
response (e.g. as measured on the antenna range), and by using an internal noise diode 
reference to stabilize the response.  This result suggests a hybrid image synthesis 
algorithm in which long-baselines are processed by Fast Fourier Transform (FFT), and 
the short baselines are processed by a more precise (G-matrix) algorithm which can 
handle small anomalies among antenna and receiver responses.  Visibility biases and 
other additive errors must be below about 1.5 millikelvin on average, regardless of 
baseline.  This requirement is largely met with a phase shifting scheme applied to the 



local oscillator distribution of our demonstration system.  Low mutual coupling among 
the horn antennas of our design is also critical to minimize biases caused by cross-talk of 
receiver noise.  Performance is validated by a 3-way comparison between interference 
fringes measured on the antenna range, solar transit observations, and the system model. 
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I.  INTRODUCTION 
 
GeoSTAR is a concept to provide high spatial resolution soundings of the earth's 
atmosphere from geosynchronous earth orbit (GEO) in discrete microwave bands from 
50 GHz to 180 GHz [1] (also see related papers in this issue).   Images of the earth are 
synthesized by Fourier Transform of interferometric data collected with a Y-array of 
correlation interferometers.   The concept eliminates the need for large mechanically 
scanned apertures, but it poses many new challenges-- particularly in the area of 
calibration.   A large spaceborne system will involve hundreds of antennas and many tens 
of thousands of correlators.  Costs associated with design choices will be high, so it is 
imperative to develop an error model and to demonstrate how requirements will be met 
with real hardware.  This paper presents preliminary results of a small (24-element) 50-56 
GHz system which has been built under NASA's Instrument Incubator Program to 
provide such a demonstration. 
 
Our design is based on aperture synthesis techniques originally developed for radio 
astronomy, and applied more recently to earth remote sensing.  The first such application 
was the Electronically Scanned Thinned Array Radiometer (ESTAR) [2], which was a 1-
dimensional synthesis array operating at L-band to measure soil moisture.  This small (5-
element) aircraft system viewed a wide pushbroom swath, and was subject to a high 
degree of mutual coupling and array embedding effects which were difficult to model.  
This problem lead to the so called G-matrix calibration, where images are synthesized by 
inversion of interferometric fringes measured on the antenna range [3].  With this 
approach, the accuracy of the images depend on the quality of the antenna range 
measurements and the degree to which such measurements accurately represent the to 
operational configuration (i.e. as installed in an aircraft or spacecraft structure).  More 
recently, the European Space Agency has advanced the Microwave Imaging Radiometer 
by Aperture Synthesis (MIRAS) instrument for the Soil Moisture Ocean Salinity (SMOS) 
mission.  Scheduled for launch in 2007, this 69-element system is a 2-D imager 
configured as a Y-array of closely spaced patch antenna elements with a wide field of 
view (FOV) appropriate for low earth orbit.  Like ESTAR, the broad antenna pattern of 
this system is subject to significant array embedding effects and mutual coupling which 
must be precisely measured and then accounted for in the inversion [4, 5].  These 
measurements are quite costly, and possibly impractical for GeoSTAR.  A large system 
with 300 elements or more is envisioned for each of three observation bands of 
GeoSTAR.  It will be difficult to measure the G-matrix with very high precision for such 
a large array.  Moreover, the inversion of such a large data set-- which would involve the 
inversion of a 30,000 x 30,000 matrix-- poses a major challenge in itself. 



 
Our approach in GeoSTAR is to seek a design which does not depend so heavily on 
measurements of the antenna responses, nor on the inversion of such large matrices.  To 
the extent possible, we seek a design which can be characterized by a single well matched 
antenna pattern which is predictable and uniform among all elements of the array.  If this 
can be achieved, then the synthesis problem becomes much simpler, and can possibly be 
performed by much more efficient Fast Fourier Transform-- rather than the numerically 
intensive G-matrix.  One advantage with GeoSTAR is that observations of the earth are 
made in a relatively narrow, 17 degree wide FOV.  This allows for a larger elemental 
antenna aperture, which offers more design options to reduce mutual coupling and other 
array embedding problems. 
 
Following an overview of the instrument concept in Section II, we present an error 
budget in Section III.  This establishes some priorities for the design which is presented 
in Section IV.  Processing algorithms are discussed in section V along with some 
preliminary test results.  The end-to-end performance is measured on the antenna range in 
Section VI.  Some fundamentals of the interferometer mathematics and of the synthesis 
process are summarized in the Appendix, for reference. 
 
