
New Approach for Efficient Diagnosis of Large and
Complex Space Systems

Arnir ~ i j a n ~ ' and Farrokh vatan2
' ~ e t Propulsion Laboratory, California Institute of Technology, Amii-.Fijany@jpl.nasa.gov

4800 Oak Grove Drive, Pasadena, CA 91 109, USA
2 Jet Propulsion Laboratory, California Institute of Technology, Farrokh.Vatan@jpl.nasa.gov

4800 Oak Grove Drive, Pasadena, CA 91 109, USA

Abstract- We propose a novel algorithmic approach and
present a new algorithm for solving the diagnosis problem. We
report the results of the performance of the new algorithm and
compare them with the traditional and standard algorithms.
These results show the strong performance of our new algorithm
with several orders of magnitude improvement over the
traditional approach.

Over the past decade, the number of Earth orbiters and deep
space probes has grown dramatically and is expected to
continue in the future as miniaturization technologies drive
spacecraft to become more numerous and more complex. In
addition, the new NASA vision for space exploration requires
long-term and/or manned missions to Moon, Mars, and
Jupiter, demanding extremely reliable spacecraft for crew
safety andlor assuring long-term operation. This rate of
growth, in terms of number, complexity, and duration, has
brought a new focus on autonomous and self-preserving
systems that depend on fault diagnosis. Although diagnosis is
needed for any autonomous system, current approaches are
almost uniformly "ad-hoc," inefficient, and incomplete.
Systematic methods of general diagnosis exist in literature,
but they all suffer from two major drawbacks that severely
limit their practical applications. First, they tend to be large
and complex and hence difficult to apply. Second and more
importantly, in order to find the minimal diagnosis set, i.e.,
the minimal set of faulty components, they rely on algorithms
with exponential computational cost and hence are highly
impractical for application for many systems of interest.

In the current state of practice, the most disciplined
approach to fault detection and diagnosis is the "model-
based" approach, employing knowledge of device operation
and connectivity in the form of models. This approach, which
reasons from first principles, provides far better diagnostic
coverage than traditional approaches based upon collection of
symptom-to-suspect rules. However, there are two major
drawbacks in current model-based diagnosis systems that
severely limit their practicality. First, these systems tend to

The research described in this paper was performed at the Jet Propulsion
Laboratory (JPL), California Institute of Technology, under contract with the
National Aeronautics and Space Administration (NASA).

be large, complex, and difficult to apply. Second, in order to
find the minimal diagnosis set (i.e., the minimal set of
components that, if faulty, would fully explain the anomalous
behavior detected), they rely on algorithms with an
exponential computational cost.

The most widely used approach to model-based diagnosis
consists of a two-step process: (1) generating conflict sets
from symptoms; (2) calculating minimal diagnosis set from
the conflicts. Here a conflict set is a set of assumptions on the
modes of some components that is not consistent with the
model of the system and observations, and a minimal
diagnosis is a set of the consistent assumptions of the modes
of all components with minimal number of abnormal
components. For finding minimal diagnosis from the
conflicts, the most common algorithm is based on Reiter's
algorithm, which requires both exponential time and
exponential space (memory) for implementation.

In this paper, we address the problem of generating the
minimal diagnosis from the conflicts. This problem can be
formulated as the well-lmown Hitting Set Problem. Our
approach starts by mapping the Hitting Set problem onto the
Integer Programming Problem that enables us, for the jirst
time, a priori determination of the lower and upper bounds on
the size of the solution. Based on these bounds, we introduce
a new concept of solution window for the problem. We also
propose a new branch-and-bound technique that not only is
faster than the current techniques in terms of number of
operations (by exploiting the structure of the problem) but
also, using the concept of solution window, allows a massive
reduction (pruning) in the number of branches. Furthermore,
as the branch-and-bound proceeds, the solution window is
dynamically updated and narrowed to enable further pruning.
The concept of window also allows us to propose a new
portfolio approach, i.e., combining several different
algorithms, for the problem. In this sense, several other fast
algorithms (e.g., Randomized Algorithm), which usually lead
to sub-optimal solutions, can be run in parallel with the
branch-and-bound algorithm. The sub-optimal solutions
generated by these algorithms are then used for further
dynamic updating of the solution window.

