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ABSTRACT 

In recent years, there has been an increased desire to perform cost risk analyses on space 
exploration mission cost estimates presented for management review. Single point cost 
estimates are of limited value since they fail to capture uncertainty in the estimate and, in 
so doing, cannot provide proper context for comparison to other estimates. This 
uncertainty is important to capture, especially for cost estimates of complex space 
missions early in the project planning phase. There are many unknowns with high 
variances that must be captured in the estimation process (i.e., impacts of new 
technologies, the impact of unknown unknowns, etc.). Therefore, a cost risk assessment 
should include a range of likely costs with the probability of achieving that range. 

Typically, this cost risk is best portrayed by a cumulative density hnction (CDF), or an 
S-curve, that illustrates the likelihood of achieving a particular cost. This S-curve should 
make engineering sense and provide realistic input to decision makers. By employing 
methodologies that are based on actual project cost data, the credibility of the analyses 
increases and decision makers will have better information upon which to make their 
assessments. 

The hndarnental problem associated with cost risk analysis is the accurate evaluation of 
three main elements that contribute to cost risk: uncertainty in cost estimation algorithms 
(model uncertainty), uncertainty in the inputs to the algorithms (technical risk), and the 
correlation between WBS elements. All three of these elements are important when 
adding distributions through simulation. Without proper representation of these factors, 
the resulting S-curve will understate the estimate uncertainty and, accordingly, understate 
the risk of overrunning the evaluated project's budget. 

This paper discusses the JPL Cost Engineering Group (CEG) cost risk analysis approach 
that accounts for all three types of cost risk. It will also describe the evaluation of 
historical cost data upon which this method is based. This investigation is essential in 
developing a method that is rooted in engineering realism and produces credible, 
defendable results to aid decision makers. 
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1. Introduction 
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In recent years, there has been an increased desire to 
perform cost risk analyses on space exploration 
mission cost estimates presented for management 
review. Single point cost estimates are of limited 
value since they fail to capture uncertainty in the 
estimate and, in so doing, cannot provide proper 
context for comparison to other estimates. This 
uncertainty is important to capture, especially for cost 
estimates of complex space missions early in the 
project planning phase. There are many unknowns 
with high variances that must be captured in the 
estimation process (i.e., impacts of new technologies, 
the impact of unknown unknowns, etc.). Therefore, a 
cost risk assessment should include a range of likely 
costs with the probability of achieving that range. 
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Typically, this cost risk is best portrayed by a 
cumulative density hnction (CDF), or an S-curve, 
that illustrates the likelihood of achieving a particular 
cost. This S-curve should make engineering sense 
and provide realistic input to decision makers. By 
employing methodologies that are based on actual 
project cost data, the credibility of the analyses 
increases and decision makers will have better 
information upon which to make their assessments. 

This paper discusses the JPL Cost Engineering Group 
(CEG) cost risk analysis approach in detail and 
describes the evaluation of historical cost data upon 
which this method is based. This investigation is 
essential in developing a method that is rooted in 

engineering realism and produces credible, 
defendable results to aid decision makers. 

2. History of Cost Risk Analysis in the CEG 
The Cost Engineering Group resides in JPL's 
Mission System Concepts Section and its charter 
includes performing engineering cost trades and life 
cycle cost analyses for proposed JPL missions. Cost 
risk analysis became a standard task in the Cost 
Engineering Group with the addition of the Monte 
Carlo capability in the group's Parametric Mission 
Cost Model (PMCM). 

PMCM is a total mission cost model that has been in 
use since 1998 and has included cost risk capability 
since 2003. The model is a h l l  project estimation 
tool, with costs estimated at the subsystem level and 
then aggregated along a standard WBS. It has been 
verified to accurately estimate project costs using 
actual data fiom recent JPL missions. While PMCM 
has a built in Monte Carlo capability to perform a 
cost risk analysis on the parametrically generated cost 
estimate, the CEG also performs analyses on 
grassroots estimates using the @Risk software 
package to run the Monte Carlo simulation. 

Another JPL model that incorporates cost risk 
capabilities is the NASA Instrument Cost Model 
(NICM). This model is currently in development and 
is earmarked for wider use throughout the Space 
Agency. It is based on about 70 NASA observational 
instruments launched since 1985. NICM estimates at 
the subsystem level, then aggregates to a total 
instrument cost through a standard WBS. Once 
development is completed, NICM will be integrated 
into PMCM for the instrument portion of the mission 
WBS. 

