
Auto-coding UML Statecharts for Flight Software

Ed Benowitz, Ken Clark, Garth Watney
Jet Propulsion Laboratory

{Edward.Benowitz, Ken.Clark, Garth. Wat~tey)@jpl.nasa.gov

Abstract
Statecharts have been used as a tneatls to

conzmunicate behaviors in a precise nzatltler between
system engineers and s o ~ a r e engitleers. Hand-
translating a statechart to code, as done on sotne
previous space missions, introduces the possibility of
errors in the transformation fron~ chart to code. To
itrlprove auto-coding, we have developed a process
that generates flight code from UML statecharts. Our
process is being used for the jligl~t software on the
Space Interferometer Missiotz (SIM).

1. Introduction

Designs are often specified, formally or informally,
as hierarchical statecharts. As space missions become
more complex, the software compIexity must be
communicated both within a software engineering
team, and between software and system engineers. In a
rapid tlight software development environment, it
would be desirable to move from statechart to code
with as few translation errors as possible. The goal of
this work is to automate the translation of statecharts to
flight code. Our goal is not to change all flight code
into a statechart. Rather, our goal is to take as input
existing requirements and designs already expressible
as statecharts. Those statecharts are drawn in a Unified
Modeling Language (UML) 151 graphical design tool.
Then our auto-coder tool transforms a UML statechart
to working tlight code. The generated code works with
the Quantum Framework [3], a reusable statechart
library.

2. Prior Work

2.1. Deep Space 1

The Deep Space 1 (DS1) [I] mission was the first
JPL mission to use auto-coding with statecharts. For
this mission, auto-coding was used for the fault
protection subsystem only. Statecharts were drawn in

Stateflow for MatLab [4]. Stateflow's internal auto-
coder was used to generate code. The auto-generated
code was then post-processed into flight code,
compliant with the flight software design team's coding
style and constraints. The team reported an overall
positive experience with auto-coding, but highlighted
the importance of open code generation algorithms.

2.1. Deep Impact

Like the Deep Space 1 mission, Deep Impact (DI)
[2] used Stateflow as a drawing and simulation tool.
Flight code was automatically generated for both fault
protection monitors and responses. Deep Impact used
an updated version of StateFlow, which was
incompatible with the file format version used on DS 1.
Additionally, DI was written in C++, and had different
requirements for auto-coder output. The DI team wrote
a new postprocessor as a series of M4 scripts. This tool
post-processed the code generated by StateFlow into
flight C++ code. In addition, spreadsheet tables were
used as a part of the auto-coding process.

3. STAARs Process Overview

The auto-coding of UML statecharts fits into a
larger software development and verification process at
JPL called STAARS (STate-based Architecture and
Auto-coding for Real-time Systems). STAARS is a
process that loosely combines 5 software tools for the
purpose of building rapid executable and verifiable
models that can be implemented directly into the
application software. Each of these software tools is
light-weight and dedicated to a specific task. This
provides flexibility not permitted under the large all-
purpose commercial modeling tools. Each of these
software tools can be swapped in and out or modified
to fit the needs of a specific project. The learning
curve is low and the cost minimal. The tools of the
STAARS process are:

P UML Modeling. The process starts with a drawing
tool that supports the UML statechart
specifications. The only requirement on the
drawing tool is that the output model be saved as
an XMI file. Any statechart drawing tool that
meets this requirement may be used in this process.

> State-based franzework. A good state-based
software framework is essential to this whole
process, providing a library of code to support the
execution and representation of statecharts within
C or C++. The framework we have selected is the
Quantum Framework developed by Miro Samek
[3]. This framework allows for an easy
transformation from the UML statechart diagrams
into code. The framework and design patterns are
clean, efficient, and are designed with real-time
embedded applications in mind.

> Autocoding. Our auto-coder is a light weight tool
that provides the automation of what would
otherwise be a manual effort of converting
statechart diagrams directly into code.

k Test harness. This tool provides a method to
execute the state machine model. It consists of a
few python scripts that allow the user to execute
the model in a GUI. The user generates events
with the click of a button, and graphically sees
states and transition changes.

P Model checking. The Autocoder tool will soon be
augmented to output verification models in the
Promela language. Promela is the input language
to a powerful model-checker called SPIN. This
tool will give the user the capability to
exhaustively check for various correctness
properties in the model.

> Weight - Light, Medium or Heavy weight. Is the
tool quick and easy to install? Quick and easy to
start up? Small learning curve. Does not require
a great amount of resources in time or resources to
learn and use?

P Cost - The tool should be moderately priced, or
possibly free if it is open source.

P User interface - Is the tool easy to use? Does it
have good drawing capabilities?

