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Abstract 

A planning system must reason about the uncer- 
tainty of continuous variables in order to accurately 
project the possible system state over time. A 
method is devised for directly reasoning about the 
uncertainty in continuous activity duration and re- 
source usage for planning problems. By represent- 
ing random variables as parametric distributions, 
computing projected system state can be simplified 
in some cases. Common approximation and novel 
methods are compared for over-constrained and 
lightly constrained domains. The system compares 
a few common approximation methods for an iter- 
ative repair planner. Results show improvements in 
robustness over the conventional non-probabilistic 
representation by reducing the number of constraint 
violations witnessed by execution. The improve- 
ment is more significant for larger problems and 
problems with higher resource subscription levels 
but diminishes as the system is allowed to accept 
higher risk levels. 

1 Introduction 
Planning systems that reason about real world events must 
eventually deal with the inherent uncertainty of any real world 
mechanism. For example, actions may take longer or con- 
sume more resources than predicted. Even if it were possible 
to model every variable that affected a planned set of actions, 
doing so is impractical for realistically sized domains. Fur- 
ther, practical modeling abstractions themselves also intro- 
duce uncertainty into reasoning about a system. 

The way a planning system deals with uncertainty in its 
actions and observations is critical to how well the system 
is able to perform in the real world. Clearly, systems that 
effectively reason about uncertainty can better avoid gener- 
ating plans that are likely to violate execution constraints. 
But effective use of uncertainty can also improve the long- 
term efficiency of a plan by balancing acceptable risk levels 
against the inefficiencies incurred to avoid those risks. Fi- 
nally, knowledge of uncertainty allows the system to better 
assess and report on the most risky plan segments. 

One historical approach to dealing with uncertainty is 
to assume no uncertainty at the level of planning abstrac- 
tion. To be used in a real world system, such systems 
are often augmented with some replanning mechanism for 
when predictions do not match results [Chien et al., 2000; 
Koenig, 20011. One step further is to depend on an execu- 
tion system to handle any variations in plan execution. Ef- 
fectively, the planner itself is abstracted from any knowledge 
that the real world does not behave as predicted. 

There are many planning systems that reason more directly 
about uncertainty. Classifications and surveys of this work are 
given by Bresina et al. (2002), Blythe (1999), and Boutilier 
et al. (1999). Some techniques handle some level of tem- 
poral uncertainty [Puterman, 1994; Boyan & Littman, 20001 
or continuous resources, e.g. [Bertsekas & Tsitsiklis, 1996; 
Smart & Kaelbling, 20001, and one can represent both com- 
plex temporal constraints and continuous states/resources 
[Dearden et al., 20031. This is important for domains where 
concurrent tasks interact in their effect on continuous re- 
sources. For example, a spacecraft can be slewing, operating 
instruments, and communicating at the same time. Metric 
resources such as power, energy, memory, and temperature 
are continuously affected and often require complex tempo- 
ral constraints to balance safe operation with efficiency. 

This paper outlines one possible approach for directly rea- 
soning about the uncertainty in action timing and resource 
consumption. While Dearden et al. use a Monte Carlo ap- 
proach to estimating the value of a plan (2003), we directly 
compute parametric probability distributions for time and re- 
source variables based on a user-supplied model of activities 
and resources. The distributions are then combined during 
planning to determine the net probability distribution of a re- 
source at any time point, which in turn may be integrated to 
yield the probability of violating any execution constraints on 
the resource. The key idea is to use this "probability of con- 
flict" to score potential plans and to drive the planner's search 
toward low-risk actions. An output plan provides a balance 
between the user's risk aversionand other measures of plan 
optimality. This is a simple conformant planning approach- 
the planner does no contingency planning but also assumes 
no hture state observability. 

The present work deals only with durations and resource 
usages that can be modeled as normally distributed random 
variables, though the techniques are more widely applica- 



ble. To gauge the effectiveness of our probabilistic system, 
batch-generated plans are executed in a stochastic simula- 
tor. A comparative evaluation of our technique versus some 
common probabilistic approximations is provided along with 
an analysis of its applicability to different kinds of planning 
problems. 

