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Abstract 
Statecharts have been used as a tneatls to 

conzmunicate behaviors in a precise nzatltler between 
system engineers and s o ~ a r e  engitleers. Hand- 
translating a statechart to code, as done on sotne 
previous space missions, introduces the possibility of 
errors in the transformation fron~ chart to code. To 
itrlprove auto-coding, we have developed a process 
that generates flight code from UML statecharts. Our 
process is being used for the jligl~t software on the 
Space Interferometer Missiotz (SIM). 

1. Introduction 

Designs are often specified, formally or informally, 
as hierarchical statecharts. As space missions become 
more complex, the software compIexity must be 
communicated both within a software engineering 
team, and between software and system engineers. In a 
rapid tlight software development environment, it 
would be desirable to move from statechart to code 
with as few translation errors as possible. The goal of 
this work is to automate the translation of statecharts to 
flight code. Our goal is not to change all flight code 
into a statechart. Rather, our goal is to take as input 
existing requirements and designs already expressible 
as statecharts. Those statecharts are drawn in a Unified 
Modeling Language (UML) 151 graphical design tool. 
Then our auto-coder tool transforms a UML statechart 
to working tlight code. The generated code works with 
the Quantum Framework [3], a reusable statechart 
library. 

2. Prior Work 

2.1. Deep Space 1 

The Deep Space 1 (DS1) [ I ]  mission was the first 
JPL mission to use auto-coding with statecharts. For 
this mission, auto-coding was used for the fault 
protection subsystem only. Statecharts were drawn in 

Stateflow for MatLab [4]. Stateflow's internal auto- 
coder was used to generate code. The auto-generated 
code was then post-processed into flight code, 
compliant with the flight software design team's coding 
style and constraints. The team reported an overall 
positive experience with auto-coding, but highlighted 
the importance of open code generation algorithms. 

2.1. Deep Impact 

Like the Deep Space 1 mission, Deep Impact (DI) 
[2] used Stateflow as a drawing and simulation tool. 
Flight code was automatically generated for both fault 
protection monitors and responses. Deep Impact used 
an updated version of StateFlow, which was 
incompatible with the file format version used on DS 1. 
Additionally, DI was written in C++, and had different 
requirements for auto-coder output. The DI team wrote 
a new postprocessor as a series of M4 scripts. This tool 
post-processed the code generated by StateFlow into 
flight C++ code. In addition, spreadsheet tables were 
used as a part of the auto-coding process. 

3. STAARs Process Overview 

The auto-coding of UML statecharts fits into a 
larger software development and verification process at 
JPL called STAARS (STate-based Architecture and 
Auto-coding for Real-time Systems). STAARS is a 
process that loosely combines 5 software tools for the 
purpose of building rapid executable and verifiable 
models that can be implemented directly into the 
application software. Each of these software tools is 
light-weight and dedicated to a specific task. This 
provides flexibility not permitted under the large all- 
purpose commercial modeling tools. Each of these 
software tools can be swapped in and out or modified 
to fit the needs of a specific project. The learning 
curve is low and the cost minimal. The tools of the 
STAARS process are: 



P UML Modeling. The process starts with a drawing 
tool that supports the UML statechart 
specifications. The only requirement on the 
drawing tool is that the output model be saved as 
an XMI file. Any statechart drawing tool that 
meets this requirement may be used in this process. 

> State-based franzework. A good state-based 
software framework is essential to this whole 
process, providing a library of code to support the 
execution and representation of statecharts within 
C or C++. The framework we have selected is the 
Quantum Framework developed by Miro Samek 
[3]. This framework allows for an easy 
transformation from the UML statechart diagrams 
into code. The framework and design patterns are 
clean, efficient, and are designed with real-time 
embedded applications in mind. 

> Autocoding. Our auto-coder is a light weight tool 
that provides the automation of what would 
otherwise be a manual effort of converting 
statechart diagrams directly into code. 

k Test harness. This tool provides a method to 
execute the state machine model. It consists of a 
few python scripts that allow the user to execute 
the model in a GUI. The user generates events 
with the click of a button, and graphically sees 
states and transition changes. 

P Model checking. The Autocoder tool will soon be 
augmented to output verification models in the 
Promela language. Promela is the input language 
to a powerful model-checker called SPIN. This 
tool will give the user the capability to 
exhaustively check for various correctness 
properties in the model. 

