The JPL Cost Risk Analysis Approach
That Incorporates Engineering Realism

Corey Harmon Keith Warfield Leigh Rosenberg
Corey.C.Harmon@)jpl.nasa.gov Keith. Warfield@jpl.nasa.gov Leigh.Rosenberg@;jpl.nasa.gov
818-393-2935 818-394-1481 818-394-0716

Jet Propulsion Laboratory
4800 Oak Grove Dr, Pasadena, CA 91109

ABSTRACT

In recent years, there has been an increased desire to perform cost risk analyses on space
exploration mission cost estimates presented for management review. Single point cost
estimates are of limited value since they fail to capture uncertainty in the estimate and, in
so doing, cannot provide proper context for comparison to other estimates. This
uncertainty is important to capture, especially for cost estimates of complex space
missions early in the project planning phase. There are many unknowns with high
variances that must be captured in the estimation process (ie., impacts of new
technologies, the impact of unknown unknowns, etc.). Therefore, a cost risk assessment
should include a range of likely costs with the probability of achieving that range.

Typically, this cost risk is best portrayed by a cumulative density function (CDF), or an
S-curve, that illustrates the likelihood of achieving a particular cost. This S-curve should
make engineering sense and provide realistic input to decision makers. By employing
methodologies that are based on actual project cost data, the credibility of the analyses
increases and decision makers will have better information upon which to make their
assessments.

The fundamental problem associated with cost risk analysis is the accurate evaluation of
three main elements that contribute to cost risk: uncertainty in cost estimation algorithms
(model uncertainty), uncertainty in the inputs to the algorithms (technical risk), and the
correlation between WBS elements. All three of these elements are important when
adding distributions through simulation. Without proper representation of these factors,
the resulting S-curve will understate the estimate uncertainty and, accordingly, understate
the risk of overrunning the evaluated project’s budget.

This paper discusses the JPL Cost Engineering Group (CEG) cost risk analysis approach
that accounts for all three types of cost risk. It will also describe the evaluation of
historical cost data upon which this method is based. This investigation is essential in
developing a method that is rooted in engineering realism and produces credible,
defendable results to aid decision makers.
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1. Introduction

In recent years, there has been an increased desire to
perform cost risk analyses on space exploration
mission cost estimates presented for management
review. Single point cost estimates are of limited
value since they fail to capture uncertainty in the
estimate and, in so doing, cannot provide proper
context for comparison to other estimates. This
uncertainty is important to capture, especially for cost
estimates of complex space missions early in the
project planning phase. There are many unknowns
with high variances that must be captured in the
estimation process (i.e., impacts of new technologies,
the impact of unknown unknowns, etc.). Therefore, a
cost risk assessment should include a range of likely
costs with the probability of achieving that range.

Typically, this cost risk is best portrayed by a
cumulative density function (CDF), or an S-curve,
that illustrates the likelihood of achieving a particular
cost. This S-curve should make engineering sense
and provide realistic input to decision makers. By
employing methodologies that are based on actual
project cost data, the credibility of the analyses
increases and decision makers will have better
information upon which to make their assessments.

This paper discusses the JPL Cost Engineering Group
{CEG) cost risk analysis approach in detail and
describes the evaluation of historical cost data upon
which this method is based. This investigation is
essential in developing a method that is rooted in

engineering realism and produces credibie,
defendable results to aid decision makers.

2. History of Cost Risk Analysis in the CEG

The Cost Engineering Group resides in JPL’s
Mission System Concepts Section and its charter
includes performing engineering cost trades and life
cycle cost analyses for proposed JPL missions. Cost
risk analysis became a standard task in the Cost
Engineering Group with the addition of the Monte
Carlo capability in the group’s Parametric Mission
Cost Model (PMCM).

PMCM is a total mission cost model that has been in
use since 1998 and has included cost risk capability
since 2003. The model is a full project estimation
tool, with costs estimated at the subsystem level and
then aggregated along a standard WBS. It has been
verified to accurately estimate project costs using
actual data from recent JPL missions. While PMCM
has a built in Monte Carlo capability to perform a
cost risk analysis on the parametrically generated cost
estimate, the CEG also performs analyses on
grassroots estimates using the @Risk software
package to run the Monte Carlo simulation.

