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ABSTRACT

This technical note provides a mathematical proof of Corollary 1 from the paper “A Nonlinear
Model Predictive Control Algorithm with Proven Robustness and Resolvability” that appeared in
the 2006 Proceedings of the American Control Conference [1]. The proof was omitted for brevity in
the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research
and Technology Development) project for Small-body Guidance, Navigation, and Control [2].

The framework established by the Corollary is for a robustly stabilizing MPC (model predictive
control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated
finite-horizon optimal control problem in a receding-horizon implementation. Additional details of
the framework are available in the publication.
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1 Introduction

The equation numbers (aside from those with a “C1” prefix) in this document match those in the
American Control Conference paper [1]. Some of the equations, Conditions, and a Lemma from [1]
are repeated in this section for clarity in the Corollary and proof.

The MPC results are specialized to the following class of systems,

ẋ = Ax+Bu+ Eφ(t, q)
q = Cqx+Dqu ,

(14)

where φ : IR × IRnq → IRnp is a continuously differentiable function representing the uncertain
nonlinear part of the dynamics, i.e. f(x, u, t) = Ax + Bu + Eφ(t, q) in (1). The nominal system
dynamics is assumed to have the following form,

ż = Az +Buo + Eψ(t, qo)
qo = Cqz +Dquo ,

(15)

where ψ : IR × IRnq → IRnp is an approximation for φ in the real system (14), i.e. F (z, uo, t) =
Az +Buo + ψ(t, qo) in (5).

The following Conditions are a part of the MPC Algorithm:

Condition 1. Function h in the FHC satisfies

h(z, u) ≥ a||z||p + b||u||r , ∀ z, u ,

with p ≥ 1, r ≥ 0, a and b both positive constants, and h(0, 0) = 0. �

Condition 2. Function V in the FHC is positive definite [3] and there exists a feedback control
law u = L(x) and uo = L(z) such that V defines a Lyapunov function for (1) and (5) satisfying

∇V (x)f(x,L(x), t) + h(x,L(x)) ≤ 0 , ∀x ∈ Ωo ,

∇V (z)F (x,L(z), t) + h(z,L(z)) ≤ 0 , ∀ z ∈ Ωo ,

where Ωo ⊂ Xo contains the origin. Additionally, feedback law L renders Ωo ⊂ IRn invariant for
dynamics (1) and (5), i.e., if x(t0) ∈ Ωo (z(t0) ∈ Ωo) for some t0, then x(t) ∈ Ωo , ∀ t ≥ t0
(z(t) ∈ Ωo , ∀ t ≥ t0). It is also assumed that

L(x) ∈ Uo , ∀x ∈ Ωo .

�

Condition 3. There exist closed balls2 around the origin BR and Br in IRn with radii R > r such
that set Ωo in the FHC satisfies the following

Xf ⊆ Br ⊂ BR ⊆ Ωo .

�

Condition 4. There exists a feedback control law uf = K(x, z) in (3) that renders the set Xf

invariant for η , x − z with dynamics (1) for x and (5) for z, that is, if η(t0) ∈ Xf for some
t0 ≥ 0, then η(t) ∈ Xf ∀ t ≥ t0 and for all uo(·). Additionally, uf = K(x, z) ∈ Uf if η(t) ∈ Xf . �

2Bρ , {v : ‖v‖ ≤ ρ}.
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Condition 5. Functions φ and ψ are continuously differentiable and there exists a closed and
convex set of matrices Θ ⊆ IRnp×nq such that

∂φ

∂q
(t, q) ∈ Θ and

∂ψ

∂q
(t, q) ∈ Θ , ∀ q, t .

�

Condition 6. There exists a scalar γ > 0 such that

‖φ(t, qo)− ψ(t, qo)‖ ≤ γ , ∀ t , z ∈ Xo , uo ∈ Uo ,

where qo = Cqz +Dquo as in 15. �

Condition 7. The following hold for the constraint sets in the FHC,

Xo ={x ∈ IRn : aT
i x ≤ 1, i = 1, . . . ,mo},

Xf ={x ∈ IRn : bTi x ≤ 1, i = 1, . . . ,mf},
Uo ={u ∈ IRm : uT Πou ≤ 1},
Uf ={u ∈ IRm : uT Πfu ≤ 1},

where Πo, Πf are symmetric positive-definite matrices. �

Lemma 3. Consider a continuously differentiable function ϕ : IRn → IRm with its Jacobian given
by ∂ϕ(q)/∂q. Suppose that there exists a closed convex set Λ ∈ IRn×m such that

∂ϕ

∂q
(q) ∈ Λ , ∀q .