We present the results of the performance of the new
algorithm on a set of test cases. These results clearly show the

advantage of our new algorithm over the traditional branch-
and-bound algorithm; in fact the new algorithm has achieved
several orders of magnitude speedup over the standard
algorithms.

11. NEW ALGORITHMIC APPROACH TO DIAGNOSIS PROBLEM

To overcome the complexity of calculating minimal
diagnosis set, we will utilize and expand our new discovery
relating this calculation and the solution of the Hitting Set
Problem to the solution of Integer Programming and Boolean
Satisfiability Problems [I, 21. Our primary interest in the
Hitting Set Problem is due to its connection with the problem
of diagnosis.

In order to describe the mapping of Hitting Set Problem
onto Integer Programming, let us define a 011 (binary) matrix
A as the incidence matrix of the collection of the conflict sets;
i.e., the entry a0=l if and only if the jth element mj belongs to
the i& set Ci:

Let x = (xl, x2, . . ., x,,) be a binary vector, wherein xi = 1 if the
member mj belongs to the minimal hitting set and hence the
minimal diagnosis set, otherwise xj = 0. It can be then shown
[I, 21 that we have the following formulation of the Hitting
Set Problem as a 0/1 Integer Programming Problem:

minimize x1 + x2 + . . . + x,,
subjectto Ax2b, x j = O o r l , (1)

where bT= (1, ..., 1) is a vector whose components are all
equal to one. This new mapping allows us to utilize existing
efficient integer programming algorithms, permitting solution
of problems with a much larger size. In fact, we have shown
[I] that, even using commercially available Integer
Programming tools, we can achieve a more efficient
calculation of minimal diagnosis compared with the existing
algorithms.

111. BOUNDS ON DIAGNOSIS

This new mapping offers two additional advantages that
can be exploited to develop yet more efficient algorithms.
First, note that this mapping represents a special case of
Integer Programming Problem due to the structure of matrix
A (binary matrix) and vector b. Second, by using this
mapping, we can determine the minimum number of faulty
components without solving the problem explicitly [1,2]. For
this purpose, we consider the 1-norm and 2-norm of vectors
defined as

For the vector b in (l), we then have iibll, = rn and llbi12 = & .
Since the elements of both vectors Ax and b are positive, we
can then derive the following two inequalities:

Since x is a binary vector, then both norms in (2) give the
bound on the size of the solution, that is, the number of
nonzero elements of vector x which, indeed, corresponds to
the minimal diagnosis set. Note that, depending on the
structure of the problem, i.e., the 1- and 2-norm of the matrix
A and m, a sharper bound can be derived from either of (2).
To our knowledge, this is the first time that such bounds on
the solution of the problem have been derived without any
need to explicitly solve the problem. Such a priori howledge
on the size of solution will be used for developing much more
efficient algorithms for the problem.

Furthermore, using monotonicity of the integer
programming (I), we are able to efficiently find an upper
bound for the solution size. Here by monotonicity we mean
that if x is a solution of Ax 2 b and y 2 x then y is also a
solution of the same system. Note that finding a 011 solution x
for the system Ax 2 b is equivalent to finding a subset of the
columns of the matrix A such that their sum is a vector with
components all equal to or greater than 1. Of course, any such
solution provides an upper bound for the optimization
problem (I), since for that problem we are looking for a
minimal set of such columns.

Therefore, to find an upper bound, we first choose a
column cl of A with largest weight (if there are several such
columns, we choose one of them arbitrarily). Then we
construct a submatrix of A by deleting the column cl and all
rows of A that correspond to non-zero components of el. We
apply the same process to the new matrix, until we end up
with the empty matrix. The columns el, c2, ..., ct that we
obtain determine a solution for Ax 2 b and the number t is an
upper bound for the solution of the integer programming
problem (1). Our initial test shows that the upper bound is
actually sharp, particularly for small size solution (see Table
I). Note that it is easy to modify this algorithm in a way that
the it also provides a vector a such that the vector Aa realizes
the corresponding upper bound.

There are two simple rules that will help this algorithm in
extreme cases. These rules also can be useful in other cases,
as by the recursive nature of the algorithm, most likely the
algorithm will ends up with submatrices that these rules can
be applied. Here is the formulation of these rules:

(I) If the matrix A has an all-one column, then its upper
bound is equal to 1;

(11) If some row of the matrix A has weight 1, then
remove that row and the corresponding column to
obtain the matrix Al and Upper-Bound [A] = 1 +
Upper-Bound [A l] .