The Cost Engineering Group has supported many 
project and proposal reviews by providing 
independent cost estimates and cost risk analyses. 
Table 1 describes just some of the cost risk analyses 
recently performed. 



Table i C W  Caul Rbk Analplr Suppolr 

In addition, a large part of the work prrformed by the 
CEG is to support JPL's A d m d  Projects Design 
Team (Team X) and aaher study development 
activities. The S-curves genemted from a cost risk 
analysis can be used to support the sensitivity or trade 
studies perfimned during these design activities. 

3. Understanding the Problem 
The fundamental problem associated with cost risk 
analysis is the accurate evaluation of k c c  main 
elements that cmlribute to cost risk: uncertainty in 
cost estimation algorithms (model uncertainty), 
uncertainty in h e  inputs to the algorithms (technical 
risk), and the correlation between WBS clemmts [I]. 
All three of these elements are important when 
adding distributions through simulation, Without 
proper repmentation of these factors, the resulting S- 
curve will understate the estimate uncertainty and, 
accordingly, understate the risk of ovemmning the 
evaluated project's budget. 

Model uncertainty is a result of the imprecision 
inherent in the a t  atimating relationships (CERs). 
CERs are usually hsed an relationships derived from 
general mt depndwce on input parameters such as 
mass, power, heritage, schedule, etc. While the CERa 
are validated against actual cast data, they will 
always have some mount of uncertainty that needs 
to be reflected in the cast risk analysis. 

The technical inputs associated with cost algorithms 
or the technical risks associated with a grassroots 
estimate have their own uncertainty which has a 
significant impact on the likelihood of achieving the 
pr+ mt estimate. The uncertainty of technical 
inputs is usually very indicative of the associated 
uncertainty of the cost estimate. A project proposing 
the use of new, untested designs will have more 
h o w n s  regarding the possible growth of mass, 
power, and other technical pmmeters u p  which 
the bel ine estimate is hsed. With a greater 
uncertainty of the inputs, a larger range of cost 
probabilities is expected. 

Finally, it is generally a g m d  that there is some level 
of correlation between WBS elements and it must be 
acamted for in any justifiable cost risk analysis. 
Understating the correlation behveen WBS items 
may result in the cost risk analy3is failing to accmt 
for possible ripple effects caused by an increase in a 
subsystem cost estimate. 

As can be seen in Figure 1, the convolution of all the 
risk elements leads to an accurate cost estimate 
probability distributim. However, if all three 
elements are not accounted for, the correct 
probability distribution will be understated. 
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Unfortunately, several of the risk elements are easy to 
miscalculate. Many analyses hi1 to a m t  for all h e  
uncemhty or understate them When unlmown 
mges are assumed to be zero m rauges are 
underestimated, the analysis results in an 
unrealistically steep S-curve, as illustrated in Figure 
2. Additionally, most methods rely on some level of 
subjectivity, causing results to be different from one 
assessor to the next and introducing an additional 
error source. 
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Figurt 2 Comparison of S-Curve Slopm 



A significant step towards an Agency-wide solution 
to these problems was hkem with the JPL sponsored 
cost risk workshop held in January 2006. This 
workshop was attended by key cost risk personnel 
fiom NASA H e a m  NASA's hhpndent 
Program Assessment Office (IFAO), signifiwt 
contract- and IPL. 

In preparation, each attendee was requested to 
produce an S-curve based on a generalized example 
of a project's budget and risk information. Each 
methdology was then discussed, including the 
underlying assumptions and the interpretations of the 
data provided. The workshop confumed that the main 
differences between the cost risk estimates lie in the 
assessments of correlation, probability distribution 
functions, and differences in interpretations of budget 
and reserve information. Because these assumptions 
drive the results of the cost risk analysis, efforts are 
being made to develop consistent definitions of t m s  
and determine h e  applicability of certain 
assumptions based on the type of mission being 
evaluated and the level of detail available h n  the 
project at the time of the analysis. 

value (which the CEG method assumes to be the 
current best estimate) and a standard deviation to 
distribute oosts a r m d  the mean. Thus, using the log- 
normal distribution eliminates the problem of 
guessing at the highest psibie c a t  for missions that 
usually have signifiwt unkam unknowns and that 
are using new technologies. This guess at a highest 
possible cost will likely be optimistic - it is usually 
not truly the highest cost possible, but rather the 
highest cost allowed. 

