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Abstract--CHAMP (Camera, Handlens And Microscope 
h robe)"^ is a novel field microscope capable of color 
imaging with continuously variable spatial resolution from 
infinity imaging down to diffraction-limited microscopy (3 
pmlpixel). As a robotic arm-mounted imager, CHAMP 

n -- 

continuously image targets at an increasing magnification 
during an arm approach, can provide precision range- 
finding estimates to targets, and can accommodate 
microscopic imaging of rough surfaces through a image 
filtering process called z-stacking. CHAMP was originally 
developed through the Mars Instrument Development 
Program (MIDP) in support of robotic field investigations, 
but may also find application in new areas such as robotic 
in-orbit servicing and maintenance operations associated 
with spacecraft and human operations. We overview 
CHAMP'S instrument performance and basic design 
considerations below. 
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Imaging over a wide range of spatial scales constitutes a 
fundamental aspect of many facets of aerospace exploration 
including robotics --- (e.g. reconnaissance, navigation, and 
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instrument and tool placement), planetary sciences (e.g. 
geology, astrobiology) and engineering sciences (e.g. 
surface metrology). 

To provide a brief example of "lessons learned" for in-situ 
imaging, the recent Mars Exploration Rover (MER) mission 
is considered. Over the mission, the mast-mounted 
Panoramic Imager (Pancam) has been developed and 
utilized extensively to perform remote geologic investiga- 
tions of surrounding terrain, provide context imaging for 
remote-sensing and contact instruments, assess rover 
hazards, and guide rover navigation and arm placement. The 
Microscopic Imager (MI), an arm-mounted hand-lens for 
the MER investigation, has been an essential instrument for 
investigations into the microscale realm of Mars. 
Specifically, tabular vugs, spheroidal concretions, and 
finely-layered rippled bedforms have been imaged with the 
MI to support the conclusion that a shallow aqueous and 
salt-rich environment existed when sediments were 
deposited at the Meridiani landing site. Despite this utility, 
at the Gusev Crater landing site, it was inferred that a 
substantial fraction of particles were too small to be 
resolved with the MI. Furthermore, the utilization of 
ambient lighting conditions restricted MI operations to 
optimum lighting conditions. Finally, the MI'S lack-of-color 
(monochromatic) imaging put a constraint on data 
interpretation [I-61. 

Current spaceflight imagers have rather limited fo- 
cus/magnification ranges with imaging performance as 
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1) Pancam - 0.27 mradpixel. 8 color filters per 
imager. 2 imagers for stereo-imaging with fixed 
baseline. No active illumination. Mass -1kg. [6] 

2) MER MI - Spatial resolution of 30 ym/pixel. No 
active illumination. Mass of -0.450kg 171. 

3) Robotic Arm Camera (RAC) for the 2007 Phoenix 
Mars Scout lander robotic arm - Spatial resolution 
of 23 ydpixel. No active illumination [8,9]. 

4) Fixed focus MECA microscope on the Mars 2001 
lander. Spatial resolution of 4 pdpixel. Multiple 
LED illumination [9]. 

5)  Beagle 2 microscope - Spatial resolution of 4 
ydpixel. Multiple LED illumination [lo]. 

2. CHAMP OVERVIEW 

CHAMP (Camera, Handlens, And Microscope Probe) is a 
new high-spatial-resolution, multi-band field camera 
/microscope with a variable working- 
distance/magnification. CHAMP is capable of imaging 
across a wide range of spatial resolutions from km's to m's 
for context imaging (Pancam analog>-=to 3 F i E e T a t  - - 

peak magnification for microscopy (higher spatial resolution 

analog to micro-imagers 2-5 identified above). CHAMP can 
acquire in-focus images from almost any working distance 
relative to a target (-7mm out to infinity). The resultant 
image resolution is directly correlated with the working 
distance - the closer the instrument is placed to the target, 
the higher the resolution/magnification of the captured 
image at the cost of a smaller field-of-view (FOV). 

The same adjustable working distance can be utilized over 
small ranges to perform microscopy and imaging of un- 
improved "rough" surfaces consistent with field investiga- 
tions through a process called z-stacking. 

A filter wheel provides multi-band imaging capability (RGB 
with the option for additional filters for specific bandpass 
imaging or calibration functions). LED'S illumination are 
incorporated to provide active illumination particularly for 
microscopy. 