We could also improve the upper bound by a step-by-step
method and in an iterative fashion wherein the cost of kth step
in the iteration is O(nk) so the first few steps are practically
efficient. More specifically, for fixed k, instead of choosing
the maximum weight column for the vector al , we could
choose the sum of k columns of A, and try all possible such
vectors.

As another application of the a pviori lower bound, before
starting to solve the hard problem of finding the minimal
hitting sets, we could separate the cases where the high
number of faulty components requires another course of

action instead of usual identification of faulty components.
Also a good lower and upper bound could determine whether
the enhanced brute-force algorithm [I , 21 can provide a
solution efficiently. Since, as it was stated before, this
algorithm has a complexity of O(nt), where t is the number of
faulty components.

IV. THE NEW BRANCH-AND-BOUND METHOD

Our new branch-and-bound algorithm is based on our
methods for computing lower and upper bounds for diagnosis.
We also exploit the monotonicity property of this special case
of integer programming problem. We list the rationale behind
this new approach, and its possible advantages over the
standard branch-and-bound, as follows:

Since the optimal solution is one of the points on the
discrete grid, our relaxation phase directly applies to
the discrete grid, while the standard method starts
with the much larger set consists of not only the
discrete gird but also all real points inside the
polygon.
For each subproblem we find a lower bound in linear
time, while the time of LP relaxation of standard
method is 0(n3) .
For each subproblem we are able to find an upper
bound, while in the standard method the upper
bound is found only in the case that the LP
relaxation of the subproblem at hand ends up with an
integer solution. This way our method provides more
chance to eliminate subproblems with large lower
bounds.

Before describing our method, we introduce a set of useful
functions and notation. We start with the mxn binary matrix
A. We label the columns of A by the numbers 1, 2, . . ., n, and
we denote any subset of these columns by simply as a subset
of (1, 2, . . . , n} . Similar to the traditional branch-and-bound
method, the new algorithm is also based on search on the
nodes of a tree. Each node of the search tree has a label of the
form (M, Th, Tout) where M is a submatrix of the original
matrix A, and En and Tout are disjoint subsets of the columns
of the original matrix A. The meaning of this partition is that
Ti, is the set of the columns (of the original matrix A)
considered as part of the solution, Tout is the set of the
columns (of the original matrix A) considered not as part of
the solution. Note that a solution of the optimization problem
(I) can be considered as a subset of the columns of the matrix
A whose addition is a vector with all non-zero components.

Here is the list of the auxiliary functions and subroutines.

Function Place-Finding
Consider a node with the label (M, Tin, To,& Since M is a

submatrix of the original matrix A obtained by removing the
columns in the set Tn u T 0 , every column of M corresponds
with a unique column of A, for example the column 1 of M
corresponds with the column 3 of A and the column 2 of M
corresponds with the column 7 of A, and so on. Therefore, we
can refer to the label of a column of M in A without any
ambiguity. In fact, given the sets Tin and Tout, for every
column j of M, it is possible to find the corresponding column
in the original matrix A. We denote this relation by the
function Place-Finding, also to keep the notation simple,

instead of writing Place-Finding[q,, To,, jl we simply -
write j if the sets Tin and Tout are understood from the context.

Function Place-Finding
Consider a node with the label (M, Tin, To,). Since M is a

submatrix of the original matrix A obtained by removing the
columns in the set Ti, uTout, every column of M corresponds
with a unique column of A, for example the column 1 of M
corresponds with the column 3 of A and the column 2 of M
corresponds with the column 7 of A, and so on. Therefore, we
can refer to the label of a column of M in A without any
ambiguity. In fact, given the sets Tin and Tout, for every
column j of M, it is possible to find the corresponding column
in the original matrix A. We denote this relation by the
function Place-Finding, also to keep the notation simple,
instead of writing Place-Finding[Ti,, Tout, jl we simply

-,

write 7 if the sets Tin and Tout are understood from the context.

Functions Remove-0 and Remove-1
Remove-1 [M, j]: the result is the submatrix of M
obtained by deleting the jth column of M and deleting
all rows of M that correspond with non-zero
components of that column;
Remove-0 [M, j]: the result is the submatrix of M
obtained by deleting the jth column of M.

