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Abstract- We propose a novel algorithmic approach and 
present a new algorithm for solving the diagnosis problem. We 
report the results of the performance of the new algorithm and 
compare them with the traditional and standard algorithms. 
These results show the strong performance of our new algorithm 
with several orders of magnitude improvement over the 
traditional approach. 

Over the past decade, the number of Earth orbiters and deep 
space probes has grown dramatically and is expected to 
continue in the future as miniaturization technologies drive 
spacecraft to become more numerous and more complex. In 
addition, the new NASA vision for space exploration requires 
long-term and/or manned missions to Moon, Mars, and 
Jupiter, demanding extremely reliable spacecraft for crew 
safety andlor assuring long-term operation. This rate of 
growth, in terms of number, complexity, and duration, has 
brought a new focus on autonomous and self-preserving 
systems that depend on fault diagnosis. Although diagnosis is 
needed for any autonomous system, current approaches are 
almost uniformly "ad-hoc," inefficient, and incomplete. 
Systematic methods of general diagnosis exist in literature, 
but they all suffer from two major drawbacks that severely 
limit their practical applications. First, they tend to be large 
and complex and hence difficult to apply. Second and more 
importantly, in order to find the minimal diagnosis set, i.e., 
the minimal set of faulty components, they rely on algorithms 
with exponential computational cost and hence are highly 
impractical for application for many systems of interest. 

In the current state of practice, the most disciplined 
approach to fault detection and diagnosis is the "model- 
based" approach, employing knowledge of device operation 
and connectivity in the form of models. This approach, which 
reasons from first principles, provides far better diagnostic 
coverage than traditional approaches based upon collection of 
symptom-to-suspect rules. However, there are two major 
drawbacks in current model-based diagnosis systems that 
severely limit their practicality. First, these systems tend to 
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be large, complex, and difficult to apply. Second, in order to 
find the minimal diagnosis set (i.e., the minimal set of 
components that, if faulty, would fully explain the anomalous 
behavior detected), they rely on algorithms with an 
exponential computational cost. 

The most widely used approach to model-based diagnosis 
consists of a two-step process: (1) generating conflict sets 
from symptoms; (2) calculating minimal diagnosis set from 
the conflicts. Here a conflict set is a set of assumptions on the 
modes of some components that is not consistent with the 
model of the system and observations, and a minimal 
diagnosis is a set of the consistent assumptions of the modes 
of all components with minimal number of abnormal 
components. For finding minimal diagnosis from the 
conflicts, the most common algorithm is based on Reiter's 
algorithm, which requires both exponential time and 
exponential space (memory) for implementation. 

In this paper, we address the problem of generating the 
minimal diagnosis from the conflicts. This problem can be 
formulated as the well-lmown Hitting Set Problem. Our 
approach starts by mapping the Hitting Set problem onto the 
Integer Programming Problem that enables us, for the jirst 
time, a priori determination of the lower and upper bounds on 
the size of the solution. Based on these bounds, we introduce 
a new concept of solution window for the problem. We also 
propose a new branch-and-bound technique that not only is 
faster than the current techniques in terms of number of 
operations (by exploiting the structure of the problem) but 
also, using the concept of solution window, allows a massive 
reduction (pruning) in the number of branches. Furthermore, 
as the branch-and-bound proceeds, the solution window is 
dynamically updated and narrowed to enable further pruning. 
The concept of window also allows us to propose a new 
portfolio approach, i.e., combining several different 
algorithms, for the problem. In this sense, several other fast 
algorithms (e.g., Randomized Algorithm), which usually lead 
to sub-optimal solutions, can be run in parallel with the 
branch-and-bound algorithm. The sub-optimal solutions 
generated by these algorithms are then used for further 
dynamic updating of the solution window. 

We present the results of the performance of the new 
algorithm on a set of test cases. These results clearly show the 



advantage of our new algorithm over the traditional branch- 
and-bound algorithm; in fact the new algorithm has achieved 
several orders of magnitude speedup over the standard 
algorithms. 

