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* JPL background
* Flexible electronics for space applications
* New direction for NASA

* Structural health monitoring for crew
habitats
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=L JPL is part of NASA and Caltech %

California Institute of Technology

* Federally (NASA)-owned
“Federally-Funded Research
and Development Center”

(FFRDC)

* University (Caltech)-operated
« $1.7 billion business base

* 5400 employees and
contractors

« 177 acres

* 134 buildings and 57 trailers



=0 Forty-six years of exploration  [f¥¥H
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Astrophysics

Giant Planets

Interstellar space

Small bodies

Terrestrial planets

Earth’s moon Planetary satellites




. R Deep Space Network
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Telemetry

Spacecraft command

Radio Science

 Monitor and Control : H tH
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J=. Power and Sensor Systems Section F1es
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Electrochemical
sSensors

- Integrated passive

components Advanced

Thermoelectrics

Power electronics

Microbatteries

Micro sun sensor




JPEL Sensors on deployable structures
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Membrane Radar

SO-meter class Membrane

Muror Telescope

Solar Sails Deployable telescopes




. Inflatableldeployable'structures NASA
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 Date back to the earliest
days of NASA

 Lightweight
* Volume efficient
 Low cost

* Flexible launch manifest

« Current research focus
on space durable
polymers and deployment
concepts




S Structural health ﬂ
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* Focus of structural health
on traditional aerospace
structures

— Commercial and military
aircraft

— Launch vehicles

* Emphasis on traditional
engineering materials
— Rigid
— Metals, alloys, ceramics




= Electronics for deployable structures
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 How do we integrate robust sensing electronics with thin, large
structures?

— Thin substrates (<2 mils)

— Rough substrate (300 nm rms)

— Maintain low areal density (0.4 g/m?)
— Large areas (100 m x 100 m)

— Hundreds to thousands of sensor nodes
— Minimal perturbation/good CTE match

— Space durable Solar sail with distributed
— Low power | sensing nodes




JL Flexible electronics for space?

California Institute of Technology

« Commercial focus:
— Low cost
— High volume
— Expendable

Flexible displays

* NASA needs:

— Long term space
durability

— High reliability
— Robust operation

ectronic paper




=L Flexible electronics for space?

California Institute of Technologry

processing
techniques

H T Il < Fabricate sensors
i directly on flexible

am| ° Use low temperature

[T

substrate

« Use matrixing and
combine with RFID
technology to reduce
number of
interconnects




=L Large area manufacture is here
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w rth, generatlonactlvea matnx LCD substrate

ézoOmm -
P7 fab 1950 x 2250 mm, operational in 2006 (Philips)




J=. Large area flexible electronics?
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Roll-to-roll processes @

Raw
Materials

Finished
Components

Demand Ink-Jet Technology

( pg;":?"::{m P Orifice  Substrate
Ink Jet printing - “ o o e .
‘Swstrate
Mation
Deata Pulse Train

Fluid at
Character Data Ambient Pressure




= Challenges of flexible electronics fo

California Institute of Technology a e ro Sﬁa ce
« Fabrication of devices on flexible, polymer
substrates

—  Polyimide surface micro-roughness (not pristine substrates)
—  Quality of semiconductor (which impact mobility)
—  Quality of gate dielectric "

* Reliability of TFT devices

—  Evaluate relevant materials (organics, a-Si-H'

07 >

— Radlatlo_n tolerancg AFM of Pristine
— Mechanical properties polyimide surface

* TFT Circuits

—  Design of op amps for signal processing

— Low TFT transconductance

— High input offset bias, low amplifier gain

—  Development of TFT based multiplexing circuits

TFT amplifier



=L Organic TFTs - X-ray irradiation
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Collaboration with Kirtland Air Force Base



o — N a-Si:H thin film transistors
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PENNSTATE

Source Drain

SiN

SiN TFT top view

e
Polysilicon TFT

TFT cross-section

mobility, threshold

Thermal Mountant

substrate cm?/V-s voltage, V
glass 1 0.1
polyimide 0.7to 1 2 Glass Support

PSA to glass used to
improve flatness
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=L n*puC-Si Ungated Strain Sensor
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PENNSTATE

= 90 ° strain sensor

TFTs to select/
isolate sensors

Forossnrtlssons
,,,,,,,,,,,,,,,,,,,,,,,,,,

sty

S,

45 °strain sensor

Gate line

Output signal lines




=l a-Si:H Strain Sensors
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PENNSTATE 300um n+ uC-Si on Kapton
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. =R Simulated deployment
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Bending Stress Test Tensile Stress Test
_ | deformation TETs

* /
‘0
EETTmAmL 5025 B0 e—.