Then, for every q1 and q2 there exists ∆ ∈ Λ such that

ϕ(q2)− ϕ(q1) = ∆(q2 − q1) .
�

2 Corollary 1 with Proof

Corollary 1. Consider an uncertain nonlinear system (14) with a nominal model given by (15)
satisfying Conditions 5, 6, and 7 with

Θ = {θ ∈ IRnp×nq : ‖θ‖ ≤ 1} . (24)

Suppose that there exist matrices S = ST > 0, Q = QT > 0, L, Y and positive scalars λ, β, µ, c1,
and c2 satisfying the following matrix inequalities, SAT+AS+BL+LTBT +S/λ

+(β + λγ2)EET SCT
q +LTDT

q

CqS+DqL −βI

≤0 (25)

QAT+AQ+BY +Y TBT +µEET QCT+Y TDT QCT
q +Y TDT

q

CQ+DY −I 0
CqQ+DqY 0 −µI

≤0 (26)

[
S LT

L Π−1
f

]
≥ 0 ,

[
Q Y T

Y Π−1
o

]
≥ 0 , (27)
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aTi Qai ≤ 1 , i = 1, . . . ,mo , (28)
bTi Sbi ≤ 1 , i = 1, . . . ,mf , (29)

Q ≥ c1I > c2I ≥ S , (30)

where C and D are matrices satisfying
CTD = 0 .

Then, the ellipsoids εQ = {x : xTQ−1x ≤ 1} and εS = {x : xTS−1x ≤ 1} satisfy εQ ⊆ Xo and
εS ⊆ Xf . And, the MPC Algorithm with

h(x, u) = ‖Cx‖2 + ‖Du‖2
V (x) = xTQ−1x

(31)

L(x) = Kx , K = Y Q−1 ,
K(x, z) = Kf (x− z) , Kf = LS−1 ,

(32)

and εQ and εS replacing Ωo and Xf results in an asymptotically stable closed loop system for (14)
with a region of attraction Ra given by (13). �

Proof.
Establish Ωo Invariance for System (14) when x ∈ Ωo:

Pre- and post-multiplying (26) by diag(Q−1, I, I) and utilizing K = Y Q−1 from (32) givesATQ−1+Q−1A+Q−1BK+KTBTQ−1 +µQ−1EETQ−1 CT+KTDT CTq +KTDT
q

C+DK −I 0
Cq+DqK 0 −µI

≤0. (C1-1)

Utilizing multiple Schur complements [4] and CTD = 0, this matrix inequality can be written as
(
ATQ−1+Q−1A+Q−1BK+KTBTQ−1 + CTC

+KTDTDK + 1
µ(Cq+DqK)T (Cq+DqK)

)
Q−1E

ETQ−1 − 1
µI

 ≤ 0. (C1-2)

For ζ = (xT , φT )T , corresponding to the state x and nonlinearity φ for the actual system (14),
taking ζTMζ, where M is the matrix in the preceding inequality, gives

xT
(
ATQ−1+Q−1A

)
x+ 2xTQ−1(Bu+ Eφ) + ‖Cx‖2 + ‖Du‖2 + 1

µ

(
qT q − φTφ

)
≤ 0, (C1-3)

where u = L(x) = Kx from (32) and q = Cqx+Dqu have been utilized.
Applying Lemma 3 with Condition 5, and making use of (24) and φ(0, t) = 0 ∀t, gives

qT q − φTφ ≥ 0. (C1-4)

Further, h(x, u) = ‖Cx‖2 + ‖Du‖2 ≥ 0 (which satisfies Condition 1). These inequalities imply

xT
(
ATQ−1+Q−1A

)
x+ 2xTQ−1(Bu+ Eφ) ≤ 0, (C1-5)

which gives V̇ (x) ≤ 0 for V (x) = xTQ−1x as defined in (31). Thus, V (x) is a Lyapunov function for
the actual system (14) and establishes the invariance of Ωo = {x : xTQ−1x ≤ 1} with control policy
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u = Kx from (32). Further, inequality (28) ensures Ωo ⊆ Xo (with Xo defined as in Condition 7) [4].

Establish Bounded Input u ∈ U when x ∈ Ωo:
Pre- and post-multiplying the second LMI in (27) by diag(Q−1, I) and utilizing a Schur com-

plement gives Q−1 −KTΠoK ≥ 0, which is equivalent to

uTΠou ≤ xTQ−1x (C1-6)

after pre- and post-multiplying with xT and x, respectively, and utilizing the feedback policy
u = Kx from (32). Thus, for x ∈ Ωo, uTΠou ≤ 1, so u ∈ Uo from Condition 7.