11. NEW ALGORITHMIC APPROACH TO DIAGNOSIS PROBLEM 

To overcome the complexity of calculating minimal 
diagnosis set, we will utilize and expand our new discovery 
relating this calculation and the solution of the Hitting Set 
Problem to the solution of Integer Programming and Boolean 
Satisfiability Problems [I, 21. Our primary interest in the 
Hitting Set Problem is due to its connection with the problem 
of diagnosis. 

In order to describe the mapping of Hitting Set Problem 
onto Integer Programming, let us define a 011 (binary) matrix 
A as the incidence matrix of the collection of the conflict sets; 
i.e., the entry a0=l if and only if the jth element mj belongs to 
the i& set Ci: 

Let x = (xl, x2, . . ., x,,) be a binary vector, wherein xi = 1 if the 
member mj belongs to the minimal hitting set and hence the 
minimal diagnosis set, otherwise xj = 0. It can be then shown 
[I, 21 that we have the following formulation of the Hitting 
Set Problem as a 0/1 Integer Programming Problem: 

minimize x1 + x2 + . . . + x,, 
subjectto Ax2b, x j = O o r l ,  (1) 

where bT= (1, ..., 1) is a vector whose components are all 
equal to one. This new mapping allows us to utilize existing 
efficient integer programming algorithms, permitting solution 
of problems with a much larger size. In fact, we have shown 
[I] that, even using commercially available Integer 
Programming tools, we can achieve a more efficient 
calculation of minimal diagnosis compared with the existing 
algorithms. 

111. BOUNDS ON DIAGNOSIS 

This new mapping offers two additional advantages that 
can be exploited to develop yet more efficient algorithms. 
First, note that this mapping represents a special case of 
Integer Programming Problem due to the structure of matrix 
A (binary matrix) and vector b. Second, by using this 
mapping, we can determine the minimum number of faulty 
components without solving the problem explicitly [1,2]. For 
this purpose, we consider the 1-norm and 2-norm of vectors 
defined as 

For the vector b in (l), we then have iibll, = rn and llbi12 = & . 
Since the elements of both vectors Ax and b are positive, we 
can then derive the following two inequalities: 

Since x is a binary vector, then both norms in (2) give the 
bound on the size of the solution, that is, the number of 
nonzero elements of vector x which, indeed, corresponds to 
the minimal diagnosis set. Note that, depending on the 
structure of the problem, i.e., the 1- and 2-norm of the matrix 
A and m, a sharper bound can be derived from either of (2). 
To our knowledge, this is the first time that such bounds on 
the solution of the problem have been derived without any 
need to explicitly solve the problem. Such a priori howledge 
on the size of solution will be used for developing much more 
efficient algorithms for the problem. 

Furthermore, using monotonicity of the integer 
programming (I), we are able to efficiently find an upper 
bound for the solution size. Here by monotonicity we mean 
that if x is a solution of Ax 2 b and y 2 x then y is also a 
solution of the same system. Note that finding a 011 solution x 
for the system Ax 2 b is equivalent to finding a subset of the 
columns of the matrix A such that their sum is a vector with 
components all equal to or greater than 1. Of course, any such 
solution provides an upper bound for the optimization 
problem (I), since for that problem we are looking for a 
minimal set of such columns. 

Therefore, to find an upper bound, we first choose a 
column cl of A with largest weight (if there are several such 
columns, we choose one of them arbitrarily). Then we 
construct a submatrix of A by deleting the column cl and all 
rows of A that correspond to non-zero components of el. We 
apply the same process to the new matrix, until we end up 
with the empty matrix. The columns el, c2, ..., ct that we 
obtain determine a solution for Ax 2 b and the number t is an 
upper bound for the solution of the integer programming 
problem (1). Our initial test shows that the upper bound is 
actually sharp, particularly for small size solution (see Table 
I). Note that it is easy to modify this algorithm in a way that 
the it also provides a vector a such that the vector Aa realizes 
the corresponding upper bound. 