For example, consider the matrix
(0 0 1 1)

(0 1 0 1)

Then to compute Remove-1 [M, 21, we first delete the 2nd
column of M, and since the 2nd and 4th components of this
column are 1, then we delete the 2nd and rows. The result
is

Remove-1 [M, 21 =

While for Remove-0 [M, 21, we just delete the 2nd column
of M. The result is

Remove-0 [M, 21 =[" .
0 0 1

Function Rule*
This functlon is based on some rules that simplify the

process of finding the optimal solution for the system (1):
Rule 1 If the matrix A has an all-one column 5, then

the set consisting of the jh element x, alone is
the hitting set; or the vector x with 1 at its jth
component and zero at other components, is an
optimal solution for the system (1).

Rule 2 If the matrix A has a row of weight one, with 1
as its jth component, then the jth element x, is
contained in the minimal hitting set. In this case
we can simplify the system (1) by removing this
row and the jth column, and we add the jth
element x, to the solution of the new system.

Rule 3 If the matrix A has an all-one row, delete that
row.

Rule 4 If the matrix A has an all-zero column, delete
that column.

Rule 5 If the matrix A has two equal rows, delete one
of them.

Let see how these Rules affect the labels of the nodes in the
search tree. Suppose that (M, {Ti,, To,)) is the label of a node.
First we describe the action of Rule 1. If the matrix M does
not have an all-one column, then there no action is performed
and the label is unchanged. Otherwise, assume that jth column -
is all-one. Then Rule 1 changes the label to (0 , T-,u(j),
To,,). In a more formal language, we define a function
Rule-1 on the set of labels as in Fig. 1.

To define the action of Rule 2, first we introduce a useful
notation. Let ej be the unit binary vector (of weight one) with
its only 1 component at jth position. Now the action of Rule 2
can be described by the formal function in Fig. 1.

The action of Rule 3 is described by the function in Fig. 1,
where M' is obtained from M by deleting all all-one rows.

Finally, the actions of Rules 4 and 5 are described by the
function in Fig. 1, where the matrix M' is obtained from M by
deleting one of the equal rows.
Note that once one of these rules is applied on a label h1 =

(M, Tin, Tout), and the result is the label h2 then it may be
possible to apply one of these rules on h2, and so on. For
these reason we define the function Rule* on the set of the
labels as repeated applications of Rule-1-5 until none of them
can be applied anymore. It is easy to show that Rule* is well-
defined. i.e., the result of Rule*(h) does not depend on the
order of the functions Rule-1 and Rules2 are applied.

As an example, consider the label Al = (MI , a,@), where

Note that 31d column of M3 is the 4" column of the original
matrix MI. Finally, we apply Rule-1, and the result is the
label h4 = (0 , {2,3,4), {I, 5)) (again note that the 2nd
column of the matrix M3 corresponds with the 3'd column of
the original matrix MI). Therefore,

Rule* [Ill = (0, C2,3,4), C1,5)).

The 2nd row of M is equal to e2 and its 3Id row is equal to e4.
Therefore, for applying Rule-2 we have two possible choices.
First we choose to remove 2nd row, the result is the label h2 =

(M2, C21, 01, where
(0 1 0 1)

Function Split
We define the (partial) function Split on the set of the

labels, where the value Split [h] is a pair (Lo, hl) of labels.
Suppose that h = (M, TI, T2). If TlnT2 = (1, ... n) , i.e., if
TlnT2 is the set of all columns of the matrix A, then the
function Split is not defined. Otherwise, let j E TlnT2 be a
column of the original matrix A which is corresponded with a
maximum-weight column of the submatrix M (if there are
several such columns then we choose the first one). Then we
define two new labels based on the assumption that the jfi
column is part of the solution set or not; more specifically, we
define two new labels as follows:

10 = (Remove-0 [M, jl, TI, T2uC 7)I, -
11 = (Remove-1 [M, jl, TIU C j 1, T2),

M , =

(M , , T) if M has no all - one column,
Rule-1 [(M, Th, T,,)]= (0 , ~ ~ u {TI To,) if jth column is an all - one column.

0 0 1 0

1 1 1 1 .

