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ABSTRACT

This technical note provides a mathematical proof of Corollary 1 from the paper “A Nonlinear
Model Predictive Control Algorithm with Proven Robustness and Resolvability” that appeared in
the 2006 Proceedings of the American Control Conference [1]. The proof was omitted for brevity in
the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research
and Technology Development) project for Small-body Guidance, Navigation, and Control [2].

The framework established by the Corollary is for a robustly stabilizing MPC (model predictive
control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated
finite-horizon optimal control problem in a receding-horizon implementation. Additional details of
the framework are available in the publication.

1Cleared for U.S. and foreign release, CL#08-0025



1 Introduction

The equation numbers (aside from those with a “C1” prefix) in this document match those in the
American Control Conference paper [1]. Some of the equations, Conditions, and a Lemma from [1]
are repeated in this section for clarity in the Corollary and proof.

The MPC results are specialized to the following class of systems,

&= Az + Bu+ E¢(t,q)

14
q=Cyx+ Dyu, (14)

where ¢ : IR x IR"™ — IR" is a continuously differentiable function representing the uncertain
nonlinear part of the dynamics, i.e. f(z,u,t) = Az + Bu + E¢(t,q) in (1). The nominal system
dynamics is assumed to have the following form,

2= Az+ Bu, + EY(t,q,)

(15)
qo = Cyqz + Dyu, ,

where ¢ : R x R"™ — IR" is an approximation for ¢ in the real system (14), i.e. F(z,u,,t) =
Az + Bu, + 9(t, qo) in (5).
The following Conditions are a part of the MPC Algorithm:

Condition 1. Function h in the FHC satisfies
Az ) = all2|lP + bl V2 u,
withp > 1, 7 >0, a and b both positive constants, and h(0,0) = 0. o

Condition 2. Function V in the FHC is positive definite [3] and there exists a feedback control
law uw = L(z) and u, = L(2) such that V defines a Lyapunov function for (1) and (5) satisfying

VV(z)f(x,L(x),t) + h(z,L(z)) <0, Vo € Q,,
VV(2)F(x,L(2),t) + h(z,L(2)) <0, VzeQ,,
where Q, C X, contains the origin. Additionally, feedback law L renders Q, C IR™ invariant for

dynamics (1) and (5), i.e., if x(to) € Qo (2(to) € Qo) for some ty, then x(t) € Q,, Yt > to
(2(t) € Qp, YVt >1tg). It is also assumed that

L(x) e U,, Voe,.
o

Condition 3. There exist closed balls®> around the origin Bg and B, in IR"™ with radii R > r such
that set Q, in the FHC satisfies the following

ngBrCBRQQO.
&

Condition 4. There exists a feedback control law uy = K(z,z) in (3) that renders the set Xy
invariant for n = x — z with dynamics (1) for x and (5) for z, that is, if n(to) € Xy for some
to > 0, then n(t) € Xy VYt >ty and for all uo(-). Additionally, up = K(x,2z) € Uy if n(t) € X5. ©

By = {v : |v] < p}.



Condition 5. Functions ¢ and Y are continuously differentiable and there exists a closed and
convex set of matrices © C IR"™*™ such that

99 o

—(t,q) €O and —(t,q) €O, Vg, t.
3 q( q) 3 (t,q) q
o
Condition 6. There exists a scalar v > 0 such that
||¢(taQO)_7/}(taQO)H <7w, Vt,zeX,, u, € U,,

where q, = Cyz + Dqu, as in 15. o
Condition 7. The following hold for the constraint sets in the FHC,

Xo={zeR":alz<1,i=1,...,m,},

Xp={reR": bz <1, i=1,...,my},

U,={uecR": u"Tu<1},

Uf:{u ceR™: uTHfu < 1},
where 11, Iy are symmetric positive-definite matrices. o

Lemma 3. Consider a continuously differentiable function ¢ : IR™ — R™ with its Jacobian given
by 9p(q)/0q. Suppose that there exists a closed convex set A € R™™ such that

Iy

Then, for every q1 and qo there exists A € A such that

o(q2) — p(q1) = Algz — q1) -

2 Corollary 1 with Proof

Corollary 1. Consider an uncertain nonlinear system (14) with a nominal model given by (15)
satisfying Conditions 5, 6, and 7 with

O={0cR™ " ; 0] <1}. (24)

Suppose that there exist matrices S = ST >0, Q = QT > 0, L, Y and positive scalars \, 3, 11, c1,
and co satisfying the following matrix inequalities,

SAT+ AS+BL+LTBT +S/)\ T | 7 THT
(B + M) BET SC+LDy | < (25)
C,S+D,L —BI
QAT+AQ+BY +YTBT + uEET QCT+YTDT QCT+Y™DT
CQ+DY I 0 <0 (26)
CQ+DyY 0 —pl
s LT Q YT
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aiTQaigl, i=1,...,m,, (28)
biSh; <1, i=1,...,mg, (29)

Q>cil>cl>S, (30)

where C and D are matrices satisfying

c'D=0.
Then, the ellipsoids eq = {z : 27Q 'z < 1} and eg = {x : 27 S ta < 1} satisfy g C X, and
es € Xy. And, the MPC Algorithm with

h(w, u) = ||Cx||* + || Dul|?