There are two simple rules that will help this algorithm in 
extreme cases. These rules also can be useful in other cases, 
as by the recursive nature of the algorithm, most likely the 
algorithm will ends up with submatrices that these rules can 
be applied. Here is the formulation of these rules: 

(I) If the matrix A has an all-one column, then its upper 
bound is equal to 1; 

(11) If some row of the matrix A has weight 1, then 
remove that row and the corresponding column to 
obtain the matrix Al and Upper-Bound [A] = 1 + 
Upper-Bound [ A l ] .  

We could also improve the upper bound by a step-by-step 
method and in an iterative fashion wherein the cost of kth step 
in the iteration is O(nk) so the first few steps are practically 
efficient. More specifically, for fixed k, instead of choosing 
the maximum weight column for the vector al ,  we could 
choose the sum of k columns of A,  and try all possible such 
vectors. 

As another application of the a pviori lower bound, before 
starting to solve the hard problem of finding the minimal 
hitting sets, we could separate the cases where the high 
number of faulty components requires another course of 



action instead of usual identification of faulty components. 
Also a good lower and upper bound could determine whether 
the enhanced brute-force algorithm [ I ,  21 can provide a 
solution efficiently. Since, as it was stated before, this 
algorithm has a complexity of O(nt), where t is the number of 
faulty components. 

IV. THE NEW BRANCH-AND-BOUND METHOD 

Our new branch-and-bound algorithm is based on our 
methods for computing lower and upper bounds for diagnosis. 
We also exploit the monotonicity property of this special case 
of integer programming problem. We list the rationale behind 
this new approach, and its possible advantages over the 
standard branch-and-bound, as follows: 

Since the optimal solution is one of the points on the 
discrete grid, our relaxation phase directly applies to 
the discrete grid, while the standard method starts 
with the much larger set consists of not only the 
discrete gird but also all real points inside the 
polygon. 
For each subproblem we find a lower bound in linear 
time, while the time of LP relaxation of standard 
method is 0(n3)  . 
For each subproblem we are able to find an upper 
bound, while in the standard method the upper 
bound is found only in the case that the LP 
relaxation of the subproblem at hand ends up with an 
integer solution. This way our method provides more 
chance to eliminate subproblems with large lower 
bounds. 

Before describing our method, we introduce a set of useful 
functions and notation. We start with the mxn binary matrix 
A. We label the columns of A by the numbers 1, 2, . . ., n, and 
we denote any subset of these columns by simply as a subset 
of (1,  2, . . . , n}  . Similar to the traditional branch-and-bound 
method, the new algorithm is also based on search on the 
nodes of a tree. Each node of the search tree has a label of the 
form (M, Th, Tout) where M is a submatrix of the original 
matrix A, and En and Tout are disjoint subsets of the columns 
of the original matrix A. The meaning of this partition is that 
Ti, is the set of the columns (of the original matrix A) 
considered as part of the solution, Tout is the set of the 
columns (of the original matrix A) considered not as part of 
the solution. Note that a solution of the optimization problem 
( I )  can be considered as a subset of the columns of the matrix 
A whose addition is a vector with all non-zero components. 

Here is the list of the auxiliary functions and subroutines. 

Function Place-Finding 
Consider a node with the label (M, Tin, To,& Since M is a 

submatrix of the original matrix A obtained by removing the 
columns in the set Tn u T 0 ,  every column of M corresponds 
with a unique column of A, for example the column 1 of M 
corresponds with the column 3 of A and the column 2 of M 
corresponds with the column 7 of A, and so on. Therefore, we 
can refer to the label of a column of M in A without any 
ambiguity. In fact, given the sets Tin and Tout, for every 
column j of M, it is possible to find the corresponding column 
in the original matrix A. We denote this relation by the 
function Place-Finding, also to keep the notation simple, 

instead of writing Place-Finding[q,, To,, jl we simply - 
write j if the sets Tin and Tout are understood from the context. 

Function Place-Finding 
Consider a node with the label (M, Tin, To,). Since M is a 

submatrix of the original matrix A obtained by removing the 
columns in the set Ti,  uTout, every column of M corresponds 
with a unique column of A, for example the column 1 of M 
corresponds with the column 3 of A and the column 2 of M 
corresponds with the column 7 of A, and so on. Therefore, we 
can refer to the label of a column of M in A without any 
ambiguity. In fact, given the sets Tin and Tout, for every 
column j of M, it is possible to find the corresponding column 
in the original matrix A. We denote this relation by the 
function Place-Finding, also to keep the notation simple, 
instead of writing Place-Finding[Ti,, Tout, jl we simply 

-, 

write 7 if the sets Tin and Tout are understood from the context. 