II. INSTRUMENT CONCEPT 
 
GeoSTAR consists of a Y-array of receivers configured in the geometry of Figures 1 and 
2.  The antennas share the same field of view (FOV) and the IF signals of all receivers are 
simultaneously cross-correlated against one another in a digital subsystem.  Each 
correlated antenna pair forms an interferometer which measures a particular spatial 
harmonic of the brightness temperature across the FOV.  When expressed as a function of 
antenna spacing-- or “baselines” with dimensions u and v by astronomy convention-- this 
complex cross-correlation is called the visibility function.  The visibility function is the 
Fourier transform of the brightness temperature image in the FOV, as weighted by the 
elemental antenna pattern.  The mathematics of this technique are well established, and 
summarized in Appendix I for reference.  With sufficient sampling of visibility over a 
range of spacings one can reconstruct, or synthesize, a 2-D image by inverse transform.  
The “Y” configuration provides the needed samples using a minimum number of 
antennas and with a fixed geometry-- in a so called thinned array.  As illustrated in Fig. 2, 
the spacings between the various antenna pairs yield a uniform hexagonal grid of 
visibility samples in the u-v plane.  There are 8 elements in each arm of Fig. 2, and this 
yields 64 unique u and v spacings when the x and y positions of arm 1 are subtracted  
from arms 2, for example.  Another 64 conjugate-symmetric samples are derived by 
subtracting arm 2 from arm 1.  In all, the 24-element system produces 384 UV samples 
(=6*64).  Note, in this particular layout, that all of the UV samples are formed between 
elements in different arms, and that none are necessarily formed between elements within 
an arm.  This scheme (we call the “staggered-Y”) simplifies the electrical and mechanical 
design, as detailed in Section IV. 
 
The smallest spacing of the sample grid in Fig. 2 determines the unambiguous field of 
view (UaFOV), which for GEO observations has a special interpretation.  For the 



hexagonal u-v sample grid with spacing d in Fig. 2, sources in the FOV are aliased 

periodically every 
d3

2 λ radians in the image plane along three axes: one horizontal and 

two diagonals separated by 120 degrees.  This establishes a hexagonal region within 
which images are synthesized.  In our application, we fit this region to match the earth 
disk diameter of 17.5° when viewed from GEO.  This sets both the antenna element 
spacing and diameter at about 3.75 wavelengths, or 2.25 cm at 50 GHz.  At 56 GHz the 
wavenumber spacing will increase, so this spacing does imply that the earths limb will 
impinge slightly on the aliased regions.  This is a reasonable tradeoff, however, since 
these regions are of little value for atmospheric sounding given the shallow incidence 
angles involved.  But note that, strictly speaking, there is no “unambiguous” FOV for 
GeoSTAR.  The elemental antenna patterns do not end abruptly at the edge of this region, 
so the brightness in the surrounding aliased regions must be known and corrected in the 
image processing.  In space this does not pose a problem since the temperature of the 
cosmic background is well known.  But this does play a role in our ground based 
demonstrator instrument, which must be tested in an ambient environment.. 
 
The longest spacing determines the smallest spatial scale that can be resolved.  The 
synthetic aperture diameter of Fig. 1 is 60 cm, which yields about 0.8 degrees of angular 
resolution for the demonstrator system.  50 km spatial resolution on the earth will require 
about 100 receiving elements per array arm in a GEO system.  This will produce 60,000 
UV samples and 60,000 linearly independent image pixels within the FOV.  Note that the 
Fourier Transform provides a 1-to-1 mapping, which ensures that there are N linearly 
independent pixels in an image which is synthesized from N linearly independent u-v 
samples.  This property provides a alternative calculation of the spatial resolution: the 

area covered by the hexagonal image plane is
2

2

d3
2 λ , so N linearly independent pixels 

within this region implies a linear resolution of 
3N

2
d
λ radians near the center of the 

FOV.  At a geostationary altitude of 36,000 km and with N=60,000, this calculation 
estimates a resolution of 42 km.   This is consistent with the array factor of reference [2]. 
 
 
 



 
 
 
 
III. ERROR BUDGET 
 
Our design is based on an overall calibration requirement of 1 Kelvin error in the 
synthesized brightness temperature image of the earth using a large array of 300 
elements.  Our analysis arbitrarily divides the error budget equally between categories of  
“gain” and of “additive” errors.  Gain and additive errors are presumed independent, so 
an equal split of the 1 K overall error implies 0.7 K (= 1 K /(SQRT(2)) allocations for 
each of these categories.  Gain errors include anything that results in an uncertain 
amplitude scaling or phase shift in the visibility measurements.  These include 
uncertainties in elemental antenna patterns and array alignment, as well as uncertainties 
of the gain, efficiency, and phase response of the correlators.  Additive errors include 
correlator biases (null offsets) and measurement noise (set by system noise, bandwidth, 
and integration time).  Additive errors are measured in units of Kelvin, whereas gain 
errors are expressed as a percentage and/or degrees of phase and must be scaled to Kelvin 
by the magnitude of the expected signal.  Gain is a complex value, so gain and phase 
error specifications are often redundant: 0.01 radian of phase error usually has the same 
impact as 1 % of gain magnitude error since they both represent the same displacement of 
visibility in the complex plane. 

