Cosmic Star-formation from $0.5 < z < 20$
with Spitzer

Ranga-Ram Chary
Spitzer Science Center
rchary@caltech.edu

May-June 2006 Crete Meeting
MIPS 24μm are insensitive beyond z~3

ISO CAM HDF-N depth of 0.1 mJy vs MIPS GTO (~80μJy)/GOODS (~20μJy)
Use IRAC emission line diagnostics

May-June 2006
Crete Meeting
1 hour of IRAC integration + $\times 4.5$ lensing

- $z=6.56$ Ly-α emitter called HCM6A lensed by Abell 370
- Discovered by Hu et al. 2002
SED of HCM6A

Difference is from Hα in emission.

UV SFR < 10 M☉/yr
Hα SFR ~ 100 M☉/yr

Indirect evidence for Aᵥ ~ 1 mag of dust

Hα EW ~ 0.2μm

May-June 2006 Crete Meeting
GOODS 25 hr depth HAEs:
z>5 is pushing limits of current technology

• 66 z>5 sources in GOODS-N and GOODS-S. Extensive spectroscopy from ESO/VLT (Eros Vanzella et al.) and Keck (Daniel Stern et al.)
• 33 are Spitzer detections at either 3.6μm or 4.5μm or both
• 5/33 (i.e. 15±7%) appear to have 4.5μm/3.6μm flux ratios consistent with HAEs
Comparison between IRAC colors of $z > 5$ sources

Sloan QSO
Vanden Berk et al.

Old Stellar Pop.

R-J tail for young Stellar Pop.

May-June 2006
Crete Meeting
Colors of an evolving stellar population

May-June 2006
Crete Meeting
Deep Spitzer Observations Enable Extending ISOCAM’s work to \(z \sim 3 \) and fainter down the IR Luminosity Function.

Overestimates? Or a hot dust component which may not be traced by SCUBA?

Need more spec-z

May-June 2006
Redshift distribution of $z > 1.5$ Sources

May-June 2006
Stern/McDonald/Dickinson at Keck to get more
24 μm bright LBGs are all drawn from the “red half” of the distribution of UV continuum slopes (and hence of inferred extinction)

May-June 2006

Crete Meeting
Comparing UV and IR Luminosity Density: LBOL/LUV@1.5<z<3.0

"IRX-β" diagram (as per Meurer et al. 1999)

L_{IR}/L_{UV}(corr.) ~ 1 for many objects at L_{IR} < 10^{12.5} L_{\odot}, but >>1 at higher L_{IR}
Specific SFRs vs. stellar mass

- Objects with high 24mu SFRs tend to be among the more massive galaxies

- Similar results seen for ISOCAM at z~1

- Does the infrared luminous phase of galaxy evolution only occur in massive galaxies? Needs to last shorter than 100MYr to avoid overestimating the mass.

- Or is there a selection effect?
• 20 very hard X-ray sources at $z>1.5$ of which $\sim 60\%$ are radio detected.

• Gamma values suggestive of strong AGN activity irrespective of radio detection.

• Radio-LIR trend is higher than seen in the local Universe indicating AGN contribution to radio flux.

May-June 2006
Radio-LIR Correlation?
$Z>1.5$ very difficult to use radio as a SF tracer

Radio-loud AGN?

Radio-FIR correlation from local Universe

Seems to be an AGN contribution of $\sim 30\%$ to the LBol

Glenn Morrison leading reduction of radio data
Conclusions

- Finding strong Hα emitters with large equivalent widths. Probably due to a very young stellar population and NOT an AGN.
- Hα/UV ratio indicate modest amounts of extinction (A_V>0.2 mag) in about 15% of objects which would boost ionizing flux by a factor of 2 (need to find more to account for re-ionization).
- HCM6A is the strongest Hα emitter ⇒ A_V~1 mag
- Origin of dust is unclear - SNe or first generation of stars forming at z>10?

May-June 2006
Crete Meeting
Equivalent Width Evolution with Time

Fig. 43.—Equivalent width of Hα vs. time for an instantaneous burst. Parameters as in Fig. 1.

Fig. 44.—Equivalent width of Hα vs. time for a continuous star-formation rate. Parameters as in Fig. 2.

Leitherer & Heckman 1995

May-June 2006 Crete Meeting