P UML support - Does the tool support most of the
UML diagrams we are interested in? (Class, State,
and Sequence diagrams.. .)

> Export XML - Does the tool export the UML
diagrams in XML - particularly XMI [8] which is
defined by the Object Modeling Group.

> Presentable - Does the tool produce good looking
drawings that can be used for presentations'? Cut
and past into Powerpoint and Word documents?
Large fonts, color coded etc?

> Cross reference between diagrams - Can an
interaction diagram be setup from a class diagram?

> Product Support - How will questions get
answered, problems fixed, and product
maintained?
In parallel with the UML tool trade study, a

prototype state chart auto-coder tool was created in
August 2004, reading simple XML state charts created
by one of the candidate UML tools. The relative ease
with which an auto-coder tool could be created, using
as input the XMI state chart representation, convinced
the SIM RTC project to undertake the development of
a NASA Class B (mission critical) version of the state
chart auto-coder in November 2004.

4. Drawing Tools

In support of the STAARS process, a trade study
was conducted in the summer of 2004 to select a UML
drawing tool to be used for the SIM RTC Flight
Software design and development. The SIM RTC
project desired a common tool that couId be used, both
by the Flight Software and Control Algorithm
development teams, to document the complex behavior
of the SIM RTC system via State and Sequence
diagrams. In addition, the flight software development
team wanted to use the tool to design and document the
flight software's C++ class structure, and possibly to
generate a standard XMI input format for a flight
software auto-coding tool.

The following criteria were evaluated as part of the
UML tool trade study:

Drawing from the lessons learned of DI and DS1, it
was important for SIM that we have complete control
over the auto-coding process. We developed our own
auto-coder, consisting of 3 parts: a parser stage, which
reads an input file, an internal model representation,
and a code generator. The parser to be swapped out,
allowing us to accommodate different drawing tools.
Additionally, we provide multiple back ends for code
generation, outputting both C and C++.

5.1. Auto-coder Inputs

The inputs to the state chart auto-coder are XML
files containing XMI [8], the standard meta-data
representation of UML state charts. A primary goal of
using a UML tool as part of our software development

process was to use a non-proprietary XML state chart
representation based upon an open standard.

XML provides several advantages for us an input
format. It is human readable as a text file, and many
free parsers exist for XML on a variety of platforms.
As our auto-coder is implemented in Java, we use the
standard parsers that come with the Java development
kit. An XML document consists of elements and
attributes. Ordering and restrictions on these XML
elements is typically provided by a custom schema for
each application domain. XMI provides constraints on
XML files, and provides a meta-model for describing
UML within XML.

During the development of the state chart auto-
coder, a recurring issue was the "moving target" nature
of the representation of state charts in XMI. Over the
course of developing the auto-coder, a new version of
XMI (from v1.2 to v2.1) was adopted by our chosen
UML tool vendor, resulting in a new version of the
UML tool and a significant change to the state chart
representation in our XML input files. This forced a
redesign of the front end of the auto-coder. both to
support the new representation, and to try and better
accommodate future XMI changes.

Our current assessment is that the XMI
representations output by UML drawing tools, while
maturing, are not yet in a final form. Future updates to
both the UML and XMI specifications could force
changes to the front end (input processing) component
of the auto-coder. While the state machine model
descriptions within XML appear stable between tools,
diagram layout was not interchangeable between tools.
MagicDraw, for example, uses its own custom XMI
extensions to represent diagram geometry.

The UML Diagram Interchange [7] is intended to
remedy this situation. Unfortunately, adoption of this
standard is mixed among UML tools. The authors of
[9] discuss several issues with the XMI representation.
We agree with their claim that the many UML and
XMI versions make adoption and interchange of UML
diagrams between tools less than ideal. They surveyed
8 UML tools and found that only 2 supported diagram
interchange. They also suggest that diagram
interchange is not adequate, and will need to be
extended to support the needs of drawing tools.

5.2. Auto-coder Design and Implementation

Learning from the lessons of DS1 and DI, JPL
decided to create its own auto-coder, so that we had
complete control over the code generation process.
With our own auto-coder in hand, we are able to ensure

that the generated code meets our mission's
requirements for coding standards and implementation.

The auto-coder has been implemented
incrementally; as users ask for specific UML
functionality, these new features are added. Currently,
our auto-coder supports the following features of
UML: composite states, events, actions, signals,
guards, junctions, orthogonal regions, initial states and
deep history states.

Our auto-coder, which is written in Java, can be
separated into three areas: the front end, the state
machine model, and the back end. The front end is
responsible for parsing an input file, and creating the
state machine model. The state machine model is a set
of Java objects representing every element of the state
machine, from States to Transitions. The back end is
passed the state machine model, walks it, and then
produces code for a given programming language.