2 Approach 

Planning effort is directed to repairing areas of a plan that 
have unacceptable levels of risk, as determined by a user- 
specified risk tolerance on each resource as a function of time. 
Risk for any one timeline segment is assessed by computing 
the probability that the sum of all activity reservations that po- 
tentially overlap the segment would exceed one of the mod- 
eled system resource limits. This probability of resource con- 
straint conflict is readily derived if the resources' net proba- 
bility density functions are available. Our approach for main- 
taining each net resource distribution is to combine individual 
activity resource reservations parametrically. 

~ a c h  activity in the plan is considered to make uncertain 
resource reservations that follow a known distribution. Fur- 
ther, each activity can also have a duration that is similarly 
uncertain. (For simplicity, all activities are considered to have 
certain start times - an assumption that holds for directly com- 
manded actions, but may not apply for exogenous events.) In 
this paper, we only consider reservations and durations that 
are normally distributed random variables, though in practice 
other parametric distributions can also be used. The paramet- 
ric representation for a normal distribution is very compact, 
requiring only the distribution mean (p) and standard devia- 
tion (cT). In comparison, a particle filter [Gordon, Salmond, 
& Smith, 19931 requires a value and weight for each sample 
taken from a distribution. Conveniently, specified values can 
be also represented as normal random variables with a given 
p but a = 0. 

In the case of activities that make persistent reservations 
on a resource (that is, they consume or produce a resource), 
the net resource distribution for a timeline segment is the 
sum of all current and preceding normally distributed reserva- 
tions. Fortunately, the sum C of i independent normal reser- 
vations n is itself a normal, with parameters p c  = xi pnt 
and ac = d m .  Notice that the uncertainty of the sum 
is greater than any single component, indicating that resul- 
tant uncertainty grows with the number of interacting reser- 
vations. 

For actions that only have a transient reservation (lasting 
for their duration only), the same method can be applied to 
those reservations that are concurrent. In the simple case that 
each concurrent activity has a certain duration, the net re- 
source distribution is computed by adding each local reser- 
vation. In the more complex case of concurrent activities 
with uncertain duration, the net resource distribution itself be- 
comes a function of time. 

For an activity A with start time t, and duration d = d, f 
d,, consider P[A](t) to be the probability that action A is 
executing at time t (see figure 1). As d is normally distributed, 
the end time t, is also a normal, and we can express P[A] (t) 
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Figure 1 : Probability of activity A with normally dishibuted duration d continuing 
after its start time t,. 
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Figure 2:  Transient resource usage distribution for activity A of uncertain duration, 
showing peaks at R when the activity is likely and 0 when the activity is unlikely. 

Sum 

Figure 3 : Computing the sum of two bimodal resource usage distributions results in 
a multi-modal distribution. Each resultant peak weight is the product of the component 
weights. 

as: 
t < tSA 

PIAl(t) = { Y - 8,te,,te (t) t 2 tSA 

where QP!,(x) is the cumulative distribution hnction for a 
normal with mean p and standard deviation CT. Strictly, nor- 
mal distributions may yield negative samples, so we must 
truncate only the duration distributions to [0, oo), or in prac- 
tice [0, ,LA + 301. 



Each of A's resource reservations must reflect the grad- 
ual diminishment of the activity's probability. If A makes a 
reservation R when active, its effective reservation becomes 
a function of time, R(t), as in figure 2) .  This distribution 
is bimodal: one peak at zero resource usage represents that 
the activity is not in effect (weighted wo = 1 - P[A] (t)) ,  
and the R peak represents A's transient reservation (weighted 
WR* = P[A](t)). The peak at zero is a scaled Dirac delta 
function: it integrates to wo, but has infinitesimal width. 

The time-sensitive reservations seen in figure 2 are no 
longer simple normals, so the net resource distribution must 
also be more complex. In fact, the sum of lAil different bi- 
modal reservations results in a multi-modal distribution with 
0(2IAtl) distinct peaks: one for each combination of activi- 
ties that could be in effect (see figure 3). 

With the net resource distribution PDFR(x,t)  in hand, 
Computing the probability of violating a system resource 
constraint during a timeline unit becomes a simple integral. 
For a timeline unit T with a random variable resource level R 
and constraints that R E [Imin, lma,], then the probability of 
violation is given by: 

P[VT](~) = P[R(t) < 1rn,n] + P[R(t) > 1max] 

= 1 - P[lmin I R(t)  I lmaz] 
= 1 - (CDFR(~,,,, t )  - CDF~( lmin ,  t ) )  

1maz 

= 1 - lm.,. PDFR(x, t)dx 

Fortunately, this integral for normal distributions is fast to 
compute and multi-normal distributions require simple linear 
combinations of this integral. 