Figure 3 Actual Cost Growth Fits a Log-normal 
Diraibution 

4. Cost Engineering Group Methodology 

Genemi Methodology 

The Cost Engineering Group at JPL has established a 
cost risk analysis appraach that includes 
consideration of all three elements of risk and 
incorporates engineering realism Cost risk analyses 
p e r f o r d  in PMCM allow distributions to be applied 
to the technical pmmters to capture the uncertainty 
of the inputs. The validation of the model against 
historical actual cost data inmporatts the CER 
uncertainty into the analysis; the staudard deviations 
applied to the distributions on cost are esablished by 
the statistical results of the mdel  validation. The 
correlation factors between WBS items are also 
accounted for and are t a d  on the observed 
intecactim between subsystem casts. As more and 
more historical m t  data points become available, 
this methodology is refined to consistently fit the 
€rends observed in actual costs. 

Distributions 

To perform the analysis, the CEG uses a log-n-1 
dis~bution instead of the more cmmmnly used 
triangular distribution. A Wgular distniution 
requires a low, most likely, and high cost point to 
buiM the distribution around. A log-normal 
distribution, on the other hand, only requires a mean 

Using a log-normal distribution also coincides with 
the historical cost growth of JPL missions, as shown 
in Figure 3. The number of projects that have a t  
overruns of more than 30% are significantly higher 
than those that have grown less than 30°%, and the 
histogam of these project c a t s  clearly fits a log- 
normal distribution. Yet another cxamplc is the actual 
cwt growth of cost accounts within a project. Figure 
4 shows the distribution of cost growth from the time 
of preliminary budgeting for a specific JPL project to 
the final actual cost; this example also fits a log- 
normal distribution. The CEG also assumes that the 
cost estimate provided is the Current Best Estimate 
(CBE) and is considered to be the mean of the log- 
normal distribution. 

Pigun? 4 Cost Growth within a Project Flts a Log- 
normal Dlstributtm 



Standard Deviations 

The standard deviations applied to the log-normil 
distribution arc pcrhaps the most difficult element to 
standardize earn m e  mgmhtion to the next. 
However, after tracking actual project costs over the 
last ten years, the CEG has studied cost growth data 
and uses staudard deviation values that match those 
seen in reality. 

The most compelling study has been the iracking of 
project m t  growth from the proposed estimate at the 
Preliminary Mission and Systems Review (PMSR) or 
the Preliminary Design Review (PDR) up through 
fiscal year 2005. Thirteen projects were surveyed and 
their cost growth recorded (Figure 4). From this 
study, it is found that the average mt growth in total 
project cost has a standard deviation of 30%. 
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Figure 5 b u l b  d J P L  Cwt Growth Study 

The continuous validation of the PMCM model over 
the past several years has revealed similar stahtics. 
In PMCM, e9ch CER is validated against actual cost 
data and the uncmainty of the WBS distribution is  
set to the standard deviation of the result. From the 
findings of thcse validations shown in Table 2, the 
standard deviation is 36%, coinciding with the results 
of the cost growth study. 

Table 2 PMCM Validation Resub 

During the preliminary validation efforts of NICM, 
there also seems to be a trend in the standard 

deviations of instrument costs. At this first stage of 
analysis, it appears that the deviation for instrument 
costs is closer to SO%, rather than the 30% for the 
spacecraft system or the total project costs. 

In the hce of all this evidence, the CEG uses a 
s ~ ~ d  deviation of 25%-35% for most WBS items, 
includq the flight system. The payload system is 
usually assigned a higher standard variation, around 
50%. However, in recbgnitim of the fact that smne 
WBS items may carry more risk than other$ and 
projects have a broad rauge of heritage and risk 
factm, the standard deviation my Ix varied - a 
higher standard deviation may be used to capture the 
higher cost risk elements and a lower standard 
deviation used for t h e  items that are very well 
understood. 