 

Fig. 2. Antenna array layout (above) and corresponding UV samples of the 
synthetic aperture (below).  Each UV sample is a difference between XY 
positions of two antennas (i.e. for antennas A and B uAB=xA-xB, vAB=yA-yB ). 

 
Fig 1. GeoSTAR demonstrator instrument 



 
In the simplest analysis of gain errors, we can divide the 0.7K budget allocation by an 
approximate 260K mean earth temperature to arrive at a requirement of 0.3% to be 
applied uniformly to the entire array.  Yet this is a difficult requirement to meet, and we 
know that most of the signal in GeoSTAR is contained in the shortest baselines of the 
visibility function.  A better analysis takes this into account.  Fig. 3 plots the RMS 
magnitude of visibility versus u-v baseline, as computed from an AMSU 52.8 GHz 
brightness temperature map of the earth with the current GeoSTAR antenna model.  Here 
we see that only the zero-baseline channel exceeds 100 Kelvin, and that only the shortest 
baselines of less than 20 wavenumbers are in the 1 to 5 Kelvin range.  Past about 100 
wavenumbers the visibilities are below 0.1 Kelvin1.  This indicate that GeoSTAR should 
be much less sensitive to gain errors for larger baselines.  This is good from a hardware 
standpoint, since for example, it permits greater mechanical error towards the ends of the 
array arms.  However, it is not appropriate to allocate too much error to the longer 
baselines since there are a great many more visibilities with the longer baselines, and this 
will tend to weight these errors more heavily the image.  A more judicious distribution of 
errors is needed which balances the practical hardware limitations with the sensitivities 
and numbers of correlators in the overall array. 
 
Table 1 provides a gain budget that accounts for both the magnitudes and the numbers of  
visibility samples.  Here, we have grouped visibilities by their distance from the center of 
the u-v plane, and distributed the errors by applying the rule that image errors are the 
RSS of visibility errors2.  In order to distribute error allocations in a reasonable manner, 
Table 1 subjectively divides the u-v plane into eight annular regions, centered on the 
origin, as specified in the first column.  These regions are progressively larger (roughly in 
powers of 2 with each region) and encompass ever greater numbers of visibility samples 
(in column 2) with distance from the origin.  The RMS visibilities from Fig. 3 are 
summarized in column 3, but it is the RSS visibility in column 4, and the 0.25 K delta-T 
(=0.7 K /SQRT(8)) allocation in column 6 that determines the delta-G error in column 5.  
The delta-G requirement is computed as 0.5 * delta-T divided by the RSS visibility.  The 
factor of 0.5 is a nominal number which is needed to account for the antenna pattern 
scaling which occurs during image synthesis.  For GeoSTAR, and as discussed in the 
next section and Appendix I, this amounts to a scaling by a factor of about 1.6 near the 

                                                 
1 GeoSTAR visibilities are dominated by the contrast at the earth’s limb in all observation bands.  The 
dashed line of Fig. 3 represents the same data after subtracting the a constant temperature from the earth 
disk.  This dashed line shows that the contribution from variability within the earth is nearly an order of 
magnitude smaller than the contribution from the limb.  This is interesting because it shows how 
requirements might change if GeoSTAR were provided an initialization from other sources (e.g. low earth 
orbit observations, or climate averages).  However, our present goal is an absolute (not relative) calibration, 
so we do not yet consider this in our error budget. 
 
2 This is a basic property of the Fourier Series (energy conservation), and worth noting because it is central 
to the discussion:  To a first order, the root-mean-square (RMS) brightness of the image is always equal to 
the root-sum-square (RSS) of the visibilities.  One Kelvin applied to N visibility samples always adds 
SQRT(N) Kelvin to the RMS brightness temperature.  It does not matter whether the visibilities are 
coherent or random in phase, provided that the RMS temperature is evaluated over the entire image plane.  
This relation is only modified if we weight the aperture (e.g. to change sidelobe levels) or scale the image 
to compensate for the antenna patterns or the mismatches among receivers.  



center of the FOV, and about 3 near the earth limb.  We use a nominal factor of 2 here, 
but note that there is an inherent degradation of delta-T near the edges of the image plane 
where the antenna beam tapers off. 
 
Table 1 shows that a 4% gain error is acceptable for the great majority of visibility 
samples.  This corresponds to about 2.3 degrees of phase error in the complex plane (or 
about 0.2 mm of  mechanical alignment for the 0.6 cm wavelength).  Only a few 
baselines near the center of the array need a more precise calibration.  This establishes 
top level gain requirements for the correlators, and must be further divided into 
allocations for array distortions, receiver gain, and antenna pattern errors.  The 
zero-baseline is the only channel requiring a 0.1% calibration.  This will actually be 
measured with a conventional Dicke radiometer (not shown in Fig. 1 or 2) using an 
identical antenna to those in the rest of the array.  The error allocations of Table 1 change 
only slightly if the array size increases or decreases (note that the last row of Table 1 
represents a large part of the array, but a relatively small part of the overall budget). 