> Weight - Light, Medium or Heavy weight. Is the 
tool quick and easy to install? Quick and easy to 
start up? Small learning curve. Does not require 
a great amount of resources in time or resources to 
learn and use? 

P Cost - The tool should be moderately priced, or 
possibly free if it is open source. 

P User interface - Is the tool easy to use? Does it 
have good drawing capabilities? 

P UML support - Does the tool support most of the 
UML diagrams we are interested in? (Class, State, 
and Sequence diagrams.. .) 

> Export XML - Does the tool export the UML 
diagrams in XML - particularly XMI [8] which is 
defined by the Object Modeling Group. 

> Presentable - Does the tool produce good looking 
drawings that can be used for presentations'? Cut 
and past into Powerpoint and Word documents? 
Large fonts, color coded etc? 

> Cross reference between diagrams - Can an 
interaction diagram be setup from a class diagram? 

> Product Support - How will questions get 
answered, problems fixed, and product 
maintained? 
In parallel with the UML tool trade study, a 

prototype state chart auto-coder tool was created in 
August 2004, reading simple XML state charts created 
by one of the candidate UML tools. The relative ease 
with which an auto-coder tool could be created, using 
as input the XMI state chart representation, convinced 
the SIM RTC project to undertake the development of 
a NASA Class B (mission critical) version of the state 
chart auto-coder in November 2004. 

4. Drawing Tools 

In support of the STAARS process, a trade study 
was conducted in the summer of 2004 to select a UML 
drawing tool to be used for the SIM RTC Flight 
Software design and development. The SIM RTC 
project desired a common tool that couId be used, both 
by the Flight Software and Control Algorithm 
development teams, to document the complex behavior 
of the SIM RTC system via State and Sequence 
diagrams. In addition, the flight software development 
team wanted to use the tool to design and document the 
flight software's C++ class structure, and possibly to 
generate a standard XMI input format for a flight 
software auto-coding tool. 

The following criteria were evaluated as part of the 
UML tool trade study: 

Drawing from the lessons learned of DI and DS1, it 
was important for SIM that we have complete control 
over the auto-coding process. We developed our own 
auto-coder, consisting of 3 parts: a parser stage, which 
reads an input file, an internal model representation, 
and a code generator. The parser to be swapped out, 
allowing us to accommodate different drawing tools. 
Additionally, we provide multiple back ends for code 
generation, outputting both C and C++. 

5.1. Auto-coder Inputs 

The inputs to the state chart auto-coder are XML 
files containing XMI [8], the standard meta-data 
representation of UML state charts. A primary goal of 
using a UML tool as part of our software development 



process was to use a non-proprietary XML state chart 
representation based upon an open standard. 

XML provides several advantages for us an input 
format. It is human readable as a text file, and many 
free parsers exist for XML on a variety of platforms. 
As our auto-coder is implemented in Java, we use the 
standard parsers that come with the Java development 
kit. An XML document consists of elements and 
attributes. Ordering and restrictions on these XML 
elements is typically provided by a custom schema for 
each application domain. XMI provides constraints on 
XML files, and provides a meta-model for describing 
UML within XML. 

During the development of the state chart auto- 
coder, a recurring issue was the "moving target" nature 
of the representation of state charts in XMI. Over the 
course of developing the auto-coder, a new version of 
XMI (from v1.2 to v2.1) was adopted by our chosen 
UML tool vendor, resulting in a new version of the 
UML tool and a significant change to the state chart 
representation in our XML input files. This forced a 
redesign of the front end of the auto-coder. both to 
support the new representation, and to try and better 
accommodate future XMI changes. 

Our current assessment is that the XMI 
representations output by UML drawing tools, while 
maturing, are not yet in a final form. Future updates to 
both the UML and XMI specifications could force 
changes to the front end (input processing) component 
of the auto-coder. While the state machine model 
descriptions within XML appear stable between tools, 
diagram layout was not interchangeable between tools. 
MagicDraw, for example, uses its own custom XMI 
extensions to represent diagram geometry. 