Another JPL. model that incorporates cost risk
capabilities is the NASA Instrument Cost Model
(NICM). This model is currently in development and
is earmarked for wider use throughout the Space
Agency. It is based on about 70 NASA observational
instruments launched since 1985. NICM estimates at
the subsystem level, then aggregates to a total
instrument cost through a standard WBS. Once
development is completed, NICM will be integrated
into PMCM for the instrument portion of the mission
WBS.

The Cost Engineering Group has supported many
project and proposal reviews by providing
independent cost estimates and cost risk analyses.
Table 1 describes just some of the cost risk analyses
recently performed.



Table 1 CEG Cost Risk Analysis Support

Project Name Date of Support
Discovery 2006 Proposals March 2006
Aquarius PDR June 2005
SIM Re-design May 2005
Phoenix PDR April 2005
Prometheus April 2005
Juno PDR February 2005
Discovery 2004 Proposals June 2004

In addition, a large part of the work performed by the
CEG is to support JPL’s Advanced Projects Design
Team (Team X) and other study development
activities. The S-curves generated from a cost risk
analysis can be used to support the sensitivity or trade
studies performed during these design activities.

3. Understanding the Problem

The fundamental problem associated with cost risk
analysis is the accurate evaluation of three main
elements that contribute to cost risk: uncertainty in
cost estimation algorithms (model uncertainty),
uncertainty in the inputs to the algorithms (technical
risk), and the correlation between WBS elements [1].
All three of these elements are important when
adding distributions through simulation. Without
proper representation of these factors, the resulting S-
curve will understate the estimate uncertainty and,
accordingly, understate the risk of overrunning the
evaluated project’s budget.

Model uncertainty is a result of the imprecision
inherent in the cost estimating relationships (CERs).
CERs are usually based on relationships derived from
general cost dependence on input parameters such as
mass, power, heritage, schedule, etc. While the CERs
are validated against actual cost data, they will
always have some amount of uncertainty that needs
to be reflected in the cost risk analysis.

The technical inputs associated with cost algorithms
or the technical risks associated with a grassroots
estimate have their own uncertainty which has a
significant impact on the likelihood of achieving the
proposed cost estimate. The uncertainty of technical
inputs is usually very indicative of the associated
uncertainty of the cost estimate. A project proposing
the use of new, untested designs will have more
unknowns regarding the possible growth of mass,
power, and other technical parameters upon which
the baseline estimate is based. With a greater
uncertainty of the inputs, a larger range of cost
probabilities is expected.

Finally, it is generally agreed that there is some level
of correlation between WBS elements and it must be
accounted for in any justifiable cost risk analysis.
Understating the correlation between WBS items
may result in the cost risk analysis failing to account
for possible ripple effects caused by an increase in a
subsystem cost estimate.

As can be seen in Figure 1, the convolution of all the
risk elements leads to an accurate cost estimate
probability distribution. However, if all three
elements are not accounted for, the correct
probability distribution will be understated.
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Figure 1 Convolution of Different Cost Risk Factors [2]

Unfortunately, several of the risk elements are easy to
miscalculate. Many analyses fail to account for all the
uncertainty or understate them. When unknown
ranges are assumed to be zero or ranges are
underestimated, the analysis results in an
unrealistically steep S-curve, as illustrated in Figure
2. Additionally, most methods rely on some level of
subjectivity, causing results to be different from one
assessor to the next and introducing an additional
error source.
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A significant step towards an Agency-wide solution
to these problems was taken with the JPL sponsored
cost risk workshop held in January 2006, This
workshop was attended by key cost risk personnel
from NASA Headquarters, NASA’s Independent
Program Assessment Office (IPAQO), significant
contractors, and JPL.