 
 
 
 

 

 
Fig. 3.  RMS visibility versus UV baseline from 
GeoSTAR model and AMSU 52.8GH brightness 
temperatures.  The dashed line represents the 
variability within the earth disk after having removed 
the mean earth temperature and the contrast at the 
earth limb. 



 
Additive errors include correlator biases (null offsets) and the basic measurement noise 
set by system noise, bandwidth, and integration time.  The latter is relatively constant 
among all visibility samples, so it is necessary to keep this noise below 0.5*0.7 K 
/SQRT(N), where N is the number of visibility samples in the Fourier Series.  The factor 
of 0.5 again accounts for the scaling of the earth image by the antenna pattern.  With 
N=60,000 (real valued 3) samples, the RMS visibility errors must be less than about 1.5 
mK.  The visibility noise (delta-V) for bandwidth, B, integration time, τ, and system 
noise temperature Ts using a 1-bit correlator is 

τ

π
=Δ

B22

T
V s .      (3) 

The system noise is about 500K in our instrument, and the double sideband bandwidth is 
200 MHz.  So 1.5 mK implies a minimum of τ =740 seconds.  This is a minimum which 
does not yet allocate any of the additive budget to the visibility biases.  We wish to avoid 
increasing this integration time any further, so we will pursue a design which keeps 

                                                 
3 Note that we use N=60,000-- which is the number of independent real-valued visibilities, whereas Table 1 
has N=30,000 complex correlations.  Complex gain gas two parts: magnitude and phase, and it is the RSS 
of these two that must meet the delta-G requirement of Table 1.  This is perhaps an inconsistency in 
notation, but it does have some basis in the way we process the data.  In our processing algorithms we 
calibrate visibilities as complex numbers, and then re-cast the visibilities as real valued (odd and even 
pairs) to save computer time in the final image synthesis. 

Table 1: Visibility gain error budget, based on GeoSTAR visibilities 
computed with AMSU data of Fig.3. 
 
    22 vu +   
      range(1) count (2) RMS(3) RSS(4) ΔG(5) ΔT(6) 

(wavenumber)  (K) (K) (%) (K) 
  0 - 3       1  108.8   108.8  0.1   0.25 
  3 - 9       9   5.7     17.0  0.7   0.25 
  9 - 21     45   1.2      8.2  1.5   0.25 
 21 - 45    177   0.5      6.6  1.9   0.25 
 45 - 93    765   0.18     5.1  2.4   0.25 
 93 - 189  3126   0.056    3.1  4.0   0.25 
189 - 381 12639   0.024    2.7  4.6   0.25 
381 - 683 13239   0.024    2.7  4.6   0.25 
net: 30,001    0.7 
 
notes: 
1. Range of radii from center of u-v plane specify annular rings on u-v plane. 
2. “count” of independent complex visibility samples which fall in each range. 
3. RMS visibility in this u-v range (from Fig. 3). 
4. RSS visibility in this range (=RMS*SQRT(count)). 
5. Gain error allocation for these visibilities which result in a net 0.7K delta-T in 

the image, as computed from 0.7K/(2*RSS*root(8)).  The factor of 2 accounts 
for antenna pattern beam efficiency within the earth disk, and the root(8) 
represents the number of u-v range bins in this table. 

6. Image delta-T allocated to this range bin (=0.7 K gain allocation / SQRT(8)) 



biases well below the measurement noise.  Our results, as discussed below, show that 
extremely small biases of 0.5 mK are achievable for back-end errors (e.g. digitizer null 
offsets and common mode noise from the LO).  The mutual coupling of front-end 
receiver noise between antennas ultimately dominates the biases otherwise.  But this 
problem  is found to be prevalent only in the short baselines of the array, where the 
coupling is highest.  This is permissible since these short baselines represent a small 
fraction of the complete array. 
 
IV. DEMONSTRATOR INSTRUMENT 
 
The GeoSTAR demonstrator instrument operates at 4 AMSU channels between 50 and 
56 GHz.  A simplified block diagram is given in Fig. 4.  From left to right in Fig. 4 (or 
front to back in Fig. 1) the signal starts at the horn apertures with horizontal polarization.  
The horns are a variant of a Potter horn which adds a parabolic profile section to broaden 
the useful RF band to 50-56 GHz.  The design permits very close spacing in the array 
while maximizing the aperture area.  This is important for the GEO observation as it 
maximizes the fraction of the antenna energy which is received from the earth disk.  This 
fraction (we call “earth disk beam efficiency”) is about 42% with this design.  We also 
tested a straight taper conical horn with uniform E-plane illumination which increases 
this fraction to 48%.  However, the mutual coupling of that horn is high, and when tested 
on the antenna range we found that this design was subject to significant array embedding 
effects which perturbed the radiation patterns at the 5% to 10% level.  The aperture taper 
provided by the parabolic Potter design reduces these effects, which simplifies the 
antenna modeling problem.  The low coupling is also crucial for controlling correlation 
biases caused by the leakage of receiver noise from one antenna to another.  To further 
suppress biases from coupling, ferrite isolators (not shown in the diagram) are added to 
the six closest elements at the center of the array where the coupling is greatest (about -60 
dB between adjacent elements).  Beyond these elements, the majority of the array 
operates without isolators.  This strategy lowers the overall noise figure of the system. 
 