The UML Diagram Interchange [7] is intended to 
remedy this situation. Unfortunately, adoption of this 
standard is mixed among UML tools. The authors of 
[9] discuss several issues with the XMI representation. 
We agree with their claim that the many UML and 
XMI versions make adoption and interchange of UML 
diagrams between tools less than ideal. They surveyed 
8 UML tools and found that only 2 supported diagram 
interchange. They also suggest that diagram 
interchange is not adequate, and will need to be 
extended to support the needs of drawing tools. 

5.2. Auto-coder Design and Implementation 

Learning from the lessons of DS1 and DI, JPL 
decided to create its own auto-coder, so that we had 
complete control over the code generation process. 
With our own auto-coder in hand, we are able to ensure 

that the generated code meets our mission's 
requirements for coding standards and implementation. 

The auto-coder has been implemented 
incrementally; as users ask for specific UML 
functionality, these new features are added. Currently, 
our auto-coder supports the following features of 
UML: composite states, events, actions, signals, 
guards, junctions, orthogonal regions, initial states and 
deep history states. 

Our auto-coder, which is written in Java, can be 
separated into three areas: the front end, the state 
machine model, and the back end. The front end is 
responsible for parsing an input file, and creating the 
state machine model. The state machine model is a set 
of Java objects representing every element of the state 
machine, from States to Transitions. The back end is 
passed the state machine model, walks it, and then 
produces code for a given programming language. 

Our front end parses MagicDraw's XMI output 
files. Although we had to make changes to our front 
end to accommodate new versions of MagicDraw, we 
were able to do so without making changes to the 
model representation. The idea is that one could 
develop a new front end, and so long as it can output a 
state machine model, the new front end can integrate 
into our tool chain. 

Our state machine model maps each state chart 
element to a class. For example, we have classes for 
states, transitions, events, and actions. A State, for 
example, has direct Java references to its incoming and 
outgolng Transition objects. Figure 1 shows the classes 
used within our statechart model. Notice the use of the 
composite pattern [13] used to describe composite 
states. 

Figure 1. State machine object model. 

Our back end's responsibility is to walk through the 
state machine object model, generating code. While 
we considered using the visitor pattern [13], we 
anticipated that various code generators would like to 
walk the state machines in different orders. We 
currently provide code generators for C, C++, and also 



output a Python GUI for testing the behaviors of state 
machines. This demonstrates that our backend is 
flexible enough to accommodate multiple outputs. An 
advantage here is that a given flight project has the 
complete source to the code generator. A project can 
customize the coding style, or target a new statechart 
library, while still reusing the front end and the object 
model. 

We have added several restrictions on state 
machines to simplify the auto-coding process. We do 
not allow nested orthogonal regions, that is, one 
orthogonal region nested within another. Additionally, 
junctions currently only are allowed to have two 
outgoing transitions. This restriction allows junctions 
to be implemented as simple if else statements, but the 
restriction could easily be removed with a small change 
to the auto-coder. 

For safety, we force deep history states to have 
exactly one outgoing transition. This is enforced for 
the following reason: suppose a transition occurs to a 
deep history state, but the history state's parent state 
has never been visited yet. The semantics in this case 
are undefined by UML, so we avoid this situation by 
requiring a default transition out of the history state. 

5.3. Auto-coder Output 

Before the auto-coder existed, SIM developers 
would hand-code statecharts using the Quantum 
Framework. Developers quickly noticed that the hand 
translation was quite repetitive; there was only one 
cookie-cutter way to translate a statechart to code. This 
hand generated code was quite readable to the SIM 
flight software team members. So the goal with the 
autocoder output was to generate code that looked 
exactly like the hand-generated version, in the style 
recommended by Samek [3]. 

Samek has each state represented as a method 
within a class. Each state method has an event passed 
in as a parameter. A switch statement, based on the 
event, determines the behavior of the state. State 
transitions essentially take place by changing function 
pointers. We follow Samek's pattern for implementing 
most state machine elements. However, for our 
implementation of orthogonal regions, we have a top 
level state machine, derived from QActive delegate to 
separate state machines for each orthogonal region. 
The implementations of the orthogonal regions instead 
derive from QHsm. Some changes to the quantum 
framework were necessary to accommodate this 
implementation. Due to the way we structured the 
generated code, we currently do not allow orthogonal 
regions to be nested within another. We would like to 

see better out-of-the box support for orthogonal regions 
within the Quantum Framework. 

