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Abstract 

The Space Interferometry Mission(S1M) will measure optical path differ- 
ences (OPDs) with an accuracy of tens of picometers, requiring precise cali- 
bration of the instrument. In this article, we present a calibration approach 
based on fitting star light interference fringes in the interferometer using a 
least-squares algorithm. The algorithm is first analyzed for the case of a 
monochromatic light source with a monochromatic fringe model. Using fringe 
data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser 
source, the error in the determination of the wavelength is shown to be less 
than 10pm. By using a quasi-monochromatic fringe model, the algorithm can 
be extended to the case of a white light source with a narrow detection band- 
width. In SIM, because of the finite bandwidth of each CCD pixel, the effect 
of the fringe envelope can not be neglected, especially for the larger optical 
path difference range favored for the wavelength calibration. We eliminate the 
fringe envelope effect by "projecting away" the fringe envelope, i. e. working 
in a subspace orthogonal to the envelope signal. The resulting fringe enve- 
lope parameters are needed for subsequent OPD estimation in SIM. We show 
the sensitivities to various errors. The algorithm is validated by using both 
simulation and the fringe data obtained on the MAM test bed. 

I Introduction 

The Space Interferometry Mission(S1M) will dither the optical path difference (OPD),  
and then estimate the O P D  from the observed fringes using an estimation algorithm. 
In order t o  form a n  accurate estimate, it is necessary t o  have the correct fringe model 
parameters. The fringe model for a monochromatic light source (a laser source, for 



example) is characterized by four parameters, namely the intensity, visibility, wave 
number, and phase dispersion. The conventional OPD estimation algorithm esti- 
mates the delay by fitting the fringes to a cosine curve[3]; this requires knowledge 
of the wavelength of the light source. We shall describe a least-squares calibration 
scheme suitable for determining the wavelength to  high accuracy. We applied this 
algorithm to the FAM (full aperture metrology) laser interference fringe data ob- 
tained on MAM test bed and found that the calibrated wavelength is accurate to 
10pm. 

The least-squares calibration algorithm can also determine the phase dispersion, 
intensity and visibility of the fringe signal. This is useful for SIM. For SIM, star 
light serves as the light source for the interferometers. In the limit of small optical 
bandwidth, e.g., at  the CCD pixel detection bandwidth level, the fringe pattern may 
be approximated as monochromatic to the leading order. Using the least-squares 
calibration enables us to obtain all the model parameters at  the pixel level. To 
reduce the effect of read noise, SIM reads groups of CCD pixels simultaneously. 
A broadband signal may be modeled as a superposition of the pixel-level quasi- 
monochromatic signals. By performing the least-squares calibration at the pixel 
level we are able t o  obtain the effective intensity, visibility, wave number, and the 
dispersion phase, which form the principal model parameters for the interferometer. 

For high precision measurements, we require accurate calibrations. At the accu- 
racy of picometer level required for SIM[l], the fringe envelope for even the narrow 
optical bandwidth of a CCd pixel1 is not negligible. Ignoring the envelope may lead 
to  tens of picometers of error in phase calibration and more than 5% error in the 
visibility. In order to  take the fringe envelope into account, we shall first model 
the leading order fringe envelope using a quadratic function. The fringe envelope 
effect is then eliminated by working in a subspace that is orthogonal to the envelope 
factor. The fringe envelope is essentially projected away, removing the systematic 
error otherwise present in a monochromatic model. The cost of this approach is 
some increase in the error in the estimates of the other parameters, especially the 
visibility and the wave number. Once we have the wave number and phase, it is 
possible to estimate the width and center of the fringe envelope. The envelope width 
can be used in a broadband delay estimation algorithm.[2] The technique of project- 
ing away the envelope effect is first demonstrated using simulated fringes to validate 
the idea. We then apply it to white light fringe data from the MAM test bed. 

2 The least-squares calibration for a monochro- 
matic light source 

In this section, we summarize the least-squares calibration algorithm based on a 
monochromatic fringe model[4]. 

Given a set of fringe measurements yi and the corresponding dithering step posi- 



tions ui, we seek the wavelength of the light source. Using a least-squares fit to the 
fringe measurements with a monochromatic model we obtain the wavelength, and 
also the intensity, visibility, and the phase offset. A monochromatic model may be 
written as 

yi = I [I + Vcos(kui + 4)] , i = 1,2, 
a ,  N (1) 

where I ,  V, k, and # are the intensity, visibility, wave number, and the an offset 
phase respectively.' This may be conveniently expressed as a vector equation 

where x - [I I V  cos(kd) PV sin(kd)lT is the phasor and matrix A(k, u) is defined 

by 
1 cos(kul) - sin(kul) 
1 cos(ku2) - sin(ku2) 

= . 