Establish Ωo Invariance for System (15) and Bounded Input uo ∈ Uo when z ∈ Ωo:
The above results apply identically to the nominal system (15) when z ∈ Ωo through the sub-

stitution of ζ = (zT , ψT )T , with ψ corresponding to the nonlinearity for the nominal system (15),
uo = L(z) = Kz, and qo = Cqz + Dquo. Thus, Corollary 1 establishes a framework and feedback
policy satisfying Conditions 1 and 2 for systems (14) and (15).

Establish εS Invariance (i.e. Xf invariance when Xf restricted to εS):
Let positive-definite function V (η) = ηTS−1η be a Lyapunov function candidate. Pre- and

post-multiplying (25) by diag(S−1, I) and utilizing Kf = LS−1 from (32) gives[
ATS−1+S−1A+S−1BKf+KT

fB
TS−1 +S−1/λ+(β + λγ2)S−1EETS−1 CTq +KT

fD
T
q

Cq+DqKf −βI

]
≤0

(C1-7)
Using multiple Schur complements, this matrix inequality can be written as

(
ATS−1 + S−1A+ S−1BKf +KT

f B
TS−1

+ 1
β (Cq+DqKf )T (Cq+DqKf ) + S−1/λ

)
S−1E S−1E

ETS−1 − 1
β I 0

ETS−1 0 − 1
λ

1
γ2 I

≤ 0 (C1-8)

For ζ = (ηT , πT , wT )T , taking ζTMζ, where M is the matrix in the preceding inequality, gives

ηT (ATS−1 + S−1A)η + 2ηTS−1(Buf + Eπ + Ew)

+ 1
β

(
(Cqη+Dquf )T (Cqη+Dquf )− πTπ

)
+ 1

λ

(
ηTS−1η − 1

γ2w
Tw
)
≤ 0, (C1-9)

where uf = Kfη from (32) has been utilized for the difference dynamics in system (20).
Making use of relationship (22) for π and the properties of θ in (24) gives

(Cqη+Dquf )T (Cqη+Dquf )− πTπ ≥ 0, (C1-10)

thus

ηT (ATS−1 + S−1A)η + 2ηTS−1(Buf + Eπ + Ew) + 1
λ

(
ηTS−1η − 1

γ2w
Tw
)
≤ 0. (C1-11)

From (21), 1
γ2w

Tw ≤ 1, thus

1
γ2w

Tw ≤ ηTS−1η when ηTS−1η ≥ 1, (C1-12)
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which implies

ηT (ATS−1 + S−1A)η + 2ηTS−1(Buf + Eπ + Ew) ≤ 0 when ηTS−1η ≥ 1, (C1-13)

and thus V̇ (η) ≤ 0 when ηTS−1η ≥ 1. Thus, εS = {η : ηTS−1η ≤ 1} is an invariant set for η [5].
Additionally, inequality (29) ensures εS ⊆ Xf (with Xf defined as in 7) [4].

Establish Bounded Feedback uf ∈ Uf when η ∈ εS:
Pre- and post-multiplying the first LMI in (27) by diag(S−1, I) and utilizing a Schur complement

gives S−1 −KT
f ΠfKf ≥ 0, which is equivalent to

uTf Πfuf ≤ ηTS−1η (C1-14)

after pre- and post-multiplying with ηT and η, respectively, and utilizing the feedback policy uf =
Kfη from (32). Thus, for η ∈ εS , uTf Πfuf ≤ 1, so uf ∈ Uf from Condition 7. Restricting Xf to
εS provides a conservative feedback policy that renders the restricted Xf invariant.

Thus, Corollary 1 establishes a framework and feedback policy satisfying Condition 4 for the
difference dynamics in system (20).

Establish Xf Contained in Ωo:
Inequality (30) implies S−1 ≥ 1

c2
I > 1

c1
I ≥ Q−1. Then, for x ∈ Xf (with Xf restricted to εS)

1 ≥ xTS−1x ≥ 1
c2
xTx > 1

c1
xTx ≥ xTQ−1x. (C1-15)

Thus, an x ∈ Xf is also x ∈ Br, x ∈ BR, and x ∈ Ωo with r =
√
c2, R =

√
c1, and Ωo = εQ,

respectively. The inequality establishes Condition 3 such that Xf ⊂ Ωo.
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