Each horn incorporates a circular to rectangular transition followed by a waveguide twist 
of either 0, +60, or -60 degrees to match the orientation to the three arms in Fig. 1. These 
twists provide a simple and precise polarization alignment.  We considered circular 
polarizers, but found they were not easily balanced through the 10% bandwidth. 
 
The signal in Fig. 4 next passes through an 8-way calibration feed manifold which 
periodically injects a noise signal into all receivers from a common noise diode source.  
This signal provides a reference to stabilize the system against gain, phase, and receiver 
noise drifts.  The injected signal reaches the receiver inputs with about 5 K equivalent 
noise temperature.  The noise diode signal is distributed to the three arms via phase 
shifters.  These shifters were intended as a means to resolve the quadrature balance of 
each correlator, but later proved redundant with other circuits described below. 
 
Next, the antenna signal passes into the MMIC receiver module where it is amplified 
using InP FET low noise amplifiers and then double-sideband downconverted by 
subharmonic quadrature mixers to two IF baseband signals.  Receiver noise is about 400 



K.  Each receiver also contains a programmable bias circuit which can adjust the gate and 
drain voltages of each amplifier stage to affect gain and noise figure.  This circuit was 
originally envisioned as another calibration tool (e.g. to switch off a receiver and thereby 
measure correlator biases), but it proved more useful to balance and tune the receivers 
during production and tests.  The gain of the RF section is about 50 dB.  We operate with 
such high gain to minimize the impact of common mode noise from the local oscillator, 
which will otherwise bias the correlations. 
 
The local oscillator of Fig. 4 operates from 25 to 28 GHz to tune from 50 to 56 GHz at 
RF.  The LO is distributed via three 2-bit phase shifters and amplifiers which incorporate 
power levelers.  These periodically shift the phase to each arm by 45, 90, or 135 degrees, 
which results in shifts of 90, 180, and 270 degrees, respectively at RF.  Constant LO 
power is ensured by an active circuit consisting of a coupled detector with feedback to 
control amplifier gain. As discussed in Section V, this circuit proved superior to the 
above noise diode phase shifters and to the amplifier controls when estimating quadrature 
balance and correlator biases. 
 
The in-phase (I) and quadrature (Q) IF signals from each mixer are next amplified and 
low-pass filtered at 100 MHz.  These are small and inexpensive lumped element filters.  
The phase match among these filters is excellent across the band, resulting in very high 
(>99%) efficiency in the correlators.  The IF signals are then digitized at a clock rate of 
200 MHz.  For reasons of product availability the analog to digital converters are 
presently 8-bit devices, but these could be replaced with one-bit converters (i.e. 
comparators).  The correlators only use 1-bit (the sign bit).  One-bit correlators require 
the least power with a relatively minor penalty in sensitivity, which is a fair tradeoff 
given the great number of correlators required by GeoSTAR.  The correlator of Fig. 4 is 
implemented in an FPGA.  This system calculates all possible correlations to be formed 
between the 24 elements, but we actually only use correlations which are formed between 
different array arms.  We do not use the correlations formed among elements within each 
arm since these are redundant in Fig. 2. 
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Fig 4. Receiver system block diagram – one receiver of 24 shown 



 
 
V. DATA PROCESSING AND EARLY TEST RESULTS 
 
The 1-bit correlations are first mapped to linear correlations using the Van Vleck formula 
[8].  This removes the nonlinearity of a 1-bit correlator when the input signals are known 
to be Gaussian.  This step is applied to all four correlators associated with each antenna 
pair.  Each antenna is associated with an “I” and a “Q” IF signal, so each antenna pair is 
associated with four correlators: “II”, “QQ” “QI” and “IQ”.  This represents a two-fold 
redundancy in our data which we use to reduce measurement noise.  If there were no 
biases, and if the subharmonic mixers of Fig. 4 were perfectly balanced in quadrature, 
then these four correlations could be immediately combined into a single complex 
correlation.  Yet the quadrature balance is know to be poor-- on the order of 10 degrees of 
phase-- and the raw correlations are known to contain large biases due to digitizer null 
offsets and leakage of correlated noise from the LO.  To fix this, the LO phases are 
shifted in a sequence that rotates all correlations to all four phase quadrants.  The exact 
phase shifts are determined from network analyzer measurements made prior to system 
integration.  These are applied in a linear regression to resolve the amplitude, offset, and 
phase of each correlator.  This yields four redundant complex correlations which are 
averaged to form the final estimate.  This process ensures very precise quadrature 
balance, and virtually eliminates biases caused by anything other than direct leakage of 
the RF signals among the antennas.  At present, we have observed total biases ranging 
from about 3 mK to 40 mK in the shortest baselines, due almost entirely to leakage 
between antennas.  This has contributed a net 0.5 K to the raw synthesized image errors, 
but is very stable and readily corrected to the 0.1 K level.  We expect that these biased 
will continue to diminish to acceptable levels for the larger array, so we do not anticipate 
a problem.  We have also conducted separate tests with isolated receivers which show 
back-end biases at the 0.5 mK level after many thousands of seconds of integration time, 
which meets our goals for the larger array. 
 