Originally developed under the 1998-2002 Mars Instrument 
Development Program (MIDP) and integrated into the 
NASA Ames K9 rover for IS Level 1 and ASTEP 
(Astrobiology Science and Technology for Exploring 
Planets) robotic field testing, CHAMP has since evolved 
into a space-qualifiable design as a proposed instrument for 
the 2009 Mars Science Laboratory (MSL) mission (total 
mass <lkg). The MIDP version of this instrument with 
samples of acquired images is shown in Figure 1. 

Figure 1 - A) The MIDP CHAMP Instrument B) Deployed on the NASA ARC K9 Rover, and C) Preloaded into a Target 
Rock for Stable Microscopic Imaging; D) Infinity Image of Rocky Mountains in Boulder, CO; E)-G) Progressive Approach to 
Chalcedony Target Imaged at H) Peak Magnification; 1) Copper-Rich Chalcedony Rock; J) - L) Variable Magnification Hand- 
Lens Images of Hematite with Micro-Fossils (No Z-Stacking as Described below). 



nifications at different operational temperatures) using 
3. CHAMP OPTICAL DESIGN Zemax optical design software [ll]. The final design has 

been optimized for achromatic imaging from 460-650nm 

The CHAMP optical system consists of two lens cells which 
when translated relative to one another provide an 
adjustable working-distance/magnification. Figure 2 
illustrates the CHAMP Zemax optical design with acquired 
images of a US$20 from the MJDP CHAMP instrument 
over most of the instrument's magnification range (infinity 
not shown due to scale). Table 1 summarizes imaging 
performance as a function of working-distance. At the 
highest magnification, (3 pmfpixel resolution), the 
imperfections in the micro-print from the run of the ink into 
the fibers of the bill are clearly visible. For comparison 
purposes, an image at MER's MI equivalent resolution (30 
pmfpixel for a 12pm pixel) is also shown (note microprint 
cannot be resolved at this imaging resolution). 

The CHAMP optical system has been created and optimized 
with 1000+ permutations of 26 simultaneous design 
configurations (i.e different working distanceslmag- 

onto a detector with -12 pm pixels (FOV can be linearly 
scaled up from the current MlDP CHAMP design for a 5 1 2 ~  
array) with <1% field distortion and ~ 5 %  variation in field 
intensity for all working-distances in the temperature range 
of -145°C to 50°C. The CHAMP optical design also 
includes Zemax Monte Carlo sensitivity analysis of lens 
alignment (i.e. tilt, decenter) and manufacturing tolerances 
(i.e. radii of curvature, lens thichesses). The lenses hzve 
been designed to be mounted and precision-aligned inside 
two custom lens cells that can accommodate launch 
vibration and extreme thermal environments. Relative 
tolerances between these lens cells are relatively course 
(-lrnm decenter, -0.3" tilt). 

Figure 3 illustrates the relative optical performance 
(Huygens modulus of optical transfer function) for various 
image plane field points simulated in Zemax over 
CHAMP's magnification range. 

I I - . . . . . . . . . . . . -. - - - - - 
Figure 2 - CHAMP Optical Design And Monochromatic Images Acquired Over CHAMP's Magnification Range. Pixel 
Resolution Is Quoted For A 12 pm Pixel (Optimal Pixel Size For Design), However, a Commercial 649x509 Detector With 
7 pm Pixels Was Used To Acquire Images For Purposes Of Lllustrating CHAMP's Relative Magnification Range. 

Table 1. Summary of Proposed CHAMP Flight Inbtrumcnt Imaging Characteristics (Larger FOV than MlUP). 
Microscopy t---- Working-Distance [mm] -----, InJinity 

7 1 8.4 1 10 1 14.5 ( 27 ( 87 f 250 ( 2500 1 infinity 
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Figure 3 - Huygens Optical Modulation Transfer Function for Various Image Plane Field Points of Radius, R, over 
CHAMP'S Magnification Range: A) M=4.4, B) M=3.0, C) M=2.0, D) M=1.0, E) M=0.3, F) M=0.01. 
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4. CHAMP FIELD IMAGING 
find the best focus region for z-stacking [7] (by essentially 
measuring the degree of high spatial frequency information 
in an image), a very simple and sensitive metric that has 

4 - 

The variable magnification/focus optical design allows been initially for a flight version of CHAMP is to 