In preparation, each attendee was requested to
produce an S-curve based on a generalized example
of a project’s budget and risk information. Each
methodology was then discussed, including the
underlying assumptions and the interpretations of the
data provided. The workshop confirmed that the main
differences between the cost risk estimates lie in the
assessments of correlation, probability distribution
functions, and differences in interpretations of budget
and reserve information. Because these assumptions
drive the results of the cost risk analysis, efforts are
being made to develop consistent definitions of terms
and determine the applicability of certain
assumptions based on the type of mission being
evaluated and the level of detail available from the
project at the time of the analysis.

4. Cost Engineering Group Methodology

General Methodology

The Cost Engineering Group at JPL has established a
cost risk analysis approach that includes
consideration of all three elements of risk and
incorporates engineering realism. Cost risk analyses
performed in PMCM allow distributions to be applied
to the technical parameters to capture the uncertainty
of the inputs. The validation of the model against
historical actual cost data incorporates the CER
uncertainty into the analysis; the standard deviations
applied to the distributions on cost are established by
the statistical results of the model validation. The
correlation factors between WBS items are also
accounted for and are based on the observed
interactions between subsystem costs. As more and
more historical cost data points become available,
this methodology is refined to consistently fit the
frends observed in actual costs.

Distributions

To perform the analysis, the CEG uses a log-normal
distribution instead of the more commonly used
triangular distribution. A triangular distribution
requires a low, most likely, and high cost point to
build the distribution around. A log-normal
distribution, on the other hand, only requires a mean

value (which the CEG method assumes to be the
current best estimate) and a standard deviation to
distribute costs around the mean, Thus, using the log-
normal distribution eliminates the problem of
guessing at the highest possible cost for missions that
usually have significant unknown unknowns and that
are using new technologies. This guess at a highest
possible cost will likely be optimistic — it is usually
not truly the highest cost possible, but rather the
highest cost allowed.
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Figure 3 Actual Cost Growth Fits a Log-normal
Distribution

Using a log-normal distribution also coincides with
the historical cost growth of JPL missions, as shown
in Figure 3. The number of projects that have cost
overruns of more than 30% are significantly higher
than those that have grown less than 30%, and the
histogram of these project costs clearly fits a log-
normal distribution. Yet another example is the actual
cost growth of cost accounts within a project. Figure
4 shows the distribution of cost growth from the time
of preliminary budgeting for a specific JPL project to
the final actual cost; this example also fits a log-
normal distribution. The CEG also assumes that the
cost estimate provided is the Current Best Estimate
(CBE) and is considered to be the mean of the log-
normal distribution,
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Figure 4 Cost Growth within a Project Fits a Log-
normal Distribution



Standard Deviations

The standard deviations applied to the log-normal
distribution are perhaps the most difficult element to
standardize from one organization to the next.
However, after tracking actual project costs over the
last ten years, the CEG has studied cost growth data
and uses standard deviation values that match those
seen in reality.

The most compelling study has been the fracking of
project cost growth from the proposed estimate at the
Preliminary Mission and Systems Review (PMSR) or
the Preliminary Design Review (PDR) up through
fiscal year 2005. Thirteen projects were surveyed and
their cost growth recorded (Figure 4). From this
study, it is found that the average cost growth in total
project cost has a standard deviation of 30%.
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Figure 5 Results of JPL Cost Growth Study

The continuous validation of the PMCM model over
the past several years has revealed similar statistics.
In PMCM, each CER is validated against actual cost
data and the uncertainty of the WBS distribution is
set to the standard deviation of the result. From the
findings of these validations shown in Table 2, the
standard deviation is 36%, coinciding with the results
of the cost growth study.

Table 2 PMCM Validation Results

Average Average
Comparison Version Cost Standard
2 Delta * Deviation
Actual Project Total « o o
Costs (1999) PMCM 2 4.7% 35.2%
Actual Spacecraft Costs v o o
(2003) PMCM 2 16.8% 42.5%
Actual Spacecraft Costs 4 b
(2003) PMCM 3 2.1% 31.0%
Average 7.9% 36.2%

During the preliminary validation efforts of NICM,
there also seems to be a trend in the standard

deviations of instrument costs. At this first stage of
analysis, it appears that the deviation for instrument
costs is closer to 50%, rather than the 30% for the
spacecraft system or the total project costs.