Our front end parses MagicDraw's XMI output
files. Although we had to make changes to our front
end to accommodate new versions of MagicDraw, we
were able to do so without making changes to the
model representation. The idea is that one could
develop a new front end, and so long as it can output a
state machine model, the new front end can integrate
into our tool chain.

Our state machine model maps each state chart
element to a class. For example, we have classes for
states, transitions, events, and actions. A State, for
example, has direct Java references to its incoming and
outgolng Transition objects. Figure 1 shows the classes
used within our statechart model. Notice the use of the
composite pattern [13] used to describe composite
states.

Figure 1. State machine object model.

Our back end's responsibility is to walk through the
state machine object model, generating code. While
we considered using the visitor pattern [13], we
anticipated that various code generators would like to
walk the state machines in different orders. We
currently provide code generators for C, C++, and also

output a Python GUI for testing the behaviors of state
machines. This demonstrates that our backend is
flexible enough to accommodate multiple outputs. An
advantage here is that a given flight project has the
complete source to the code generator. A project can
customize the coding style, or target a new statechart
library, while still reusing the front end and the object
model.

We have added several restrictions on state
machines to simplify the auto-coding process. We do
not allow nested orthogonal regions, that is, one
orthogonal region nested within another. Additionally,
junctions currently only are allowed to have two
outgoing transitions. This restriction allows junctions
to be implemented as simple if else statements, but the
restriction could easily be removed with a small change
to the auto-coder.

For safety, we force deep history states to have
exactly one outgoing transition. This is enforced for
the following reason: suppose a transition occurs to a
deep history state, but the history state's parent state
has never been visited yet. The semantics in this case
are undefined by UML, so we avoid this situation by
requiring a default transition out of the history state.

5.3. Auto-coder Output

Before the auto-coder existed, SIM developers
would hand-code statecharts using the Quantum
Framework. Developers quickly noticed that the hand
translation was quite repetitive; there was only one
cookie-cutter way to translate a statechart to code. This
hand generated code was quite readable to the SIM
flight software team members. So the goal with the
autocoder output was to generate code that looked
exactly like the hand-generated version, in the style
recommended by Samek [3].

Samek has each state represented as a method
within a class. Each state method has an event passed
in as a parameter. A switch statement, based on the
event, determines the behavior of the state. State
transitions essentially take place by changing function
pointers. We follow Samek's pattern for implementing
most state machine elements. However, for our
implementation of orthogonal regions, we have a top
level state machine, derived from QActive delegate to
separate state machines for each orthogonal region.
The implementations of the orthogonal regions instead
derive from QHsm. Some changes to the quantum
framework were necessary to accommodate this
implementation. Due to the way we structured the
generated code, we currently do not allow orthogonal
regions to be nested within another. We would like to

see better out-of-the box support for orthogonal regions
within the Quantum Framework.

Samek's Quantum Framework code is originally
written in C++. He provides a C version, which
essentially adds many macros to C to simulate C++
features such as vtables and subclassing. We found
that both auto-coded and manually coded C++
statecharts looked considerably cleaner than the
corresponding C versions, which were polluted by the
use of many macros.

6. Use of the Quantum Framework

The motivation to use a state-based framework was
driven by several observations. We did not have a
consistent method for implementing hierarchical state
machines. Previously, developers would typically use
a combination of tables, switch statements or various
other design patterns to implement state machines in
code. The Space Interferometer Mission (SIM) was
heavily reliant on many complex hierarchical state
machines. We needed to implement these state
machines in a systematic and uniform way.

There is a trend towards specifying behaviors using
the UML standard for state machines. Previously,
statecharts were often specified in Powerpoint, with
much ambiguity in the notation. Some of our existing
implementations of these Powerpoint state machines
used unspecified semantics. This resulted in a
miscommunication between the systems and software
disciplines. For a discussion of differences between
UML and other statechart semantics, see [12].

Correct implementations of complex hierarchical
state machines are difficult and labor intensive.
Existing design patterns to implement state machines
such as tables and switch statements break down when
using hierarchy or other statechart features like history
states or orthogonal regions.

As previously mentioned, the state-based framework
we use is the Quantum Framework developed by
Samek [3]. The Quantum framework is a small light-
weight framework intended for real-time embedded
applications. The entire framework consists of
approximately 800 lines of code and comes with both
C and C++ implementations. The underlying
architecture consists of Active objects. Active objects
are hierarchical state machines that communicate with
each other via an exchange of event instances. The
framework is extremely flexible. The user may decide
to only use the base class for hierarchical state
machines, or may decide to use Active objects with the
Quantum framework's Publish and Subscribe
mechanism for event communication. The framework

also comes in different flavors - a simple one thread or
multithreading environment.