1 1 0 0

(M',T,, T,,) if M has all -one rows,
Rule-3 [(M, T, , To,)] =

(M,T, , T,,) otherwise,

\o 1 1 1,

The 2nd row of M2 is equal to e3, thus we can apply Rule-2.
The result is the label h3 = (M3, {2,4), 0) , where

(M I , T, , T,,) if M has two equal rows,
Rule-5 [(M, T-, , To,)] =

otherwise,

Figure 1. The definitions of Rule functions

Then the Split function is defined as
Split [I] = (Rule* [Lo], Rule* [I 1]) .

Function Upper-Bound
The Upper-Bound function is defined in Section 3 to find

the number Upper-Bound [A] as an upper bound on the
solution of the optimization problem defined by the system
(1). We extend this function to the set of labels as follows.
For the label h = (M, TI , T2), where M is a submatrix of the
original matrix A, Upper-Bound [A] provides an upper
bound for the system defined by (1) augmented by the
following conditions:

x, = 1, xl€T1,
XI =O, xj€T2.

Then it is easy to see that
Upper-Bound [A] = ITl\ + Upper-Bound [MI.

In the special case that M = 0, we have Upper-Bound [A] =

lTll. Note that we apply the function Upper-Bound both on
matrices and labels.

Function Upper-Bound-Set
For the label h = (M, TI , T2), the function

Upper-Bound-Set[h] returns the set which realizes the
bound Upper-Bound [h] , i.e., the union of TI and the set of
columns of M which provide the bound Upper-Bound [MI.

Function Lower-Bound
Like the previous function, we extend the lower bound

defined by (2) to the set of labels. More specifically, for the
label h = (M, TI, Tz), where M is a kxj submatrix of the
original matrix A, we have

Lower-Bound [I] = lTll + k / l l ~ l I ~ .

Function Test-Solution
This function is defined on the set of the labels and its

value is either True or False. The value of Test-Solution
[(M, TI , T2)] is True if the columns in the set TI form a
solution for the system (1) . Otherwise, the value of the
function is False.

Function Test-Leaf
This function is defined on the set of the labels and its

value is either True or False. As it is suggested by the name
of the function, here we determine whether a node in the
search tree is a leaf or not; i.e., whether that node has any
children or not. The arguments of this function are a label h =

(M, TI, T2) and a value U for the upper bound on the solution
of the problem. Then

branch-and-bound (A)
I* solves the hitting set problem defined by the system (1) *I
Labels = {Rule* [(A, 0 , @)I}
U = iilfinity I* upper bound *I
Solution = 0
while Labels* 0

chose h = (M, TI, R) E Labels
Labels = Labels- {h)
If Test-Solution[h] = True & Upper-Bound[h] < U then

Solution = TI
U = Upper-Bound [h]

end if
If Test-Solution[h] = True & Upper-Bound [h] = U & Solution=0then Solution =

If Upper-Bound[h] < U then
U = Upper-Bound [XI
Solution = Upper-Bound-Sefh]

end if
If Test-Leaf [h, =False then

(hO, XI) = Split [h]
Labels = Labels u {hO, hl)

end if
If Test-Leaf [h, U] = True & Upper-Bound[h] = U & Solution = 0

then Solution = Upper-Bound-Seth]
end while

Test-Leaf [X, U] =

return Solution

 rue if T, u T2 = (1, 2, K , n), or

True if Lower -Bound [XI 2 U , or

True if Test-Solution [XI = True, or

True if M contains an all - zero row,

False otherwise.

Figure 2. The new Branch-and-bound algorithm

Now we are ready to present Our new branch-and-bound
algorithm. This algorithm is described in Fig. 2. It is easy to
show that this algorithm is correct. The complete proof we
will be presented in the subsequent paper.

Table I shows the results of performance of the new
algorithm and its comparison with the traditional Branch-and-
Bound method. These results show the average time and the
number of iterations (i.e., the number of nodes in the search
tree) used by these algorithms on 100 random binary
matrices.

TABLE I have proposed a novel algorithmic approach for calculation of
COMPARING THE AVERAGE PERFORMANCE OF ALGORITHMS ON 100 RANDOM

MATRICES minimal diagnosis set. Starting with the relationship between
the calculation of minimal diagnosis set and the celebrated

For above benchmarking, we used the GLPK (GNU Linear
Programming Kit), version 4.7, to solve the problems with the
traditional branch-and-bound method. This is a set of routines
in the ANSI C programming language. The integer
programming routine of GLPK (actually it is much more
powerful routine and is capable of solving mixed integer
programming problems) applies a variant of branch-and-
bound method for the problem.