1 cos(kuN) - sin(lcuN) 

It is useful to  view Eq. (2) as a transform from phasor x t o  the fringe y. The 
column vectors of A(k) are the basis vectors spanning the model signal space, and 
the signal y is a linear combination of these vectors, with coefficients given by the 
elements of the phasor x.  The minimization question (i.e., the least-squares fit) may 
be formulated as 

mink,  IY  A(k)xI2 (3) 

to find the optimal k and x. For a given k, we know that the best x is given by 

where A(k)t is the pseudoinverse of the matrix A(k). Therefore, the minimization 
problem may be reduced to  a one-dimensional question as 

Note that A(k)A(k)t is a projection operator to  A(k)'s range space. Thus, the 
optimization process is really the search for the k for which the range space of A(k) 
has maximal overlap with the signal y, i.e., for which the projection of y in the range 
space of A ( k )  is maximized. A QR-factorization can be conveniently used here to 
find the range space of A(k) as Q(k)R(k) = A(k). The minimization problem may 
be expressed simply as finding the k that maximize the projection IQ(k)yl. We 
note that not only can we obtain the wave number, we are able to also find the 
corresponding intensity, visibility, and the phase offset by using relation (4) for the 
optimal wave number. 

'Here we have assumed a staircase dither waveform. For a continuous triangle dither, the only 
difference is a "sinc" factor. 



3 Sensitivity to signal error 

Before we consider the case where the fringe model deviates from the nominal 
monochromatic model, it is useful to  study the sensitivity of the calibration scheme 
described above. Consider the relation between the variation of the parameters and 
the corresponding signal 

Defining 
I cos(Eul+$) sin(Eul+$) sin(kul+$)ul 
1 cos(iu2+$) sin(Euz+$) sin(k,uz+$)uz 

1 cos(,Cu,+$> sin(ku,+$) sin(ku,+$)u, 

and 

we have the relation 
Sy = D6x.  

We note that Eq. (7) may be viewed as a linearized model in the neighborhood of 
the the true value of the intensity, visibility, wave number, and phase. Now, suppose 
6yerr is a random or systematic error in the signal. As a linear approximation, the 
effect on the calibration parameters I, V, k, q5 may be found from a least-squares fit 
of Eq. (7) to dye" which has the solution 

with Dt being the pseudoinverse of U .  When there is noise in the y,'s, (8) gives 
the covariance of Sx 

C O V ( ~ X )  = D ~ c o v ( ~ ) ( D ~ ) ~ ,  (9) 

where Cov(y) is the covariance matrix for y. The definition of Sx gives the variance 
for the wave number and phase as 

where D! and D; are the 3rd and 4th row vectors of the matrix Dt.  For sirnplic- 
ity, assume that each measurement has independent noise with the same variance, 
COV(Y) = 41. 

~ o v ( 6 ~ )  = (D*D)-~<, (11) 



where we have used the expression 

for the pseudoinverse of D. It can be shown that for long stroke length (the range of 
the OPD over which the fringe measurement is performed), with uniform velocity, 
the so called "information matrix" DTD is approximately diagonal 

where N is the number of dither steps and L is the stroke length[5]. Thus the 
variances of k and 4 are simply 

1 120; 1 2 4  
Var(k) = = C O V ( ~ X ) ~ ~  = - - 

IV 
Var(q5) = ==-COV(SX)~~ = --- . (14) IVNIJ2  ' IV I V N  

We note that the variance of the wave number decreases quadratically as the stroke 
length increases[4]. 