Functions Remove-0 and Remove-1 
Remove-1 [M, j]:  the result is the submatrix of M 
obtained by deleting the jth column of M and deleting 
all rows of M that correspond with non-zero 
components of that column; 
Remove-0 [M, j]:  the result is the submatrix of M 
obtained by deleting the jth column of M. 

For example, consider the matrix 
(0 0 1 1) 

(0 1 0 1) 

Then to compute Remove-1 [M, 21, we first delete the 2nd 
column of M, and since the 2nd and 4th components of this 
column are 1, then we delete the 2nd and rows. The result 
is 

Remove-1 [M, 21 = 

While for Remove-0 [M, 21, we just delete the 2nd column 
of M. The result is 

Remove-0 [M, 21 =[ " . 
0 0 1  

Function Rule* 
This functlon is based on some rules that simplify the 

process of finding the optimal solution for the system (1): 
Rule 1 If the matrix A has an all-one column 5, then 

the set consisting of the jh element x, alone is 
the hitting set; or the vector x with 1 at its jth 
component and zero at other components, is an 
optimal solution for the system (1). 

Rule 2 If the matrix A has a row of weight one, with 1 
as its jth component, then the jth element x, is 
contained in the minimal hitting set. In this case 
we can simplify the system ( 1 )  by removing this 
row and the jth column, and we add the jth 
element x, to the solution of the new system. 

Rule 3 If the matrix A has an all-one row, delete that 
row. 



Rule 4 If the matrix A has an all-zero column, delete 
that column. 

Rule 5 If the matrix A has two equal rows, delete one 
of them. 

Let see how these Rules affect the labels of the nodes in the 
search tree. Suppose that (M, {Ti,, To,)) is the label of a node. 
First we describe the action of Rule 1. If the matrix M does 
not have an all-one column, then there no action is performed 
and the label is unchanged. Otherwise, assume that jth column - 
is all-one. Then Rule 1 changes the label to ( 0 ,  T-,u( j ), 
To,,). In a more formal language, we define a function 
Rule-1 on the set of labels as in Fig. 1. 

To define the action of Rule 2, first we introduce a useful 
notation. Let ej be the unit binary vector (of weight one) with 
its only 1 component at jth position. Now the action of Rule 2 
can be described by the formal function in Fig. 1. 

The action of Rule 3 is described by the function in Fig. 1, 
where M'  is obtained from M by deleting all all-one rows. 

Finally, the actions of Rules 4 and 5 are described by the 
function in Fig. 1, where the matrix M' is obtained from M by 
deleting one of the equal rows. 
Note that once one of these rules is applied on a label h1 = 

(M, Tin, Tout), and the result is the label h2 then it may be 
possible to apply one of these rules on h2, and so on. For 
these reason we define the function Rule* on the set of the 
labels as repeated applications of Rule-1-5 until none of them 
can be applied anymore. It is easy to show that Rule* is well- 
defined. i.e., the result of Rule*(h) does not depend on the 
order of the functions Rule-1 and Rules2 are applied. 

As an example, consider the label Al = (MI ,  a,@),  where 

Note that 31d column of M3 is the 4" column of the original 
matrix MI. Finally, we apply Rule-1, and the result is the 
label h4 = ( 0 ,  {2,3,4), {I, 5)) (again note that the 2nd 
column of the matrix M3 corresponds with the 3'd column of 
the original matrix MI). Therefore, 

Rule* [Ill = (0, C2,3,4), C1,5)). 