V. A NOVEL CONFLICT GENERATION ALGORITHM

We introduce a novel approach for generating conflict sets
based on mapping this problem onto the well-studied problem
of finding paths in a graph [5] . The main idea of this approach
is based on the fact that only the value of observed parameters
can produce the conflicts; i.e., if the description of the system
and the value of the inputs could imply a value different from
the observed value. We should also consider the values that
could be inferred from the observed values by the "back-
propagation" method; i.e., the values that could be inferred at
some node from the values observed at the other nodes. All
subsystems that are involved in the process of finding these
inferred values can be described as paths on the graph of the
system. Therefore, to find all conflict sets, it is enough to
consider only paths that start at inputs or nodes of observed
values and end at one of these nodes. This approach can
significantly accelerate the conflict generation step by
bounding the search space. The details of this method will be
explained in the subsequent paper.

VI. SUMMARY AND CONCLUSIONS

We proposed a new approach to overcome one of the major
limitations of the current model-based diagnosis techniques,
that is, the exponential complexity of calculation of minimal
diagnosis set. To overcome this challenging limitation, we

Hitting Set problem, we have proposed a new method for
solving the Hitting Set Problem, and consequently the
diagnosis problem. This method is based on a powerful and
yet simple representation of the problem that enables its
mapping onto another well-known problem, that is, the 011
Integer Programming problem.

The mapping onto 011 Integer Programming problem
enables the use of variety of algorithms that can efficiently
solve the problem for up to several thousand components.
 heref fore,-these new algorithms significantly improve over
the existing ones, enabling efficient diagnosis of large
complex systems. In addition, this mapping enables a priori
and fast determination of the lower and upper bounds on the
solution, i.e., the minimum number of faulty components,
before solving the problem. We exploit this powerful insight
to develop yet more powerful algorithm for the problem.
This new algorithm is a new version of the well-known
branch-and-bound method. We present the results of the
performance of the new algorithm on a set of test cases. These
results clearly show the advantage of our new algorithm over
the traditional branch-and-bound algorithm; more specifically
the new algorithm has achieved several orders of magnitude
speedup over the standard algorithms.

[I] A. Fijany, F. Vatan, A. Barrett, and R. Mackey, "New approaches for
solving the diagnosis problem," The JPL Interplanetary Network
Progress (IPN) Report, May 2002; available at
http:/lipnpr.jpl.nasa.gov/tmo/progress~report/42-149/149K.pdf.

[2] A. Fijany, F. Vatan, A. Barrett, M. James, C. Williams, and R.
Mackey, "A novel model-based diagnosis engine: Theory and
Applications," Proc. 2003 IEEE Aerospace Conference, March 2003.

[3] F. Vatan, "The complexity of diagnosis problem," NASA Tech Brief,
vol. 26, p. 20,2002.

[4] J. de Kleer, A. K. Mackworth, and R. Reiter, "Characterizing diagnoses
and systems," Artificial InteNigence, vol. 56, 197-222, 1992.

[5] G. Rote, Path problems in graphs, Computing, vol. 7, pp. 155-189,
1990.

[6] T. Hogg and C. Williams, "Solving the really hard problems with
cooperative search," Proc. ofAAAI-93, pp. 231-236, 1993.

171 B.C. Williams and P. Nayak, "A model-based approach to reactive self-
configuring systems," Proc. 13" Nut. Con$ Art$ Intell. (AAAI-96), pp.
971-978, 1996.

[XI S. Chung, J.V. Eepoel, and B.C. Williams, "Improving model-based
mode estimation through offline compilation," Int. Symp. Art$ Intell.,
Robotics, Automation Space (ISAIRAS-OI), 2001.

[9] F. Wotawa, "A variant of Reiter's hitting-set algorithm," Information
Processing Letters, vol. 79, 45-51, 2001.

[lo] J. de Kleer and B. Williams, "Diagnosing Multiple Faults" in Readings
in Model-Based Diagnosis, Morgan Kaufmann Publishers, San Mateo,
CA, 1992, pp. 100-1 17.

[l 11 A. Schrijver, Theory of Linear and Integer Programming, John Wiley
& Sons, New York, 1986.