4 Calibration of the FAM fringe signal on the 
MAM test bed 

In this section, we show the least-squares calibration results from applying the algo- 
rithm to the FAM laser interference fringe of the MAM test bed. For a laser source, 
the monochromatic fringe model is valid. In Fig. 1, we display the fringe signal as 
function of the delay modulation positions measured by metrology. Applying the 
least-squares calibration algorithm, we obtain the calibrated wavelength, dispersion 
phase offset, intensity and visibility shown in Fig. 2. The range of OPD is about 
[-lo, 101pm corresponding to a stroke length of L = 20pm. The number of mea- 
surements is N = 2201. The scan over the OPD range is called one stroke and 
takes about 5.12 seconds. We used 180 strokes of data in the plots. The fringe 
signal shown in Fig. 1 is close to  a sine fringe. This is consistent with the measured 
phase, which is approximately 1.85rad. We also used subsets of the data so as to  
analyze shorter stroke lengths. Using the fact that the FAM laser wavelength is 
659.543nm, we display the wavelength calibration error as function of the stroke 
length in Fig. 3. The result shows that the least-squares algorithm determines the 
wavelength with error less than 10pm. Because the FAM laser light is generated 
by doubling the metrology laser, and the metrology laser is used to monitor the 
OPD during the calibration, this technique is insensitive to laser wavelength drift. 
It remains sensitive, however, to noise sources such as detection noise. This study 
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Figure 1: FAM fringe signal as function of the modulated delay 

shows that the sensitivity to noise decreases when the stroke length increases. The 
small bias shown in Fig. 3 is probably due to a small amount of light from the MAM 
white light source which is also detected by the FAM fringe detector. 

5 Quasi-monochromat ic model and least-squares 
calibration 

So far we have assumed that the fringe signal is developed by interfering monochr* 
matic light. For SIM the light sources are the stars. The non-zero bandwidth of the 
light source and detector produces a fringe pattern with an envelope that is inversely 
proportional to the bandwidth. Ignoring the envelope leads to a mode1 error that in 
turn causes calibration errors. When a long stroke is used, the effect of the envelope 
becomes even more important. We shall first present a quadratic envelope model 
derived in Appendix A and then describe a technique for incorporating the envelope 
effect into the least-squares calibration. 
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Figure 2: Calibration result of FAM fringe signal using 20 pm stroke length. 



Figure 3: Wavelength calibration error using different stroke length 
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The generic white light fringe model for a detection bandwidth [k-, k+] is 

where y is the fringe measurement and u is the optical path difference; I (k) ,  V(k), 
and 4(k) are the spectrum, visibility, and dispersion, respectively. For a narrow 
bandwidth Aku << 1 with Ak - k+ - k-, the fringe signal as a function of the 
optical path difference is expressed as 

where I ,  V ,  &, 4 are the effective intensity, visibility, wave number, and disper- 
sion phase for the channel, cri is the second moment of the spectrum across the 
bandwidth, and 4'(&) is the group delay evaluated a t  the effective wave number. 
(These quantities are all defined in Appendix A.) Qualitatively, the model (16) is a 
monochromatic signal with a quadratic envelope characterized by the group delay 
4'(&) and the second moment a:, which determine the center and the width of the 
envelope, respectively. Even for long stroke fringe data, the effect of the envelope 
factor is small compared to that of the monochromatic factor. Therefore, we treat 
the fringe envelope portion as a perturbation to  the rnonochromatic signal. 

We now turn to a least-squares calibration that incorporates the envelope fringe 
model. We first consider the least-squares fitting problem with the following model 

where y is the fringe measurement and 6y is a systematic error of the model. For 
example, y is the white light fringe and 6y represents the fringe envelope portion as 
a systematic model error. Our main idea is t o  "project away" 6y using a projection 
operator P, i.e. P6y = 0. Because P projects vectors onto the subspace orthogonal . 
to  6y, solving the least-squares fitting problem based on the following model 

effectively removes the systematic error. This technique is adopted in the least- 
squares calibration algorithm to incorporate the fringe envelope. It should be noted 
that these gains are not without cost. We lose sensitivity because the projection 
operator annihilates the observation information in the subspace spanned by Sy. 
In the extreme situation where the subspace spanned by the systematic error 6y 
contains the whole signal space spanned by A(k)x, this technique does not work a t  
all because the projection P y  annihilates the signal completely. The best situation 
is, of course, that Sy is orthogonal to  the signal A(k)x. Practically, we are almost 
always in between the two situations. In general there is some reduction in the 
signal to noise ratio (SNR) due to the projection operator. 