The 2nd row of M is equal to e2 and its 3Id row is equal to e4. 
Therefore, for applying Rule-2 we have two possible choices. 
First we choose to remove 2nd row, the result is the label h2 = 

(M2, C21, 01, where 
(0 1  0  1) 

Function Split 
We define the (partial) function Split on the set of the 

labels, where the value Split [h] is a pair (Lo, hl) of labels. 
Suppose that h = (M, TI, T2). If TlnT2 = (1, ... n ) ,  i.e., if 
TlnT2 is the set of all columns of the matrix A, then the 
function Split is not defined. Otherwise, let j E TlnT2 be a 
column of the original matrix A which is corresponded with a 
maximum-weight column of the submatrix M (if there are 
several such columns then we choose the first one). Then we 
define two new labels based on the assumption that the jfi 
column is part of the solution set or not; more specifically, we 
define two new labels as follows: 

10 = (Remove-0 [M, jl, TI, T2uC 7 )I, - 
11 = (Remove-1 [M, jl, TIU C j 1, T2), 

M , =  

( M ,  , T )  if M has no all - one column, 
Rule-1 [(M, Th, T,,)]= ( 0 , ~ ~  u {TI To,) if jth column is an all - one column. 

0 0 1 0  

1  1  1  1 .  

1 1 0 0  

(M',T,, T,,) if M has all -one rows, 
Rule-3 [(M, T, , To,)] = 

(M,T, , T,,) otherwise, 

\o 1  1 1, 

The 2nd row of M2 is equal to e3, thus we can apply Rule-2. 
The result is the label h3 = (M3, {2,4), 0 ) ,  where 

( M I ,  T, , T,,) if M has two equal rows, 
Rule-5 [(M, T-, , To,)] = 

otherwise, 

Figure 1. The definitions of Rule functions 



Then the Split function is defined as 
Split [ I ]  = (Rule* [Lo], Rule* [ I 1 ] ) .  

Function Upper-Bound 
The Upper-Bound function is defined in Section 3 to find 

the number Upper-Bound [A] as an upper bound on the 
solution of the optimization problem defined by the system 
(1). We extend this function to the set of labels as follows. 
For the label h = (M, TI ,  T2), where M is a submatrix of the 
original matrix A, Upper-Bound [A] provides an upper 
bound for the system defined by ( 1 )  augmented by the 
following conditions: 

x, = 1, xl€T1, 
XI =O, xj€T2. 

Then it is easy to see that 
Upper-Bound [A] = ITl\ + Upper-Bound [MI. 

In the special case that M = 0, we have Upper-Bound [A] = 

lTll. Note that we apply the function Upper-Bound both on 
matrices and labels. 

Function Upper-Bound-Set 
For the label h = (M, TI ,  T2), the function 

Upper-Bound-Set[h] returns the set which realizes the 
bound Upper-Bound [h] ,  i.e., the union of TI and the set of 
columns of M which provide the bound Upper-Bound [MI. 

Function Lower-Bound 
Like the previous function, we extend the lower bound 

defined by (2) to the set of labels. More specifically, for the 
label h = (M, TI,  Tz), where M is a kxj submatrix of the 
original matrix A, we have 

Lower-Bound [ I ]  = lTll + k / l l ~ l I ~ .  

Function Test-Solution 
This function is defined on the set of the labels and its 

value is either True or False. The value of Test-Solution 
[(M, TI ,  T2)] is True if the columns in the set TI form a 
solution for the system ( 1 ) .  Otherwise, the value of the 
function is False. 

Function Test-Leaf 
This function is defined on the set of the labels and its 

value is either True or False. As it is suggested by the name 
of the function, here we determine whether a node in the 
search tree is a leaf or not; i.e., whether that node has any 
children or not. The arguments of this function are a label h = 

(M, TI,  T2) and a value U for the upper bound on the solution 
of the problem. Then 

branch-and-bound (A) 
I* solves the hitting set problem defined by the system (1) *I 
Labels = {Rule* [(A, 0 ,  @)I} 
U = iilfinity I* upper bound *I 
Solution = 0 
while Labels* 0 

chose h = (M, TI, R) E Labels 
Labels = Labels- {h) 
If Test-Solution[h] = True & Upper-Bound[h] < U then 

Solution = TI 
U = Upper-Bound [h] 

end if 
If Test-Solution[h] = True & Upper-Bound [h] = U & Solution=0then Solution = 