In the end, P[VT] ( t )  may still be a hnction of time. In 
this event, we report P[VT] as the maximum instantaneous 
probability of violation during the timeline unit. (Such an 
assumption works for systems where each random value is 
chosen once and not resampled.) To avoid checking all t E T, 
we currently only check a constant number of critical times 
from T, including the endpoints. 

The probability of constraint violation for each timeline 
unit is compared to the user-specified acceptable risk level, 
and any violations that are more likely than the risk tolerance 
are flagged as plan conflicts. A planning algorithm can use 
the tolerance to help decide whether and where to add, order, 
move, or remove an activity. 

In our application, we use an iterative repair planner that 
chooses one over-risk-tolerance timeline unit at a time and 
attempts to reconcile the risk by moving, adding, or deleting 
resource contributors. For our purposes, the plan is scored 
according to how many remaining "too risky" timeline units 
remain, and the planner gradually hill-climbs toward plans 
with only tolerable risk levels. 

2.1 Comparison Approximations 
Approximation methods were implemented for comparison 
against the fully probabilistic system described above. Each 
fits within the same planning and heuristic framework, but 
maintains the net resource distributions differently. 

Means Only: One very natural approximation method is 
to disregard all uncertainty and consider only the one value of 

Figure 4: Single peak approximation for resource usage distribution in place of 
multi-modal distribution (figure 2). 

maximum likelihood as representative of a distribution. For 
normal distributions, this is the mean. Because durations are 
also estimated by the mean, there are no multi-modal distri- 
butions, and resource values are tracked as a single value on 
each unit. The Means Only approximation is equivalent to an 
assumption that everything behaves as expected. 

Pessimistic: Similar to the Means Only approximation, the 
Pessimistic approximation only tracks one value from each 
distribution. Instead of choosing the value of maximum like- 
lihood, however, it chooses the "worst case7' value. For a nor- 
mal distribution, our pessimistic system tracks only the value 
p + 2u (or p - 2u), and considers that to be the actual re- 
source reservation. The choice of which direction constitutes 
the worst case is inherently domain dependent and must be 
specified. 

Single Peak: A possible limiting factor of the Fully Prob- 
abilistic system are the 0(2IAI) peaks required when com- 
bining reservations of uncertain-duration activities A. The 
Single Peak approximation uses a single normal distribution 
in place of this set, as in figure 4 (compare with figure 2) .  
This forfeits accurate representation in favor of much im- 
proved time complexity. The Single Peak approximation is 
optimistic in that it underestimates reservations. 

Chebyshev Bound: The Chebyshev Bound approximation 
is similar to the Single Peak approximation in that both elim- 
inate the multi-modal distributions that arise from uncertain 
duration. However, the Chebyshev Bound uses a more rigor- 
ous mathematical foundation for its approximation: for any 
random variable R, no matter the distribution, the probabil- 
ity of receiving a sample further than 1 from the distribution 
mean p is given by the single-tailed version of Chebyshev's 
inequality: 

c12 
P [ R -  p > 11 5 - 

rT2 + l2 
Because the Chebyshev Bound assumes so little about a 

distribution, it is necessarily pessimistic. Like the Single 
Peak, Chebyshev tracks only a single mean and standard de- 
viation, and the sum of two approximated values is taken to 
have the worst case standard deviation of ax = zi uni2. We 
apply the one-sided Chebyshev inequality to the net mean and 
standard deviation, and report the resulting upper bound on 
violation probability as the violation probability. 
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Figure 5: Execution error means for the three abstract domain variations. The 99% 
confidence of the mean is shown as an error bar. 
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The Full Probabilistic system was evaluated against each 
of the comparison algorithms in two disparate planning do- 
mains. The first domain is an abstract testbed, and the second 
is a much more complex orbiting spacecraft domain. 