For our applications, we use the simple one thread
environment and rely on the specific application code
to provide the tasking and scheduling. This allows our
use of the Quantum framework to be completely
portable to desktop work-stations and our embedded
VxWorks targets. Out the box, the Quantum
Framework supports only event-driven applications.
State machines "sleep" until an incoming event causes
the state machine to execute. If more than one state
machine receives an event, a priority scheme
determines the order of execution. For one of our
projects, we needed a more deterministic approach. So
we selected to have a rate-driven application as
opposed to an event-driven application. Each state
machine would only execute at a specific time-slot
based on a scheduler. The state machine would then
drain its event queue consuming events at this time
only. In order to support this rate-driven paradigm, we
needed to make slight modifications to the Quantum
framework. Due to the small size and good design
constructs used by Samek, our modifications to the
Quantum framework were fairly easy to undertake.

6. Future Work

Our goal is not only to auto-generate code from
statecharts but to verify that these statecharts will
always satisfy their design requirements. We plan to
augment the auto-coding tool to output verification
models that can be used for this purpose. These
verification models can be used to verify the correct
behavior of a single state machine or the correct
interaction of multiple state machines in a multi
threaded environment. We plan on performing this
model-checking in the SPIN environment.

SPIN 11 11 was developed by Gerard Holzmann as a
tool for detecting software defects in concurrent system
designs. The input language to SPIN is called Promela.
The autocoder will then output Promela as well as
C/C++ code. Promela however is not intended to be a
low-level implementation language. In addition, there
is no state-based framework like the Quantum
framework in Promela. Even if a complex state
machine were implemented in Promela, the state space
would be far too large to perform adequate model
checking. To solve this problem we will combine
Promela and C code in our verification model.
Promela supports a C interface [lo]. The strength of
Promela lies in the specification of concurrent
processes. The strength of C is as an implementation
language. Combining these 2 languages w~l l alIow us

to use the power of SPIN to search through the state
space of our model and verify that certain correctness
properties or design requirements are satisfied.

6. Acknowledgements

This work was supported by the NASA's Space
Interferometer Mission (SIM), and by the Jet
Propulsion Laboratory (JPL), California Institute of
Technology. Additional funding was provided by
JPL's Laboratory for Reliable Software (LaRS), and by
a JPL R&TD research proposal award for "Software
Assurance for the Emerging Discipline of Model-Based
Design." supported by JPL's section 5 12.

We thank Alex Murray for his work on the initial
auto-coder, and Hanry Wartounian for his work in
obtaining performance numbers.

7. References

[I] N.F. Rouquette, T. Neilson, and 0 . Chen, "The 13"'
Technology of Deep Space One", Proceedings of the 1999
IEEE Aerospace Conference, Vol 1, March 1999, pp. 477-
487.

[2] K. Barltrop, E. Kan, I . Levison, C. Schira, and K.
Epste~n, "Deep Impact: ACS Fault Tolerance in a Comet
Critlcal Encounter", Advances in the Astronautical Sciences,
Vol. 1 1 1, 2002, pp. 1 1 1-1 26.

[3] Samek, M.. Practical Statecharts in C/C++, CMP
Books, San Francisco, 2002.

[4] Statetlow. www.mathworks.com~products/stateflowl

[S] Rumbaugh, J., I. Jacobson, and G. Booch, The Unlfied
Modeling Language Reference Manual, Addison-Wesley,
Boston, 1999.

[7] OMG. Unified Modeling Language: Diagram
Interchange version 2.0, July 2003. OMG document ptc103-
07-03. .www.omg.org , 2003.

[8] OMG. OMG XML Metadata Interchange (XMI) Specifi
cation. OMG Document 03-05-02. www.omg.org, 2003.

[9] M. Alanen, 1. Porres, "Model Interchange Using OMG
Standards," euromicro, pp. 450-459, 31st EUROMICRO
Conference on Software Engineering and Advanced
Applications, 2005.

[lo] G. Holzmann, R. Joshi, "Model-Driven Software
Venficalion", Proceedings of the 11"' SPIN Workshop,
Lecture Notes in Computer Science, Volume 2989, Sprlnger
Verlag, April 2004.

[I l l Holzmann, G. The SPIN Model Checker, Addison-
Wesley, Boston, 2003.

[12] M.L. Crane, J Dingel. "UML vs. Classical vs. Rhapsody
Statecharts: Not All Models are Created Equal". Proc of the
8th International Conference or1 Model Driven Engineering
Langliages and Systen~s (MoDELS/UML 2005). Montego
Bay, Jarnaca, October, 2005.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, Boston, 1994.