V(z)=2TQ 'z (31

L(z) =Kz, K=YQ!,

K(z,2) = Kz —2), Kj=LS", (32)

and g and eg replacing Q, and Xy results in an asymptotically stable closed loop system for (14)

with a region of attraction R, given by (13). O

Proof.
Establish , Invariance for System (14) when z € Q,:
Pre- and post-multiplying (26) by diag(Q~',I,I) and utilizing K = YQ ™! from (32) gives

ATQ_1+Q_1A+Q_1BK+KTBTQ_1 +,MQ_1EETQ_1 CT+KTDT Cg—i—KTDg
C+DK —I 0 <0. (C1-1)
Cq+DyK 0 —ul

Utilizing multiple Schur complements [4] and CT D = 0, this matrix inequality can be written as

( ATQ_1+Q_1A+Q_IBK+KTBTQ_1 + CTC

-1
—|—KTDTDK+%(Cq—FDqK)T(Cq—i—DqK) ) @F <0. (C1-2)
ETQ—l _lI
I

For ¢ = (27,¢")T, corresponding to the state x and nonlinearity ¢ for the actual system (14),
taking (T M ¢, where M is the matrix in the preceding inequality, gives

2t (ATQTHQ T A w + 207 Q7N (Bu + E¢) + ||Cal® + || Dul® + | (¢"a — ¢"¢) <0, (CL-3)

where u = L(z) = Kz from (32) and ¢ = Cyx + Dyu have been utilized.
Applying Lemma 3 with Condition 5, and making use of (24) and ¢(0,t) = 0 V¢, gives

¢lqg—oTe > 0. (C1-4)
Further, h(x,u) = ||Cz||? + || Du|[?> > 0 (which satisfies Condition 1). These inequalities imply
T (ATQ'4+Q 1Az + 227 QN (Bu + E¢) <0, (C1-5)

which gives V() < 0 for V(z) = 27 Q 'z as defined in (31). Thus, V (z) is a Lyapunov function for
the actual system (14) and establishes the invariance of Q, = {z : 7 Q 'z < 1} with control policy



u = Kz from (32). Further, inequality (28) ensures Q, C X, (with X, defined as in Condition 7) [4].

Establish Bounded Input v € U when x € Q,:
Pre- and post-multiplying the second LMI in (27) by diag(Q~!,I) and utilizing a Schur com-
plement gives Q' — KTTI,K > 0, which is equivalent to

wI'Tlu < 27Q 71z (C1-6)

after pre- and post-multiplying with 27 and x, respectively, and utilizing the feedback policy
u = Kz from (32). Thus, for z € Q,, u"II,u < 1, so u € U, from Condition 7.

Establish 2, Invariance for System (15) and Bounded Input u, € U, when z € Q,:

The above results apply identically to the nominal system (15) when z € €, through the sub-
stitution of ¢ = (27, 9T)T, with ¢ corresponding to the nonlinearity for the nominal system (15),
uo = L(2) = Kz, and ¢, = Cqz + Dgu,. Thus, Corollary 1 establishes a framework and feedback
policy satisfying Conditions 1 and 2 for systems (14) and (15).

Establish ¢5 Invariance (i.e. X; invariance when X/ restricted to ¢g):
Let positive-definite function V(1) = n?S~'n be a Lyapunov function candidate. Pre- and
post-multiplying (25) by diag(S™!,I) and utilizing Ky = LS~ from (32) gives

[AT51+51A+SlBKf+KfTBTSl +STYAH(B+M)STTEETST CT+ KDy <0
Cy+DyKy —pI -
(C1-7)
Using multiple Schur complements, this matrix inequality can be written as
AT;S"l +5714 Jgs—lBKf + KfBTls—l ¢1p glp
—i—E(C’q—i-Dqu) (Cq+DyKy) +S7 /A <0 (C18)
ETS! 51 0 -
_ 11

TTT)

For ¢ = (n, 77, w™)T, taking (T M, where M is the matrix in the preceding inequality, gives

T (ATS™ + St Ay + 20" S™H(Buy + Er + Ew)
+ % ((Cqn+Dqus)" (Cqn+Dgug) — ') + 3 <77TS_177 — W%MTw) <0, (C19)

where uy = Kyn from (32) has been utilized for the difference dynamics in system (20).
Making use of relationship (22) for 7 and the properties of 6 in (24) gives

(Cq77+unf)T(an+unf) —7'm >0, (C1-10)
thus

T (ATS 4+ S Ay + 20" ST (Buy + En + Ew) + % (nTS_ln — V—IQwTw) <0. (C1-11)

From (21), y%wTw < 1, thus

A{%wTw <nt'S~ 'y when TS 1n > 1, (C1-12)



which implies
nt(ATS™H+ ST Ay + 20" ST (Buy + En + Ew) < 0 when 7 S71np > 1, (C1-13)

and thus V() < 0 when 7S~y > 1. Thus, eg = {n: n7S~'n < 1} is an invariant set for 5 [5].
Additionally, inequality (29) ensures eg C X (with X defined as in 7) [4].

Establish Bounded Feedback u; € U; when 7 € 5:
Pre- and post-multiplying the first LMI in (27) by diag(S~!, I) and utilizing a Schur complement
gives 71 — KJ?Hfo > 0, which is equivalent to

U?Hfu]c <nts 1y (C1-14)

after pre- and post-multiplying with " and 7, respectively, and utilizing the feedback policy u F=
Kn from (32). Thus, for n € €g, U?Hfuf <1, s0 uy € Uy from Condition 7. Restricting Xy to
€s provides a conservative feedback policy that renders the restricted X invariant.

Thus, Corollary 1 establishes a framework and feedback policy satisfying Condition 4 for the
difference dynamics in system (20).

Establish X Contained in (,:
. . . -1 1 1 -1 i 1
Inequality (30) implies S™' > 1> 1>Q . Then, for z € Xy (with X restricted to eg)
1>278 2> LaTr > éxTa: > 2TQ s (C1-15)

ca

Thus, an x € Xy is also # € B, x € Bg, and x € Q, with r = /co, R = /c1, and ), = ¢q,
respectively. The inequality establishes Condition 3 such that Xy C €. ]
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