Finally, the c m i a t i m  factor used in the CEG 
methodology to relate a project's WBS items is Wk. 
This' relatively high correlation is believed to reflect 
the close relation between subsystem daigns. Some 
previous studies of aerqacc  industq missions have 
shown that a 20% correlation factor m y  h sufficient 
to capture most of the relationships between WBS 
items [3]. However, for JPL projects, which are 
almost exclusively one-of-a-kind missions, this factor 
may be too low. From observations of subsystem 
interactims in Team X and other IPL mission &sign 
activities, design changes in just one subsystem may 
have iarge ripple effects through the entire system. 
Ohen times, cost overruns are due to the failure to 
aooount for these effects across the various 
subsystems. For the CEG method, using a correlation 
factor of 6#?h is assumed to capture this high relianct 
of one subsystem on another more accuxately. 
Additional research into correlation of spce mission 
subsystems is on-going at JPL. 

Reserve Recommendations 

Once a cost risk analysis is complete and the 
probability of a project's estimate is detemhed, a 
recommendation fm the amount of reserves 
necessary is made to bring the project estimate to a 
cost that has a 70% probability of success (Figure 5). 
Currentiy, the 70% probability cost is the 
recommended total a t  for JPL projects and follows 
the guidelines provided in the NASA Cost Estimating 
Handbook (41. A 70% probability is also assumed to 
account for possible unknown mkuowns that cannot 
be captured in the analysis. 



Figure 6 Example of Reserve Allocation b e d  on Cast 
Risk Resut 

Using the cost risk analysis as the basis for reserve 
allocations has the potential to improve on the current 
practice of assuming a flat reswve percentage over 
the project's life cycle. Another outcome of the cost 
growth study discussed earlier is that there does not 
appear to be a strong correlation between the 
proposed reserve percentage and the hal project cost 
overrun. As seen in Figure 6, projects that propose 
25% cast reserves may overmn just as much as 
projects that propose 10% cost reserves. Instead of a 
flat percentage requirement, which will not solve this 
disconnect, reserve levels should be based on the 
amount of risk assmiated with a proj~t. The ability 
to characterize aholute cast risk will allow us to 
calculate a non-arbitrary cost reserve. 

Figure 7 Cost Growth Trend 

5, Fature Work 
The subject of cost risk analysis is only just  now 
being studied in detail - there is still a large amount 
of work to be done to refine the methadologits. For 
the CEG, -cing further statistics on the growth 
and uncertainty of input parameters, based on 
historid technical data, would be of significant 
importauce. Developing n better understanding of the 
actual historic growth of t h e  pammtm would add 
even more fidelity to the CEG cost risk methodology. 

This task wwld be supported by two main sources of 
data: the achral technical and cost data at the time of 
a JPL mission's completion, and the Project Cost 
Analysis Data Requirement (CAD&)' which is 
specifically designed to track technical and cost data 
over the project's life cycle. 

A M e r  study of W S  correlations specific to P L  
projects is also needed. This effort would be started 
by determining general correlations between Level 1 
WBS items such as Fhjcct Management, Systems 
Engineering, Flight System, etc. Developing 
correlations at the subsystem level within the flight 
system would also be beneficial. For this task, the 
Team X datahse would provide a wealth of data - 
most of the studies performed by Team X consider 
specific subsystem design trades and capture the 
technical and cost deltas for each trade. These deltas 
will allow us to observe the ripple effects between 
subsystems as well as lxtween higher level elements 
like the flight system, project management, etc. With 
a better understandmg of how correlation between 
WBS items really operates, the CEG cost risk 
methodology will become more accurate. 

6. Conclusion 
A major step toward developing industry standards 
and definitions regarding cost risk analyses is to 
understaud the various methodologies used and the 
assumptims associahi with them. Here, we have 
presented the JPL CEG methodology, a defensible 
technique that is rooted in engineering realism It is 
specifically tailored to JPL missions for maximum 
accuracy of analyzing cost risk for me-of-a-kind 
space missions. 

This methodology is continuously refined based on 
actual historical cost data and ohervatims of the 
numerous trade studies performed by JPL. The future 
work regarding correlation and technical inputs 
would add even more fidelity to the technique, 
improving h e  quality of cost estimates presented to 
decision makers. 
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Introduction 

Why are we interested in cost risk 
analysis? 