3 inches

Uniaxial stress test

. 2000 psi
6 inches Hold 1 hour
1 Three point bending test, 100 cycles™
Haversine waveform, 0.25 Hz
1.18 inch deformation
Used to represent unrolling during Represents tensioning during
| deployment deployment

Attempting to replicate
service conditions




S Initial results of mechanical testing R

Drain current (A)
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Field-effect mobility before and after stretching
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Recent test results:

* 90% of TFTs survived

« 2,500 psi uniaxial tension for 60 minutes
« 20 a-Si:H TFTs on polyimide characterized

» 70% TFTs exhibited minor changes in mobility and V,




JPL Fast electron irradiation of TFTs
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=L Synthetic aperture radar application e
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T/R layout developed by ACT/code Y funding

’/T/R Module

Slot Feed

/N

Side View

Microwave Radiation

«— 3" layer???
T/R + CPW
Membrane

Goals:

- Demo a 2X8 active membrane antenna
- Flip-chip on flex

- Feed design

- RF interconnects

Ground Plane
Membrane

Radiating Patch

Slot Feed

2X8 active membrane antenna

Kapton thickness: 2mils
Copper thickness: 5 - 12um
Layer spacing: 1.25cm



=W, Fabrication of TFTs on patch antenna array

California Institute of Technology
Synthetic Aperture Radar Transmit/Receive structure:

profilometry of etched Kapton AP

Typical substrate roughness values:

Glass-0.5 nm rms

Pristine polyimide-30 nm rms
Processed polyimide-300 nm rms

Fabrication of a-Si:H TFTs on back of patch TFTs on Kapton patch



=L SEM of etched polyimide surface
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L VP Cheney visits JPL for announcement
of new NASA vision

California Institute of Technology




- N A new focus for NASA
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THE FUNDAMENTAL GOAL OF THIS VISION IS TO ADVANCE U.S.
SCIENTIFIC, SECURITY, AND ECONOMIC INTEREST THROUGH A ROBUST
SPACE EXPLORATION PROGRAM

Implement a sustained and affordable human and
robotic program to explore the solar system and

beyond
A RENEWED
SPIRIT 01 DISCOVERY Extend human presence across the solar system,
The President’s Viston for f’Stal’tinngith’a human-return to the Moon by the’veari o
15, Space Exploration 2020, in preparation for human exploration of Mars

and other destinations;

Develop the innovative technologies, knowledge, and
infrastructures both to explore and to support decisions
about the destinations for human exploration; and

PRESIDENT CEORGE W. BUSH
JANUARY 2004

Promote international and commerecial participation in
exploration to further U.S. scientific, security, and
economic interests.




=0 NASA Exploration Objectives NASA
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« Spiral 1 (2008-2014)
— Provide precursor robotic exploration of the lunar environment

— Deliver a lunar capable human transportation system for test and
checkout in low Earth orbit

« Spiral 2 (2015-2020)
— Execute extended duration human lunar exploration missions
— Extend precursor robotic technology demonstrations at Mars
« Spiral 3 (2020-TBD)

= Execute a long-duration human lunar exploration campaign using
the moon as a testbed to demonstrate systems (e.g., Lander,
~habitation, surface power) for future deployment at Mars

« Spiral 4 (~2025-TBD)

— Execute human exploration missions to the vicinity of Mars
« Spiral 5 (~2030-TBD)

— Execute initial human Mars surface exploration missions



= Inflatable Lunar Habitats
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* Inflatable surface habitats can provide large
nabitable volumes

* Deployable lunar surface habitats have been
studied since the 1960s

Radietors 1-m tiick ‘
Lunar air lock with
Ir"
Shack solar panels

Congiruotion Sheck infiatable Habitet
From K. Kennedy, NASA JSC, 1990 -
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Habitat issues

NASA TransHab

 Advanced structural materials in
place of traditional engineering
materials

— Muilti-layer polymers
— Foams
— Fabrics

* Unique requirements

———Highly compact stowed
configuration

— Deployment mechanism

« Complex, multilayer structure
— Bladder
— Restraint layer
— MMOD shielding



J=L Space suits
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* Space suit is the
ultimate inflatable
habitat

* Engineers use this
analogy in describing
habitats

* Employs a single
bladder system
* Size difference

influences MMOD
protection issues




- R Transit Habitat (TransHab) at NASA
California Institute of Technology J o h nson S pace Ce nte r

ermal-vac testing of

TransHab at JSC Commercial version of TransHab



=L TransHab multi-layer structure
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Deployment
System
Attached to

M/OD Layer 4

TransHab Exterior

M/OD
Shielding

TransHab Interior

Restraint Layer




_H_Structural health f<_>r deployable crew
California Institute of Technolo}y h a b Itats

* New generation of experimental crew vehicles
and surface habitats under development