To make use of the idea, let Sy represent the signal error due t o  using the 
monochromatic model (1). Explicitly the fringe envelope portion of the signal is 

It is convenient to  define two vectors 

In order to construct a projection operator P that annihilates el and ez, we need 
to know k and q5 in advance. We shall take a perturbation approach. As the first 
approximation, we shall ignore completely the fringe envelope to  get initial estimates 
for k and 4. With these we can choose P so that Pel = Pe2 = 0. Since we do not 
know k and # exactly, the envelope may not be completely annihilated by P. In 
general, the wave number is less sensitive t o  the fringe envelope error [5]. The 
envelope signal that is not projected away is mainly due to  the deviation of the 
initial estimation of 4 from its true value. To ensure we project away the envelope 
signal even when q5 is not precisely known, we include a third vector e3 defined 

as part of the error signal and require P to  satisfy the additional condition Pe3 = 0. 
We do not include the vector sin(kui+#)u, in this development for two reasons. First 
of all, in general el is smaller than e2 for longer strokes where the fringe envelope 
is more important. Since 4 is already known to first order, the error parallel to 
the vector sin(Eui+(5)ui is very small. Secondly, the signal parallel to sin(&+$)ui 
should not be projected away because our main signal is cos(kui+$) and we are 
looking for the best i ,  4 to fit this signal. The variation of 2 generates a change 
in the signal parallel to sin(kui+$)ui. Thus if we work in a subspace orthogonal to 
this vector, we would not be able to determine k because its variation generates a 
zero component in the subspace where the fitting is being done. This is an example 
of projecting away the essential signals as discussed at  the end of the last section. 

Treating el,  ez, and e3 as column vectors, the QR-factorization 

yields the matrix Q with column vectors forming a set of basis vectors for the fringe 
envelope signal subspace. The projection P onto the orthogonal complement is then 

With P, in principle, we can simply replace the A(k) matrix in the monochromatic 
case by PA(lc) to project away the fringe model error corresponding to  the envelope. 
However, since we already have an initial estimate of k, #J , I, and V, and because the 



envelope is a perturbation to  the main signal, we expect that these initial estimates 
are in the neighborhood of the true effective wave number, phase, intensity, and 
visibility, respectively. Therefore, it is convenient to  use the linearized model (7) to 
determine the correction to the initial estimates. Therefore, we shall solve for 6x 
with 

Pby = PDbx , (24) 

where 6y is the residual signal after subtracting the monochromatic signal portion 
with the initial estimated parameters. 

As we mentioned previously, it is very important to do a sensitivity analysis to 
see whether we lose essential signals after applying the projection operator P .  The 
signals that are crucial in determining the calibration parameters are the signals 
sensitive to the signal parameter variation. In view of Eq. (7), the variation in 
the signal as a response to variation of the model parameters can be expressed as 
by = Dbx. For a reasonable dither step vector, Ll is a full rank matrix so that the 
least-squares calibration algorithm is adequate to determine the model parameters. 
The sensitivity may be mainly captured by the "information matrix" D T D  as this 
is related to the variance of 6x when the covariance matrix of y is proportional to 
an identity matrix. With the projection, the new sensitivity Eq. 24 leads to  the new 
"information matrix" DTPD.  As shown in reference [5] that for long stroke data 
or when N >> 1, P D  is still a full rank matrix. Similar to  DTL) shown in Eq. (13), 
DTPD is also approximately diagonal with the first and third diagonal values about 
the same as DTD and the second and fourth diagonal values reduced by a factor of 
4/9. This means that the visibility and the wave number lose 113 sensitivity due to  
projecting away the envelope. 

6 Application of Envelope Projection Method to 
Simulated Fringes 

In this section we show results from applying the envelope projection method to 
a simulated fringe signal over an optical path delay range of [-10,101pm for a 
passband of [845,87O]nm using the spectrum of a typical M3 star. A dispersion 
phase equivalent to an extra 100pm thick fused silica glass has been included. The 
visibility is simply chosen to  be unity. 

We analyze the simulated fringe data using the technique in the previous sec- 
tion. The effectiveness of the envelope projection technique is shown by the results 
displayed in Fig. 4, Fig. 5 ,  Fig. 6, and Fig. 7. Without including the fringe 
envelope in the model the errors in phase calibration are on the order of tens of pico 
meters and the visiblity error can be more than 5% far long stroke lengths. The ef- 
fectiveness of the technique is clearly seen by the reduced stroke length dependency 
in all the figures displayed. The error in the estimated wave number and intensity 
are relatively small. For the purpose of comparison we also display the calibration 



Narrow band least-squares bng stroke d~sperson calibration 

Figure 4: After applying the fringe projection technique, the calibrated results are 
very close to the results computed by using the effective model. The deviation at 
long stroke lengths is due to the inadequacy of the quadratic fringe envelope model 
at large group delays. 
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7 Fringe Envelope Shape Estimation 

2 4 6 8 10 12 14 16 18 20 
stroke length (ym) 