For each domain, a random problem generator provided 
the initial schedule for the planner to repair. An iterative opti- 
mization planner was then run for a fixed number of iterations 
on the seed plan. The planner was augmented to use each of 
the full probabilistic and approximation algorithms, and an 
output plan was saved for each. The saved plans were then 
executed on a stochastic simulator that reported the number 
of resource constraint violations that occurred. Notably, no 
replanning was allowed as information became available dur- 
ing simulation. It would be possible to augment our exper- 
iments with more elaborate execution models (flexible time 
points, replanning, etc), but such was not investigated in the 
present work. 

MeansOnly Pessimistic FullProbabilistc SinglePeakApn ChebyshevAprx 

3.1 Abstract Domain 
The abstract testbed domain has a single resource and a series 
of activities that may consume or replenish that resource. The 
model was run with both permanent and transient resource 
reservations, and with different levels of reservation uncer- 
tainty. A valid solution existed for every generated problem. 

A comparison of the simulation error means for each ap- 
proximation method is show in figure 5. As expected, the 
Means Only approximation stacked activities until the re- 
source value was very close to its limit. This resulted in 
simulation errors when the simulated values exceeded the 
mean. The Pessimistic approximation only fared slightly bet- 
ter, likely due to its representation deficiency: a simulation 
error occurs when a resource exceeds its limit or falls below 
zero. After a sequence of several overestimated consumers, 
the Pessimistic approximation replenished those reservations 
with twice as many underestimated replenishers. This causes 
the resource to fall well below zero, and an error is reported. 
In real systems, resources may have one-sided constraints. 

The Full Probabilistic system fared the best, consistently 
achieving nearly zero errors in each domain. It added an 
appropriate amount of both resource and schedule slack to 
accommodate the specified risk tolerance of 5%. The Sin- 
gle Bump approximation also performed well, only having 
difficulty when the resource uncertainty was doubled in (B). 
Notably, the Chebyshev approximation did not meet expecta- 
tions: it turned out to be so very pessimistic in its distribution 
estimation that it failed to find good solutions, floundering 
with imagined conflicts. 

The price of using the Fully Probabilistic system is of 
course computation time. For problems in which duration 
was not uncertain, the Fully Probabilistic system was about 
10 times slower (unoptimized) than non probabilistic ap- 
proaches. When duration was made uncertain, however, a 
vast difference appeared. Notably, the Single Peak approx- 
imation was almost 100 times faster than Full Probabilistic, 
on par with the non-probabilistic approaches. Systems where 
computational time is at a premium would likely fare well to 
adopt a simple Single Peak approximation and instead leave 
the Full Probabilistic approach for systems where execution 
errors are extremely high cost. 

3.2 Orbiter Domain 
The second domain is a more realistic mock up of an orbit- 
ing spacecraft model. The model is based on a synthesis of 
ideas from actual models for the EO-1 spacecraft [Chien et 
al., 20031 and the proposed ASE spacecraft [Chien et al., 
20021. In addition, we strove to model many of the is- 
sues presented in similar planning competition models [Long 
& Fox, 20021. There are other planning systems that have 
treated similar spacecraft domains, e.g. [Globus et al., 2002; 
Frank et al., 200 11. 

The modeled hypothetical spacecraft is an earth-orbiting 
satellite equipped with a camera for imaging the planet. The 
craft must take actions only when sufficient power is available 
to its solar panels or by drawing on its battery. The craft must 
avoid o v e r k i n g  its battery, memory, and disk space capaci- 
ties. In addition, the processing power and antenna bandwidth 
are modeled as system resources. Finally, the external envi- 
ronment is modeled as providing limited availability windows 
for downlinks, imaging, and solar power. 

The probe is tasked with acquiring images during target 
visibility windows, processing those images in RAM, record- 
ing them to disk, and later downlinking them to a ground sta- 
tion. The probe has to reason about 10 resources and has 
10 different activities to complete its goals. Each activity 
makes reservations on multiple resource timelines. In this 
domain, the random problem generator does not guarantee 
that its problems will always have a completely valid solu- 
tion (that is, the problems could be over-constrained since the 
planner is forbidden to shed goals). 

As before, the Fully Probabilistic system achieves statisti- 
cally significantly fewer simulation errors than either of the 
non-probabilistic systems, and generates plans on par with 
the Single Peak approximation's. The box plot in figure 
6 conveniently shows a comparison of the error counts for 
each system. On a per-problem basis, the Full Probabilis- 
tic system had a mean 3.05 fewer simulation errors, with a 
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Figure 6: Execution error distribution for each reasoning system. The box plot 
shows the median as a horizontal line, a 95% confidence of the median as a notch, and 
the interquartile range as a box. The whiskers extend to encompass 1.5 more interquar- 
tile ranges, and outliers are plotted beyond that. 
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Figure 7: Execution error improvement distribution for problems of different goal 
densities. (The improvement is measured as the per-problem difference in errors.) 