* Detection of unforeseen damage is critical

* Use a combination of:
— Embedded health monitoring sensors

— Embedded adaptive mechanisms

* Alert the crew in real time to adverse structural
conditions

* Mitigate these conditions, when possible
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. = R Technology approach n

Multifunctional Structures + Smart Materials

v v

* Sensing technologies + Adaptive capabilities

— Thin film sensors — Self-repair
— Acoustic imagers — Variable emissivity surface
— Wireless technology — Actuators

Fully integrated strain gages Embedded piezoelectric actuators



=L Possible technology advantages n
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* Mechanical flexibility

* Minimally invasive

* Reduction in wiring and interconnects

* Autonomous or semi-autonomous |

* Embedded/integrated in hidden or difficult-to-

access areas

* Manufacturability

* Enhanced reliability
* Reduced touch labor
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* Jet Propulsion Laboratory
* NASA Johnson Space Center
* NASA Langley Research Center

* University of lllinois
* Boeing Phantom Works
* Penn State University



AL Flexible Electronics — Penn State [¥#
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PENNSTATE

OTFTs on
non-planar
surfaces
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Transistors on
cloth

Contact: Tom Jackson, Penn State



=L Boeing Approach For Crew Habitat
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@!aﬂ/m
o Approach:
."ﬂ : * Mount Sensors on Habitat Type Test Material
() - Impact Test Material

- Propagate Applicable Sound Wave into the Material
* Collect data and Form Image of Damage .
Concern:

* Understanding Sound Wave Propagation through these Materials.

Control and Data
Acquisition System

Image of Damage

Listen

Sensor

Lamb Wave Propagates along the thickness of part




.  Cabling and wiring harnesses n
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* Extensive cabling and
harnesses for strain
gages and temperature
sensors

'
f
Sensor |
WILE Sirain - VI2G9921A

— e Serious issue for

.
—— WLE Spor Temp - V0919695 NN —

| instrumenting deployable

AN
!

structures
WIE Clevis - VO9TP210A *
- — Stowage concerns
— Deployment concerns

— Reliability issues



=L Wireless technologies — NASA JSC
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NASA JSC, Invocon and Sandia National Labs

received pulses

interrogation pulse

antenna

antenna

narrowband SAW

gated oscillator

variable impedance

signal processing detector

Transmitter Tag Receiver

Figure 1: SAW sensor transmitter-tag-receiver configuration

Contact: George Studor, NASA Johnson Space Center



Macro-Fiber Composite Actuator - NASA
S Langley

California Institute of Technology

Contact: Keats Wilkie, NASA Langley




=L Self healing of habitats — U. lllinois
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Contacts: Nancy Sottos
and Scott White

i) o—Catalyst © s °
. mlcrocapsule/o.

crack

—%

| D)

s * healmg agent‘
¢

TransHab bladder

iy e,
o polymerized

o healing agent _e
®
® ®

SEM photo of the damage in Layer 3 SEM photo of the damage in Layer 2



J=L  Unique repair issues in space ﬂ
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* On-orbit repair an
increasingly important
ISsue |

* Current methods
geared toward

~ ceramictilesand
RCC

* Deployable structures
utilize a range of
polymers, composites
and fabrics
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Conducting Polymer-based
Electrochromics

* Ashwin-Ushas Corp., Lakewood, NJ (Dr.
Prasanna Chandrasekhar) / NASA-JPL SBIR

*  Operational principle:

*  Performance:

« Thin (< 0.5 mm), flexible panel construction

* Light weight: ~ 0.8 kg/mA2

* Low power consumption: s H w I N
Peak Transient ~4 mW/cm2 for < 30 sec , A

Observer or sxternal

Active CP layer undergoes electrochemically-
induced oxidation and reduction with an
applied voltage. <0.25 mm

Completely reduced state is IR-transparent.
Partially oxidized state is highly IR-absorbing.

Uses an lonic Electrolyte, also called “room bah or shoat
temperature molten salt”. Liquid from —100°C « )
to +280°C Dark State Light State

Delta-e ~0.55,
Tailorable emissivity from 0.15 to 0.85
Switching times: < 5 s at room temp , < 1 min
at -35°C |

Solar Absorptance < 0.29

Can be affixed to any surface. Conform to any
shape/size. 1

May be cut with scissors.

Steady-state: < 40 uW/cm2
Contact: Tony Paris, JPL



JPL Structural Health System Concept
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Threatening event Detection by embedded sensors

*Flexible strain gages
*Acoustic imagers

%Commumcatlon to crew via RFID nodes

Lo

Corrective measures

*Self-repairing material (passive)
*Embedded actuators (based on strain gages)
*Electrochromic material (based on T sensors)
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