If Upper-Bound[h] < U then 
U = Upper-Bound [XI 
Solution = Upper-Bound-Sefh] 

end if 
If Test-Leaf [h, =False then 

(hO, XI) = Split [h] 
Labels = Labels u {hO, hl) 

end if 
If Test-Leaf [h, U] = True & Upper-Bound[h] = U & Solution = 0  

then Solution = Upper-Bound-Seth] 
end while 

Test-Leaf [X, U ]  = 

return Solution 

 rue if T, u T2 = (1, 2, K , n), or 

True if Lower -Bound [XI 2 U ,  or 

True if Test-Solution [XI = True, or 

True if M contains an all - zero row, 

False otherwise. 

Figure 2. The new Branch-and-bound algorithm 

Now we are ready to present Our new branch-and-bound 
algorithm. This algorithm is described in Fig. 2. It is easy to 
show that this algorithm is correct. The complete proof we 
will be presented in the subsequent paper. 

Table I shows the results of performance of the new 
algorithm and its comparison with the traditional Branch-and- 
Bound method. These results show the average time and the 
number of iterations (i.e., the number of nodes in the search 
tree) used by these algorithms on 100 random binary 
matrices. 



TABLE I have proposed a novel algorithmic approach for calculation of 
COMPARING THE AVERAGE PERFORMANCE OF ALGORITHMS ON 100 RANDOM 

MATRICES minimal diagnosis set. Starting with the relationship between 
the calculation of minimal diagnosis set and the celebrated 

For above benchmarking, we used the GLPK (GNU Linear 
Programming Kit), version 4.7, to solve the problems with the 
traditional branch-and-bound method. This is a set of routines 
in the ANSI C programming language. The integer 
programming routine of GLPK (actually it is much more 
powerful routine and is capable of solving mixed integer 
programming problems) applies a variant of branch-and- 
bound method for the problem. 

V. A NOVEL CONFLICT GENERATION ALGORITHM 

We introduce a novel approach for generating conflict sets 
based on mapping this problem onto the well-studied problem 
of finding paths in a graph [ 5 ] .  The main idea of this approach 
is based on the fact that only the value of observed parameters 
can produce the conflicts; i.e., if the description of the system 
and the value of the inputs could imply a value different from 
the observed value. We should also consider the values that 
could be inferred from the observed values by the "back- 
propagation" method; i.e., the values that could be inferred at 
some node from the values observed at the other nodes. All 
subsystems that are involved in the process of finding these 
inferred values can be described as paths on the graph of the 
system. Therefore, to find all conflict sets, it is enough to 
consider only paths that start at inputs or nodes of observed 
values and end at one of these nodes. This approach can 
significantly accelerate the conflict generation step by 
bounding the search space. The details of this method will be 
explained in the subsequent paper. 

VI. SUMMARY AND CONCLUSIONS 

We proposed a new approach to overcome one of the major 
limitations of the current model-based diagnosis techniques, 
that is, the exponential complexity of calculation of minimal 
diagnosis set. To overcome this challenging limitation, we 

Hitting Set problem, we have proposed a new method for 
solving the Hitting Set Problem, and consequently the 
diagnosis problem. This method is based on a powerful and 
yet simple representation of the problem that enables its 
mapping onto another well-known problem, that is, the 011 
Integer Programming problem. 

The mapping onto 011 Integer Programming problem 
enables the use of variety of algorithms that can efficiently 
solve the problem for up to several thousand components. 
 heref fore,-these new algorithms significantly improve over 
the existing ones, enabling efficient diagnosis of large 
complex systems. In addition, this mapping enables a priori 
and fast determination of the lower and upper bounds on the 
solution, i.e., the minimum number of faulty components, 
before solving the problem. We exploit this powerful insight 
to develop yet more powerful algorithm for the problem. 
This new algorithm is a new version of the well-known 
branch-and-bound method. We present the results of the 
performance of the new algorithm on a set of test cases. These 
results clearly show the advantage of our new algorithm over 
the traditional branch-and-bound algorithm; more specifically 
the new algorithm has achieved several orders of magnitude 
speedup over the standard algorithms. 
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