CHAMP to image targets with significant surface roughness use the compressed file size of the z-stack images (see 

as well as provide range-finding estimates for precision arm 
Figure 5). Once a best focus solution has been found, 

placement relative to small features. Figure 4 summarizes multiple raw images (typically 10's of images ultimately 

CHAMP's imaging capability for interacting with field 
dependent on surface roughness) spaced at the instrument's 
depth-of-field (Note: DOF is -40 micron at microscopic 

targets at handlens/rnicroscopic resolutions. 
resolutions) are acquired about the best focus Dosition 

H . 2 -  

1 

. 0  

(Figure 4C-G). The in-focus portions of these images are 
Microscopic viewing of rough surfaces is performed by then software-filtered to remove the large volume of "out- 
sampling a three-dimensional surface over a range of of-focus" image data in the z-stack of images. This filtering 
closely spaced working distances and applying z-stack process effectively compresses the z-stack of images down 
image compression. In such a case, an auto-focus solution into a single "in-focus" image (Fig. 4E). To date, a Sobel of 
for the target is first found by locating the best-focus the convolution of an image has been used for this z-stack 
position for lens cell 2 (Note lens cell 2 translates relative to software compression filter, however, continuing work has 
lens cell 1 in the mechanical implementation of the been proposed for more complex algorithms to address 
instrument). While a number of algorithms can be applied to 

- 
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Figure 4 - A) CHAMP's Pixel Resolution (pmlpixel) as a Function of Working Distance. B) Depth-of-field-Limited 
Precision Range-Finding Estimates with CHAMP. C)-F) Raw Monochromatic MIDP CHAMP Images of Hematite at 
Slightly Different Working Distances Compressed into E) a Single Composite In-focus "Z-stacked" Image. 

minimizing any slight image distortion that may occur due 
tn - - - -the range of the 5. 

- - - .- 

acquired image stack. 
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The original MIDP CHAMP instrument utilized 20 white 

,,,, ,."., , -- - LED'S for illumination near and at peak magnification. This 
Best Focus lmage -, ICER I."*l P - 

: ~ g  ::::: : = design has been miniaturized and upgraded (Fig. 6) with 
in lmage Stack 

ZBaBOa fiber optics to support a smaller "snub nose7' in order to 
minimize the amount of material that must be removed 
when imaging an abraded surface. * 

Compress~on Rate 

MlDP CHAMP MSL CHAMP 
image # LED system LED/Fiberoptic illumination 

Figure 5 - Example of Best Focus Calculated from 
Compressed Image File Size. Figure 6 - CHAMP Illumination System Design 

Due to the inherently small FOV's associated with 
microscopy (-mm's as shown in Table l), accurate arm 
placements based on CHAMP progressive context image 
information is highly desirable. For precision arm 
placement, 3D location of a small target can be determined 
by coupling the 2D location of a target in CHAMP'S object 
plane with the working-distance of the object plane from the 
camera. This working-distance can be estimated within the 
DOF of the lens system by measuring the relative distance 
(calibrated) between lens cells 1 and 2 for the target's best- 
focus position (Fig. 4F). 

The upgraded illumination system consists of four 
independent quadrants as shown in Figure 6 which serve as 
a built in redundancy against failure of any individual 
quadrant. Any of the four quadrants can be illuminated 
independently creating oblique lighting conditions for 
viewing surface topography with either white or UV light. 
This illumination system design includes a reflective surface 
on the inside of the snub nose to optimize microscopy 
illumination intensity over a large working distance as 
shown in Figure 7A. Figure 7B illustrates the exposure time 
necessary to achieve 50% full well per pixel with a MER 



CCD detector after light from the white-LED system 
illuminates different reflectant surfaces and returns through 
a set of MER Pancam filters (as a design case) using 
120mW, LED'S (6mW light output). In all cases, the 
detector signal-to-noise (SNR) is greater than 100. 

I A 1 Ring ll~urnination Hiurnination FIUX Patterns at 

B Integration Time vs. Target Reflectance and Filter 
T a n p t R e f / e d a n c e  1~0.1  00.1 00.3 a0.4 a0.5 M0.6 1 

10.0 - r - - - - - - - -  
I 

No Filter 480 [25] 530 [2O] 6 ~ )  [to] 670 1201 

Filter Band - Center Wavelength with [Bandpass] (nm) 

Figure 7 - A) CHAMP Snub Nose Illumination Flux. B) 
Time to 50% Full Well using Various Pancam Filters 
and Target Reflectances with 4 White LED, Full 
Quadrant Illumination 

To support qualification of the CHAMP instrument 
eventually for flight, a number of mechanical design 
upgrades from the original MlDP have been baselined. 
Figure 8 illustrates the conceptual mechanical design of a 
CHAMP flight instrument. 