In the face of all this evidence, the CEG uses a
standard deviation of 25%-35% for most WBS items,
including the flight system. The payload system is
usually assigned a higher standard variation, around
50%. However, in recognition of the fact that some
WBS items may carry more risk than others, and
projects have a broad range of heritage and risk
factors, the standard deviation may be varied — a
higher standard deviation may be used to capture the
higher cost risk elements and a lower standard
deviation used for those items that are very well
understood.

Correlation

Finally, the correlation factor used in the CEG
methodology to relate a project’s WBS items is 60%.
This relatively high correlation is believed to reflect
the close relation between subsystem designs. Some
previous studies of aerospace industry missions have
shown that a 20% correlation factor may be sufficient
to capture most of the relationships between WBS
items [3]). However, for JPL projects, which are
almost exclusively one-of-a-kind missions, this factor
may be too low. From observations of subsystem
interactions in Team X and other JPL mission design
activities, design changes in just one subsystem may
have large ripple effects through the entire system.
Often times, cost overruns are due to the failure to
account for these effects across the various
subsystems. For the CEG method, using a correlation
factor of 60% is assumed to capture this high reliance
of one subsystem on another more accurately.
Additional research into correlation of space mission
subsystems is on-going at JPL.

Reserve Recommendations

Once a cost risk analysis is complete and the
probability of a project’s estimate is determined, a
recommendation for the amount of reserves
necessary is made to bring the project estimate to a
cost that has a 70% probability of success (Figure 5).
Currently, the 70% probability cost is the
recommended total cost for JPL projects and follows
the guidelines provided in the NASA Cost Estimating
Handbook [4]. A 70% probability is also assumed to -
account for possible unknown unknowns that cannot
be captured in the analysis.
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Figure 6 Example of Reserve Allocation Based on Cost
Risk Result

Using the cost risk analysis as the basis for reserve
allocations has the potential to improve on the current
practice of assuming a flat reserve percentage over
the project’s life cycle. Another outcome of the cost
growth study discussed earlier is that there does not
appear to be a strong correlation between the
proposed reserve percentage and the final project cost
overrun. As seen in Figure 6, projects that propose
25% cost reserves may overrun just as much as
projects that propose 10% cost reserves. Instead of a
flat percentage requirement, which will not solve this
disconnect, reserve levels should be based on the
amount of risk associated with a project. The ability
to characterize absolute cost risk will allow us to
calculate a non-arbitrary cost reserve.
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Figure 7 Cost Growth Trend

5. Futu're Work

The subject of cost risk analysis is only just now
being studied in detail — there is still a large amount
of work to be done to refine the methodologies. For
the CEG, producing further statistics on the growth
and uncertainty of input parameters, based on
historical technical data, would be of significant
importance. Developing a better understanding of the
actual historic growth of these parameters would add
even more fidelity to the CEG cost risk methodology.

This task would be supported by two main sources of
data: the actual technical and cost data at the time of
a JPL mission’s completion, and the Project Cost
Analysis Data Requirement (CADRe)' which is
specifically designed to track technical and cost data
over the project’s life cycle.

A further study of WBS correlations specific to JPL
projects is also needed. This effort would be started
by determining general correlations between Level 1
WBS items such as Project Management, Systems
Engineering, Flight System, etc. Developing
correlations at the subsystem level within the flight
system would also be beneficial. For this task, the
Team X database would provide a wealth of data —
most of the studies performed by Team X consider
specific subsystem design trades and capture the
technical and cost deltas for each trade. These deltas
will allow us to observe the ripple effects between
subsystems as well as between higher level elements
like the flight system, project management, etc. With
a better understanding of how correlation between
WBS items really operates, the CEG cost risk
methodology will become more accurate.