The above correlations are next scaled to visibility using an estimate of the system noise 
temperature, and then aligned in phase to the aperture plane.  We have thus far used LN2 
and ambient targets to estimate receiver noise temperature, and point sources on an 
antenna range to align the phase.  These references are transferred to operations by at 
least two methods: the first uses the internal noise diode to deflect the correlation and 
system noise by a reliable amplitude and phase.  This provides a convenient and steady 
reference, but there are noise penalties due to the time required to measure the noise 
diode.  The second method relies on the intrinsic stability of the receivers.  The receiver 
noise temperatures of GeoSTAR are quite stable at the ~2K level, which represents about 
0.4% of the ~500 K system noise.  The observed phase stability is better than ~1 degree.  
These stabilities readily satisfy the phase and amplitude needs of most correlators in 
Table 1.  To meet the stricter phase requirements for correlations near the center of the 
UV plane, we will likely need the noise injection.  This is an ongoing study, but we now 
envision a hybrid scheme which uses long running averages of low duty cycle noise 
diode injection-- applied only to those correlators near the center of the UV plane.  The 
larger baselines should not need this reference circuit, which comes at considerable costs. 



 
The visibilities are next transformed into an image.  Ideally, this step is a Fourier 
Transform followed by a scaling within the earth disk by the elemental antenna pattern.  
Details are referred to Appendix 2. 
 
VI.ANTENNA RANGE AND SOLAR TRANSIT TESTS 
 
In October of 2005 the completed GeoSTAR demonstrator was tested on a compact range 
(CR) at the NASA Goddard Space Flight Center facility in Greenbelt, MD.  These tests 
were conducted with the complete system to validate the end-to-end model of 
interference fringes.  The configuration of GeoSTAR in the CR is shown in Fig. 5.  The 
test fixture placed the antenna array directly over the azimuth drive at the base of the 
fixture, and directly in line with a polarization drive located behind the array in Fig. 5.  
As shown, the antenna is rotated 90 degrees in polarization relative to Figures 1 and 2.  
The signal source for the tests consisted of an amplified noise diode which was switched 
on and off under the control of the GeoSTAR data system.  This was placed at the focal 
point of a large paraboloid reflector (not shown) of the CR which collimates a wavefront- 
creating in effect an infinitely long antenna range.  Data processing involved computing a 
noise diode deflection (NDD) from the “on” and “off” states of the source at each test 
position.  Measurements were made every 2 degrees of azimuth, and every 5 degrees of 
polarization.  The deflections were calculated for all 192 complex correlators of the 
GeoSTAR array.  The amplitude response of each of the 24 elements were then isolated 
by applying the closure constraint 
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where the subscripts denote the responses formed between any three elements, A, B, and 
C, of the array.  For any single element, there were 64 such combination in our array, so 
an average was used.  This equation is only valid for the response to a 100% correlated 
point source; passband and polarization mismatches among elements will also degrade 
this relation.  Data indicate that (4) is reliable to the 0.1% level, based on the consistency 
among the 64 solutions available for each antenna. 
 
Fig. 6 presents an example antenna response from preliminary analysis of the antenna 
range data.  An average has been formed from 36 different azimuth scans versus 
polarization.  An overlay of the model is also provided which evidently agrees quite well 
with the measurements.  To date, our model is based entirely on the designed geometry of 
the Y-array, and on a spherical wave expansion of the elemental horn.  A third 
measurement, labeled “tot” in the figure is also provided; this data was recorded by a 
device (which has not been discussed yet) called a totalizer which is, in effect, a power 
detector.4  This measurement also agrees with the correlator data. 
 

                                                 
4This device is a power detector, in effect, which measures the power from the receiver indirectly by 
counting the number of digitized samples which exceed a set threshold.  This scheme takes advantage of 
the remaining 7 bits of our 8-bit digitizers. The Error Function is used to map the total counts exceeding the 
threshold to a linear scale-- under the assumption that the voltage is Gaussian. 



