

Submillimeter-Wave Advanced Technology Team

Terahertz Schottky Multiplier Sources

Erich Schlecht

Submillimeter-Wave Advanced Technology (SWAT) Team Jet Propulsion Laboratory California Institute of Technology IEEE MTT-S IMS: Long Beach, June 2005

- Introduction, applications, requirements
- Multiplier source technologies
- Status/Performance of THz multiplier sources
- Challenges
- Roadmap
- Concluding remarks

Requirements

- Figures of merit
 - Frequency Terahertz for high resolution
 - Bandwidth at least 15 GHz for high range resolution
 - Efficiency minimize power supply requirements
- Output power:
 - Milliwatts below 800 GHz
 - 10s of microwatts above 1 THz,
 - 1-2 microwatts near 2 THz
- Mechanical--stability, compact, low mass

- Environmental--radiation, vibration, thermal

- -FIR lasers: narrowband, large, expensive, and power hungry
- –QCL: narrowband, low temperature (<80 K)</p>
- BWOs: wide band, but: large, inefficient, heavy, fragile
- -Multiplier sources: compact, wideband

- Fundamental oscillator multiplied up to 100 GHz
- Power amplifier produces 100 to 230 mW
- Frequency multiplier chain
 - Planar GaAs Schottky diodes
 - Multi-diode, balanced configurations
 - Monolithic devices in low-loss waveguide circuits
 - No mechanical tuners
 - Fixed-tuned bandwidth ~ 8-15%

MMIC PA Chip/Modules

out (mW)

- 0.1 um PHEMT process
- 50 um thick substrate
- $f_t = 200 \text{ GHz}$
- 64 finger device cell (output)
- on-chip bias network
- 50 ohm matching in/out
- 2.3 mm x 1.8 mm

Prior Multiplier Devices

Whisker contact diode

AGED STAR on Compact Terahertz Sources, March 1, 2007, Erich Schlecht/JPL

6-anode 170 GHz chip

Performance at room temperature (Erickson, STT 2000)

- Able to handle 220 mW of input power
- $\bullet > 30\%$ efficiency, 65 mW at 150 GHz

200 to 800 GHz multipliers demonstrated

- Membrane is a few microns thick
- Extensive use of beam-leads
- Extremely simplified assembly

Demonstrated up to 2.7 THz!

1200 GHz tripler chip

x2x2x3 Frequency Chain

Circuits have 3-50um thick GaAs. Beam leads provide ground and thermal contact.

Reliability of these planar GaAs Schottky circuits is critical for mission success

190 GHz Doubler (6 anodes)

AGED STAR on Compact Terahertz Sources, March 1, 2007, Erich Schlecht/JPL

→ 295K - 113.6K

1280

1300

Power (mW)

Output Power, JPL Multiplier Chains

- Planar Schottky diode proceses
- W-band MMIC power amplifiers
- Advanced modeling of electromagnetic circuit structures and Schottky diodes
- High-precision, computer-controled machining of waveguide blocks

- More efficient higher freq power amps? InP, pHEMT
- Improve bandwidth— better designs, re-configurable
- Simplify chain construction— micro-machined blocks, increased integration
- Planar device/modeling— increase yield, increase throughput and uniformity, reduce time to completion
- Power combining— increase output power by adding mulitiplier outputs together
- Higher doping/smaller anodes— increase efficiency at high frequencies

Category	Current	Mid-Term	Far-Term
Source/device: technology & type	Schottky diode/ Multiplier chain	same	same
Peak & Average Power (W)	40 mW @ 200 GHz 2 uW @ 2000 GHz	X 4	X 10 or more?
Duty: Pulse duration (sec); repetition rate (Hz)	N/A	N/A	N/A
Frequency Tuning Range (GHz)	200 — 2000	- 2500	same
Bandwidth (GHz)	15 % @ 200 GHz 10 % @ 2000 GHz	20 %	same
Efficiency (%)	0.1% @ 200 GHz 1e-6% @ 2000 GHz	X 5	??
Size/wt (device/source*) * Including power supply and other ancillary equipment	10-40 cm ³ /1600 cm ³ 60-250 gm/5 kg	100 cm ³ 1 kg	same

Category	Current	Mid-Term	Far-Term	
Packaging/environmental: laboratory, commercial/industrial, or military	Spaceflight qualified	same	same	
Specialized supporting equipment	DC power	same	same	
Supplier content for critical components/equipment: in-house, commercial; foreign, domestic	In-house for diodes, com- mercial for PA	Commercial, given enough market	same	
Technology status: development/engineering/production	ALL THREE	ALL THREE	ALL THREE	
Other distinguishing features:	Same technology widely tunable and usable over wide frequency range.			

- Multiplier chains (200 to 1200 GHz) are now possible that are
 - Robust, flight qualified
 - Broadband (10 to 15 %)
 - Cool-able
- Chains covering 0.2 to 1.9 THz were developed
- Produced 24 µW continuous power (cooled) at 1.78 THz
- Frequency range of 2-3 THz is attainable
- Wider bandwidths (>10%) are attainable
- Higher output power is possible with power combining techniques