Samek's Quantum Framework code is originally 
written in C++. He provides a C version, which 
essentially adds many macros to C to simulate C++ 
features such as vtables and subclassing. We found 
that both auto-coded and manually coded C++ 
statecharts looked considerably cleaner than the 
corresponding C versions, which were polluted by the 
use of many macros. 

6. Use of the Quantum Framework 

The motivation to use a state-based framework was 
driven by several observations. We did not have a 
consistent method for implementing hierarchical state 
machines. Previously, developers would typically use 
a combination of tables, switch statements or various 
other design patterns to implement state machines in 
code. The Space Interferometer Mission (SIM) was 
heavily reliant on many complex hierarchical state 
machines. We needed to implement these state 
machines in a systematic and uniform way. 

There is a trend towards specifying behaviors using 
the UML standard for state machines. Previously, 
statecharts were often specified in Powerpoint, with 
much ambiguity in the notation. Some of our existing 
implementations of these Powerpoint state machines 
used unspecified semantics. This resulted in a 
miscommunication between the systems and software 
disciplines. For a discussion of differences between 
UML and other statechart semantics, see [12]. 

Correct implementations of complex hierarchical 
state machines are difficult and labor intensive. 
Existing design patterns to implement state machines 
such as tables and switch statements break down when 
using hierarchy or other statechart features like history 
states or orthogonal regions. 

As previously mentioned, the state-based framework 
we use is the Quantum Framework developed by 
Samek [3]. The Quantum framework is a small light- 
weight framework intended for real-time embedded 
applications. The entire framework consists of 
approximately 800 lines of code and comes with both 
C and C++ implementations. The underlying 
architecture consists of Active objects. Active objects 
are hierarchical state machines that communicate with 
each other via an exchange of event instances. The 
framework is extremely flexible. The user may decide 
to only use the base class for hierarchical state 
machines, or may decide to use Active objects with the 
Quantum framework's Publish and Subscribe 
mechanism for event communication. The framework 



also comes in different flavors - a simple one thread or 
multithreading environment. 

For our applications, we use the simple one thread 
environment and rely on the specific application code 
to provide the tasking and scheduling. This allows our 
use of the Quantum framework to be completely 
portable to desktop work-stations and our embedded 
VxWorks targets. Out the box, the Quantum 
Framework supports only event-driven applications. 
State machines "sleep" until an incoming event causes 
the state machine to execute. If more than one state 
machine receives an event, a priority scheme 
determines the order of execution. For one of our 
projects, we needed a more deterministic approach. So 
we selected to have a rate-driven application as 
opposed to an event-driven application. Each state 
machine would only execute at a specific time-slot 
based on a scheduler. The state machine would then 
drain its event queue consuming events at this time 
only. In order to support this rate-driven paradigm, we 
needed to make slight modifications to the Quantum 
framework. Due to the small size and good design 
constructs used by Samek, our modifications to the 
Quantum framework were fairly easy to undertake. 

6. Future Work 

Our goal is not only to auto-generate code from 
statecharts but to verify that these statecharts will 
always satisfy their design requirements. We plan to 
augment the auto-coding tool to output verification 
models that can be used for this purpose. These 
verification models can be used to verify the correct 
behavior of a single state machine or the correct 
interaction of multiple state machines in a multi 
threaded environment. We  plan on performing this 
model-checking in the SPIN environment. 

SPIN 11 11 was developed by Gerard Holzmann as a 
tool for detecting software defects in concurrent system 
designs. The input language to SPIN is called Promela. 
The autocoder will then output Promela as well as 
C/C++ code. Promela however is not intended to be a 
low-level implementation language. In addition, there 
is no state-based framework like the Quantum 
framework in Promela. Even if a complex state 
machine were implemented in Promela, the state space 
would be far too large to perform adequate model 
checking. To solve this problem we will combine 
Promela and C code in our verification model. 
Promela supports a C interface [lo]. The strength of 
Promela lies in the specification of concurrent 
processes. The strength of C is as an implementation 
language. Combining these 2 languages w~l l  alIow us 

to use the power of SPIN to search through the state 
space of our model and verify that certain correctness 
properties or design requirements are satisfied. 
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