Thermal structure of the TTL and its relation to
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B We describe the annual cycle of the TTL fine scale thermal structure as captured by GPS radio
occultation and the pressure levels of the ECMWF weather analysis.

B We compare this annual cycle to the annual cycle in water concentrations measured by
HALOE.

B A comparison between saturation mixing ratios at the temperatures captured by GPS radio
occultation and HALOE concentrations of water vapor shows an annual cycle dominated by
supersaturation in the boreal winter months, when the upward mass fluxes are larger, and
subsaturation in the summer.

B The longitudinal dependence of these cycles is discussed and so is its possible implication for
the seasonality of stratospheric-tropospheric exchange of water.
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Introduction

Why is UT/LS water important ?

1. It determines the radiative properties of the upper tro-
posphere and lower stratosphere (UT/LS).

2. ltis the major source of OH radicals in the UT/LS.
3. ltis atracerin the UT/LS.
What do we want to understand ?

1. The mechanisms that decide the water budget in the
UT/LS: (i.e. dehydration)

2. It has been argued that if the Fixed Anvil Temperature
(FAT) hypothesis holds, the impact of SSTs on outgo-
ing radiation could be minimal. (i.e. temperature at the
bottom of the TTL)

What do observations suggest ?...
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Comparison with radiosondes w

Validation of GPS occultation temperatures near the tropics [15°S—15°N]
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Is the stratosphere “too” dry ?
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Months since Dec 1994

Monthly averages of lowest GPS occultation gs, and

HALOE’s specific humidities at 100 hPa, 85.8 hPa, and

. 73.6 hPa. Global means (standard deviation)/median

are: gs = 2.86 (0.78)/2.5 ppmv; HALOE measured
ghoo = 3.49 (0.62)/3.41 ppmv at 100 hPa; 3.01
(0.61)/2.96 ppmv at 85.8 hPa; and 3.01 (0.52)/3.03
ppmv at 73.6 hPa.— HALOE values are higher than the
GPS saturation values (and HALOE has been reported
to have a dry bias).
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Conclusions

Space based observations with global coverage and high vertical resolution help unveil the detailed
thermal structure of the UT/LS. We have used it to infer the saturation/subsaturation cycles and the
monthly changes of trajectories followed by isentropic transpor accrossthe tropopause.

Both observations help test our current theoretical understanding of how gases are transported in
the tropical troposphere:

al
Pasader

1. Dehydration mechanisms, if present, appear either unnecessary or counterbalanced by
hydration mechanisms.

2. The geometry of the tropopause layer suggests that air crossing the Eastern Pacific crosses
first over other regions that could rehydrate it before entering the stratosphere.

3. Boreal Winter months seem to have abundant instances of supersaturation.

4. Boreal Summer months seem to have abundant instances of undersaturation.

* Could this be explained by the Monsoons ? (e.g. Bannister et al. QJRMS, 2004).
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