The logarithmic scale of Fig. 6 is insufficient to view errors below a few percent.  A more 
detailed look at our data reveals typical errors on the order of 2% to 4% relative to the 
model antenna pattern.  When we first examined these errors we suspected anomalies 
associated with the CR.  The CR design specified only 1 dB of amplitude uniformity 
within the collimated wavefront, and we indeed observed such anomalies-- particularly as 
the antenna was rotated in polarization.  These anomalies were about 100 times larger 
than our measurement goal.  We able to recover from these effects by the fact that the 
array was centered on the azimuth and polarization axes of the range: this minimized the 
array displacements during each azimuth scan and thereby mitigated the large amplitude 
and phase errors of the CR wavefront.  To compensate for large variations versus 
polarization, as well as drift in source power over the many hours required by these tests, 
each azimuth scan was adjusted to maintain a constant power at the center position.  The 
beam center position was also adjusted slightly in azimuth to correct apparent phase 
anomalies of the CR.  These adjustments brought the measurements to a state that 
appeared to agree with the models at the 2% level, but these results were still suspect 
since the CR anomalies were poorly understood.  We therefore needed an independent 
confirmation of the measurement precision, and this was achieved by observing the sun 
in outdoor tests which were conducted several months later. 
 
The solar transit observations were conducted at JPL by simply pointing GeoSTAR at the 
sky and allowing the sun to pass across the FOV for several hours.  These data were then 
processed by subtracting an atmospheric background which was recorded at the end of 
the test, and then by using the known elevations from ephemeris data to fit the response 
to the atmospheric opacity versus elevation above the horizon.  These responses were 
further normalized to a model of the sun visibility versus baseline using a Bessel 
Function.  This correction was small since the sun diameter of 0.6 degrees was small 
relative to our largest baseline-- which resolves 0.8 degree.   
 
Fig. 7 summarizes the solar and antenna range responses- each as compared to the model.  
The scale here is the percentage error relative to the model.  The color image represents 
the complete measurement of the antenna range, and the three black traces in this image 
indicate the path of the sun through the FOV as observed on three different days.  The 
solar responses are plotted together with the extracted antenna responses in the three 
remaining graphs of Fig. 7.  The agreement between the solar and antenna range 
responses here is very good, and is typical of the 24 elements of our array.  Overall, the 
RMS difference between the antenna range measurements and the solar responses are 
typically 0.3%, with a few outliers with errors around 0.6%.  This agreement is really 
quite good, and it indicates that the antenna range data is very reliable.  The overall RMS 
errors of either of measurements (sun or the range) with respect to the model are in the 
0.8% to 1.5% range when calculated along the solar transit lines.  Peak antenna gains are 
found to be slightly higher on average than the model would predict, but are in agreement 
with one another at the 1% level, with outliers at 2% relative to the mean.  This result 
confirms that our system will meet requirements in the majority of the array in Table 1 by 
modeling alone, and that it will be possible to measure the antenna patterns with 
sufficient accuracy for the few elements near the center of the array. 
  



 

 
Fig. 5: GeoSTAR as tested on the Compact Range.  The “Y” array can be seen here rotated by 90 
degrees in polarization.  The systyem is otherwise wrapped in absorber material to reduce reflections 
on the range. 
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Fig. 6: GeoSTAR antenna patterns as modeled (blue) and measured by the correlators (green) and 
totalizers (red).  An average of 36 different azimuth sweeps at difference polarizations are presented 
here. 



 
Fig. 7: GeoSTAR antenna pattern error example.  Errors are given as a percentage relative to the 
model.  The upper left graph is the complete antenna range result, coded such that red means too 
much gain.  The three black traces represent the paths recorded on various days as the sun passed 
the field of view.  The solar responses are plotted in the three graphs, below and right.  The green 
traces represent the sun responses, and the blue traces are the extracted antenna range responses. 
 
VII. CONCLUSION 
 
We have developed a comprehensive error budget for a future Geostationary microwave 
imager, and have demonstrated a practical system and a calibration approach that will 
meet a goal for 1 Kelvin accuracy in a large imager with 50 km resolution on the earth.  
Our design paid close attention to controlling the antenna patterns and interference 
fringes.  We found that it is possible to build a system which meets requirements by 
design, without an extensive campaign to precisely measure a G-matrix for the majority 
of the array.  Only the short baselines of the array need the more precise calibration, and 
we demonstrated that these measurements are straightforward.  These results show that 
the inversion of the image will also be straightforward, since they show that majority of 
the synthesis processing can be handled by a conventional FFT. 
 
Our design also needed to address some very challenging issues related to biases, 
quadrature balance, noise performance, and stability.  We designed several circuits into 
our demonstrator so that we could evaluate the merits of various approaches.  These 
included the phase-modulated noise injection circuitry, the amplitude-modulated LNA’s, 
and the phase-switched LO.  In the end, the phase-switched LO won out, since it 



simultaneously solved the null-offset and quadrature balance problems.  A single-phase 
noise diode is the only other calibration device that appears to be necessary to stabilize 
the system-- and only in the short baselines of the array.  For the majority of the array, 
where gain requirements are relaxed, the intrinsic phase and receiver noise are stable 
enough to meet requirements without this circuit.  This works our advantage in terms of 
both cost and noise performance.   The noise figure of GeoSTAR, like any radiometer, is 
paramount.  By eliminating the ferrite isolators and directional coupler in the larger 
baselines of the array, we will easily gain a dB or so of improved noise figure. 
 