6. Conclusion

A major step toward developing industry standards
and definitions regarding cost risk analyses is to
understand the various methodologies used and the
assumptions associated with them. Here, we have
presented the JPL CEG methodology, a defensible
technique that is rooted in engineering realism. It is
specifically tailored to JPL missions for maximum
accuracy of analyzing cost risk for one-of-a-kind
space missions.

This methodology is continuously refined based on
actual historical cost data and observations of the
numerous trade studies performed by JPL. The future
work regarding correlation and technical inputs
would add even more fidelity to the technique,
improving the quality of cost estimates presented to
decision makers.
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Introduction

o Why are we interested in cost risk
analysis?
m Decision makers want to know the likelihood of
achieving a particular cost estimate

m Single point cost estimates fail to capture
uncertainty in the estimate and cannot provide
proper context for comparison to other
estimates

o The methodology needs to be well
understood and justifiable in order to

generate an S-curve that reflects reality

JpL :



History ot Cost Risk Analysis in CEG

o Parametric Mission Cost Model (PMCM)
m Developed in 1998, Cost Risk capability in 2003
m Distributions placed on technical inputs and cost outputs

O NASA Instrument Cost Model (NICM)
m In development, preliminary validation results

O Analysis of grassroots estimates using @Risk

Project Name Date of Support
Discovery 2006 Proposals March 2006
Aquarius PDR June 2005
SIM Re-design May 2005
Phoenix PDR April 2005
Prometheus April 2005
Juno PDR February 2005
Discovery 2004 Proposals June 2004
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Understanding the Problem

O Model uncertainty
m Result of CER uncertainty

m Accounted for by using validation statistics as
a basis for standard deviations

O Technical risk or input uncertainty

m Result of technical unknowns regarding
changes in mass, power, etc. which have an
effect on cost growth

O Correlation between WBS elements

m An increase in cost of one element will likely
be tied to the increase in cost of another
element

JPL



Convolution of Cost Risk Elements

CER Results — A Cost Probability Distribution
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A Step in the Right Direction

o Communication!

O JPL sponsored Cost Risk Workshop held in Jan.
2006

m Each attendee was asked to generate an S-curve for a
generalized example of a project’s budget and risk
information

m Each methodology was presented and discussed

O The main differences between the cost risk
estimates lie in assumptions regarding:
m Correlation
m Probability distribution functions
m Interpretation of budget and reserve information

JPL



CEG Methodology - Distributions

O CEG uses log-normal distributions
= Eliminates problem of guessing at highest possible cost
m Fits historical cost growth of JPL missions
= Assumes point estimate is the mean of distribution

' Cost Growth of JPL Missions Cost Growth within a JPL Project
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CEG Methodology — Standard Deviation

% Cost Growth

o Cost Growth Study

= 13 projects tracked from
proposed cost at PMSR
or PDR to costs at 2005
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o PMCM Validation

Average Average
Comparison Version Cost Standard
Delta Deviation
Actual Project . .
Total Costs (1999) | TMEM2 | 4.7% 35.2%
Actual Spacecraft . )
Costs (2003) PMCM2 | 16.8% 42.5%
Actual Spacecraft . |
Costs (2003) PMCM 3 2.1% 31.0%
Average 7.9%, 36.2%
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CEG Methodology - Correlation

o CEG uses correlation factor of 60%
m S. Book study recommends using at least 20%

o JPL missions are one-of-a-kind space
missions that have subsystems with high
dependence on one another

O Cost overruns of JPL missions are often
due to failure to account for ripple effects
between subsystems resulting from design
changes |

O A higher correlation is appropriate for the
JPL method

JPL N
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CEG Methodology Reserves
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Future Work

O Better statistics on growth and uncertainty of
technical input parameters
m Study the growth of actual historical technical data
m Use actual data from completed JPL missions
m Use CADRe to track growth over a project’s life cycle

O Correlation statistics

m Develop correlation matrix of Level 1 WBS elements
(Project Mgmt, Systems Eng, etc.) specific to JPL
missions

m Use Team X data to derive how element costs are
affected due to changes in a specific subsystems

JPL
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