In this section, we show how to estimate the fringe envelope shape based on our 
model (16). The fringe envelope shape is parameterized by its width and center as 
shown in the model which is described by ui-and &(k). The task is to estimate 
them using the fringe signal yi. After finding k and 4 with the projection method, 
the fringe model (16) may be written as 



Figure 5: After applying the fringe projection technique, the calibrated results are 
very close to the results computed by using the effective model. 
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where ci, i = 1 ,2 ,3 ,4  are parameters related to  the effective model parameters in 
the following way 

The inverse relations are 
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A least-squares fitting of yi to the model (25) provides estimates of ci, i = 1 ,2 ,3 ,4  
and thus the estimation of the fringe envelope shape via relationship (27). We note 
here that with the fringe shape estimation, we may use the the second formula in 
relation (27) to get a better estimation of the visibility than in Section 5, where the 
contribution due t o  cg has been ignored. The blue solid line in Fig. 6 displays the 
visibility calibration result including this improvement. 
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Narrow band least-squares long stroke vislbilily calibration 
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Figure 6: After applying the fringe projection technique, the calibrated visibilities 
are very close to the results computed by using the effective model. Note that this 
plot was generated after the improvement discussed in Section 7. 
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In this section we show the results from applying the calibration algorithm presented 
in the previous sections to  MAM testbed data. Figure 8 shows the fringe for an 
individual MAM pixel corresponding to a wavelength of approximately 800nm. The 
fringe envelope effect is evident in this figure even though the CCD pixel detection 
passband is quite small small (10nm between the pixel centers, but due to  diffraction 
effects, the effective pixel width is estimated to be about 25nm). We now show the 
results of the calibration respectively for the intensity, visibility, wave number, and 
dispersion with and without taking the fringe envelope into account. Ignoring the 
envelope effect, the visibilty calibration shows a clear decreasing trend, as expected. 
But even after the projection algorithm is applied there is still a residual trend. 
This is possibly due to  the fact that the quadratic fringe envelope model needs to 
be augmented with higher order terms to attain sufficient fidelity. Nevertheless, the 
stroke length dependency is clearly less significant when the projection algorithm is 
applied. 
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Figure 7: After applying the fringe projection technique, the calibrated results are 
very close to the results computed by using the effective model. 

9 Summary 

In summary we have presented a least-squares approach to  calibrating the fringe 
model *aramterk for both monochromatic and narrow band white light fringe sig- 
nals. The efficacy of the algorithms have been deomonstrated on both simulated and 
experimental data. Experimental agreement of calibrated wavelength to  a lOpm ac- 
curacy was achieved for laser light. Numerical experiments validated the superiority 
and necessity of the fringe envelope projection method for calibrating the param- 
eters of narrow band sources. MAM testbed results corroborated these numerical 
experiments. 
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Figure 8: Fringe signal detected by MAM CCD Pixel 30. 

A Quasi-monochromatic fringe model 
In this appendix, we derive the quasi-monochromatic model for a narrow band signal. 
Recall that the generic fringe formula for detection bandwidth [k-, k+]  is 

where y is the fringe measurement and u is the optical path delay; I ( k ) ,  V ( k ) ,  and 
$(k) are the spectrum, visibility, and dispersion function respectively. For a narrow 
bandwidth Aku << 1, we may make a narrow band expansion about some effective 
wave number k and phase 4 to be determined in a moment. Assuming that the 
variation of the dispersion function $(k) over [k-, k+] is small, we can expand the 
exponential and derive 



w105-04-27~10002 Pixel 30 intensity calibration 
I 1 T I 1 I I I I 

- 

I I I I I 

! 4 6 8 10 12 14 16 18 20 22 
stroke length (pn) 

Figure 9: Intensity calibration for pixel 30, the stroke length dependency 

where we have defined an effective intensity 

and used 64 to represent the variation of dispersion function 4 about an effective 
value 4. It is natural to define k and 4 as the following 

so that the leading order terms in expression (29) vanishes. With these, through the 
second order, we have 
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Figure 10: Visibility calibration for pixel 30, the stroke length dependency 
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Eq. (33) is our general quadratic envelope model for narrow band white light fringe. 
When the dispersion function #(k )  is smooth, the following expansion is valid 
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Figure 11: Wavelength calibration for pixel 30, the stroke length dependency 

The generic quadratic fringe model (33) may be simplified as 

with the clear physical meaning for q5(k) being the group delay offset from the fringe 
center. The width of the envelope is determined by the the value of the second 
moment of the wave number a;. Eq. (38) is the same as the model (16) in section 5. 
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