We plane to continue our work this year with a field demonstration that uses a large 
temperature controlled disk target which will be deployed above GeoSTAR to simulate 
the earth disk as viewed from GEO with a cold background.  This will provide a more 
convincing demonstration and a more comprehensive data base with which to illustrate 
various recalibration options for our system.  These include the use of the sun as a phase 
reference as it passed into the aliased regions of the image, and the use of the limb itself 
as a reference.  The utility of a ground beacon is also being considered, and will be tested, 
as a means to provide a continuous phase reference for the system. 
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APPENDIX I 
 
Ideally, the visibility function is the Fourier transform of the brightness temperature 
image as weighted by the elemental antenna pattern in the equation 
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where r and s are horizontal and vertical coordinates of the image plane (also referred to 
as the directional cosines) defined in terms of spherical coordinates by 

ϕθ≡
ϕθ≡

sinsins
cossinr ,     (2) 

T(r,s) is the brightness temperature image, f(r,s) represents the normalized antenna 
voltage pattern, Ω is the beam solid angle of the antenna, and u and v are the respective 
horizontal and vertical spacings between elements of the array- given here as wave 
numbers.  For the moment, (1) neglects other terms detailed by Camps, et al [5], and by 
Corbella [7], which are necessary to model antenna mismatches, mutual coupling, 
passband mismatches, fringe wash, array alignment, etc..  These are discussed below. 
 
By identity of (1) with the Fourier series, the image synthesis takes one of two forms.  
The first applies to the GEO earth observation where the earth is contained within the 
UaFOV and surrounded by, approximately, zero Kelvin.  In this case the integral of (1) is 
limited precisely to one interval of the hexagonally periodic Fourier Series such that 
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where i is an index for the u-v sample of Fig. 2, and Au is the area of one hexagonal 
period in the r-s plane given by 
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which equals 0.081 in the present design at 50.3 GHz and 2.25 cm element spacing.  Our 
antenna has a beam solid angle of 0.135, so we see that the fraction on the left side of (3) 
is 1.66 near boresight.  This is a factor which amplifies errors in our system (i.e. noise 
and biases). 
 



The other synthesis case applies to ground based observations where the brightness 
temperature surrounding the main synthesis region is unknown.  In this case, the aliased 
regions are superimposed (added) to the main region.  This has been the case for most of 
the GeoSTAR observations thus far, and in these instances the ‘best’ synthesis approach 
appears to be the simplest case of  
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APPENDIX II 
 
The G-matrix approach lumps all the gain errors into a single empirical function, g, 
which (in complex form) replaces (1) with 
 

( ) ( ) ( )∫∫
≤+

=
1sr 22

drdsv,u,s,rgs,rTv,uV

.    (3) 
The matrix form of this is 

GTV =       (4) 
where V is a vector of M visibility samples, and T is a vector of P image pixels, with 
P>M.  This is the original formulation of reference [3].  In essence, G is treated as an 
arbitrary function to be determined entirely by measurement and then inverted by the 
Orthogonal Projection Theorem according to 

( ) 1tt GGG'G
−

=      (5) 
One problem with this formulation is that the matrix inversion of (5) is very large, and 
very sensitive to small sampling errors.  This has already become apparent even in our 
small demonstrator instrument, with M=385.  We anticipate that this inversion may be 
impractical in this form, and probably unnecessary in a large spaceborne system 
(M=60,000).  More recently, we have reformulated the problem with what we call the 
“flat” G-matrix by casting (1) in the form 
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which takes the matrix form 
GFTV =      (7) 

where F is a PxP diagonal matrix which represents the ideal elemental antenna pattern, 
and G is composed of discrete samples of the complex exponent in (1).  This new 
formulation has the advantage that the product GGt in (5) is diagonal in the ideal case.  
This reduces the inversion of (5) to a transpose operation if the array is well behaved.  If 
not-- if the elemental patterns are not well behaved-- we propose to lump all complex 
gain errors (antenna errors, fringe wash, etc.) into G, while maintaining a common ideal 
model of the antenna pattern F.  This form is readily adapted to a hybrid synthesis in 
which large baselines of the array (which are sufficiently well behaved) may be 
processed with a conventional FFT.  The short baselines (where sensitivity to error is 
high) can be processed by the G-matrix.  These two solutions can be merged onto a 
common image plane, and then normalized with the common, ideal antenna pattern (as in 



(3)).  This approach reduces the size of the inversion in (5) to an appropriate level, and 
eases the processing load for the overall system. 
 
 