99.9% confidence interval of [ 1.35, 4.90 1. The Pessimistic 
approximation still suffers from the double resource bound 
problem noted for the abstract model, but still achieves per- 
formance comparable to the Means Only approach. The 
overly pessimistic Chebyshev system still fares worse than 
the Fully Probabilistic system, but is not statistically signifi- 
cantly worse than the either of the non-probabilistic systems. 
Notably, the Single Peak approximation achieves an error rate 
that is comparable to - perhaps even better than (confidence 
of 85%) - the Fully Probabilistic system. This is likely an ar- 
tifact of our domain, in which activities seldom have tails that 
stack up into large multi-modal distributions. 

Various parameters of the system were changed to evaluate 
the relative sensitivity of each approach. One such parameter 
is the user-specified risk tolerance. As expected, the payoff 
(in terms of reduced simulation errors) for using the Fully 
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Figure 8: Execution Error Distribution for Problems of Different Sizes 
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Figure 9: Execution Error Improvement Distribution for Problems of Different 
Sizes 

Probabilistic over a Means Only approach diminishes as the 
risk tolerance is increased. At a risk tolerance of 5%, they 
are distinct with 100% confidence, but even at 10% risk tol- 
erance the statistical significance has dropped to 80%. At a 
risk tolerance of 50%, the Full Probabilistic system becomes 
mathematically equivalent to the Means Only system. 

The difficulty of the problem also plays an important role 
in determining the Full Probabilistic system's dominance. As 
problem difficulty (measured as number of goals required) 
decreases, the Means Only approach gains on and eventually 
overtakes the Full Probabilistic approach in terms of simula- 
tion errors. Figure 7 shows the relevant confidence intervals. 

Perhaps the most important change is that due to over- 
all problem size. Figure 8 shows that both the probabilis- 
tic and non-probabilistic systems suffer a roughly exponen- 
tial growth in simulation errors as a hnction of problem size. 
However, the slope of the Full Probabilistic system's hnction 



is significantly lower than that for Means Only. This indicates 
that the difference in simulation error counts will probably 
grow roughly exponentially was well. Figure 9 demonstrates 
this fact more clearly by showing the per-problem improve- 
ment distribution. At large problem sizes, the Fully Proba- 
bilistic system vastly dominates the Means Only approach, 
while at small problem sizes, there is hardly any difference. 

4 Conclusions 
We have described an approach for directly dealing with plan 
uncertainty by collecting and merging the probability distri- 
butions from action duration and resource usage. The es- 
sential idea is that by maintaining such merged distributions, 
a planning system can ask specific questions about the risk 
of violating constraints at any time. Being able to ask such 
questions allows the planner to better balance its risk posture 
against its desire to achieve goals. 

We have shown that augmenting a planner with such 
a probabilistic reasoning system allows for plans with 
execution-time quality superior to that which can be obtained 
without directly considering uncertainty. Though the under- 
lying structure of the planner's decisions are not changed, the 
more robust risk assessment afforded by a probabilistic sys- 
tem allow the planner to focus its decisions on the most prob- 
able errors. As problem size increases or as resources become 
more saturated with subscriptions, such focus becomes more 
important to finding plans that perform well on execution. 

The hlly probabilistic system makes its gains using a 
O(2") algorithm, but we have also shown that a simple 
approximation technique that still tracks distributions can 
achieve comparable (and sometimes superior) results with 
only a O ( n )  algorithm. 

The techniques we have demonstrated are applicable to 
most planning problems that satisfy a few constraints. First 
the resource and duration distributions of actions must be 
known. Second, the system must have a relatively high risk 
averseness for the probabilistic system to make a difference. 
In the current implementation, we have not handled many de- 
sirable planner capabilities such as direct temporal constraints 
or discrete state resources. We believe the techniques are 
still applicable for problems with such characteristics, albeit 
with some modification. Probabilistic reasoning is especially 
suited to problems of large size and high cost of failure. 
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