Optornechanical Design - A kinematic translation stage 
provides the necessary relative motion between lens cell 1 
and lens cell 2 (within the required optical tolerances) for 
CHAMP'S variable working-distancelmagnification over 
extreme temperature ranges. As previously noted, the lens 
cells (optical mounts designed for extreme temperature 
ranges) are assembled and precision-aligned independently 
before being integrated into the overall assembly. The entire 
camera assembly has been designed for easy integrationlde- 
integration with a future host vehicle. 

Mechanical Coupling to a Target - At highest resolution 
microscopy, CHAMP can potentially be susceptible to 

image blur due to external disturbances (e.g. wind in 
terrestrial environments) applied over the exposure times 
shown in Fig. 7B. To alleviate this potential problem, three 
spring-loaded pins were incorporated into the MIDP design 
to provide a preload against a target which removes 
backlash in robotic arm gears and joints that act as soft 
springs susceptible to the external disturbances. Although 
much less of an issue for Mars and vacuum environments, 
the proposed flight version of the instrument incorporates 
the same design concept with the following modifications: 

1) Springs with a longer stroke to provide a nearly 
constant spring force during the preload. Dry lubri- 
cants are used for the spring-loaded pins to in- 
crease life. 

2) Short spiked ends with dust wipes to minimize 
collected debris and debris in the spring mecha- 
nism. The spring mechanism is sealed from the in- 
ternal optical components of the instrument. 

Dust Mitigation - Given the likely and common interaction 
of CHAMP with the Mars saltation zone (zone of tumbling 
windblown particles near the Mars surface [12]) as well as 
the likelihood that CHAMP may be in the vicinity of 
particles generated from abrasion and coring processes (i.e. 
on a common robotic arm), CHAMP incorporates a dust 
cover mechanism to protect the imager when not in use. 
This mechanism uses the same mechanical design 
philosophy and motor as were used on the MER MI to 
provide a seal against the outside environment without 
sliding motion at the seal interface. 

Planetaiy Protection - The flight version of the CHAMP 
instrument is sealed such that the instrument (minus the dust 
cover mechanism which is separately sterilized and 
subsequently assembled) can be immersed in an alcohol 
bath up to a filtered vent in order to meet planetary 
protection requirements.. In general, this instrument has 
been designed to withstand dry heat sterilization 
requirements. 

7. CONCLUSIONS AND FUTURE WORK 

We have described the recent development and demonstra- 
tion of the CHAMP field camera/microscope which can 
image over an extreme range of spatial scales. At peak 
magnification CHAMP has the highest spatial resolution 
currently known for a spaceflight imager in the visible band. 
Furthermore, a flight version of the instrument has been 
conceptually designed with preliminary analysis that 
supports the future development of the instrument for 
spaceflight conditions. This work appears very promising 
for enabling future robotic spacecraft missions to utilize a 
single all-purpose camera for multi-functional imaging 
across all spatial scales relevant for a mission (Fig. 9). 
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The MIDP version of this instrument is currently integrated 
with the NASA Ames IS9 rover (Fig. 1). Future work would 
couple the ongoing single command arm placement robotics 
software work with CHAMP imaging over a range of spatial 
scales. This software development, in particular, would 
include focal plane merging (specific to CHAMP) from two 
viewpoints to allow the "cyclops7' CHAMP camera to 
produce variable baseline stereo-images across its 
magnification range (Figure 10 illustrates a stereo-image 
example for a single microscopic imager). Such a 
development would demonstrate the necessary capabilities 
for future rover reconnaissance and robotic arm 
investigations using a single CHAMP camera. 

Figure 9 - Future CHAMP Integration on a Deployable 
Arm/Mast Would Allow Mast and Contact Instrument 
Imaging Functions to be Integrated into a Single Instrument 
on a Single Robotic Appendage (Picture of FIDO rover). 

PI * s* -- 
Figure 10 - Example of a Stereo-Image Produced from 
Focal Plane Merging Single Camera Images Acquired at 
Two Different Perspectives 

Finally, future work specific to the camera design would 
augment the illumination system with high power pulsed 
diodes to reduce the overall exposure times shown in Fig. 7 
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