Decision makers want to know the likelihood of 
achieving a particular cost estimate 
Single point cost estimates fail to capture 
uncertainty in the estimate and cannot provide 
proper context for comparison to other 
estimates 

The methodology needs to be well 
understood and justifiable in order to  
generate an S-curve that reflects reality 

JPL 



Histon. of Cost Rsk Analvsis in CEG 
Parametric Mission Cost Model (PMCM) 

Developed in 1998, Cost Risk capability in 2003 
Distributions placed on technical inputs and cost outputs 

NASA Instrument Cost Model (NICM) 
I n  development, preliminary validation results 

Analysis of grassroots estimates using @Risk 

Project Name 

Discovery 2006 Proposals 

Aquarius PDR 

SIM Re-design 

Phoenix PDR 

Prometheus 

Juno PDR 

Discovery 2004 Proposals 

Date of Support 

March 2006 

June 2005 

May 2005 

April 2005 

April 2005 

February 2005 

June 2004 



Understanding the Problem 

Model uncertainty 
Result of CER uncertainty 
Accounted for by using validation statistics as 
a basis for standard deviations 

Technical risk or input uncertainty 
Result of technical unknowns regarding 
changes in mass, power, etc. which have an 
effect on cost growth 

Correlation between WBS elements 
An increase in cost of one element will likely 
be tied to the increase in cost of another 
element 

JPL 



Convolution of Cost Risk Elements 

Cost 
Estimate 

\ 

CER Results - A Cost Probability Distribution 

Cost = a+bF 

1 ,- 
Tech 

Historical data point 

- Cost estimating relationship 

= m D m m  Standard percent error bounds 

d 

I I I I 
1 I 

t Cost Driver (Weight) 

Input 
Variable 

NASA CEH pg. 158 



A Step in the Rght Direction 

Communication! 
JPL sponsored Cost Risk Workshop held in Jan. 
2006 

Each attendee was asked to generate an S-curve for 
generalized example of a project's budget and risk 
information 
Each methodology was presented and discussed 

The main differences between the cost risk 
estimates lie in assumptions regarding: 

Correlation 
Probability distribution functions 
Interpretation of budget and reserve information 



CEG Methodology - Distributions 

CEG uses log-normal distributions 
Eliminates problem of guessing a t  highest possible cost 
Fits historical cost growth of JPL missions 

w Assumes point estimate is the mean of distribution 

I Cost Growth of JPL Missions I I Cost Growth within a 3PL Project I 



CEG Methodology - Standard Deviation 

Cost Growth Study 
13 projects tracked from 
proposed cost at PMSR 
or PDR to costs a t  2005 

0% 
$OM $ZOOM $400M $800M $800M $1000M 

Original Expected Cost ($M) 

PMCM Validation 



CEG Methodology - Correlation 

CEG uses correlation factor of 60% 
R S. Book study recommends using a t  least 20% 

JPL missions are one-of-a-kind space 
missions that have subsystems with high 
dependence on one another 
Cost overruns of JPL missions are often 
due to, failure to account for ripple effects 
between subsystems resulting from design 
changes 
A higher correlation is appropriate for the 
JPL method 



CEG Methodology - Reserves 
100% 

Reserves are 
recommended to bring 
estimate to a 70% 
probability of success 

Guideline provided in 
NASA Cost Estimating 
Handbook (pg. 93) 
Accounts for possible 

, , , -- *d~-- - .I - . , 

Level 

unknowns unknowns $400M $500M $600M $700M $BOOM $900M $1,000M 

Total Project Cost (RY$M) 

140% 

, 10% 15% 

Original Reserve % 

Flat reserve percentages 
do not provide an 
adequate reserve 
philosophy - reserves 
should be based on cost 
risk analysis 



Future Work 

Better statistics on growth and uncertainty of 
technical input parameters 

Study the growth of actual historical technical data 
Use actual data from completed JPL missions 
Use CADRe to track growth over a project's life cycle 

Correlation statistics 
Develop correlation matrix of Level 1 WBS elements 
(Project Mgmt, Systems Eng, etc.) specific t o  JPL 
missions 
Use Team X data to  derive how element costs are 
affected due to changes in a specific subsystems 




