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Abstract: 
This paper investigates the closed-loop dynamics of systems controlled via parallel 
estimators. This structure arises in formation flying problems when each spacecraft 
bases its control action on an internal estimate of the complete formation state. 
For LTI systems a separation principle shows that the necessary and sufficient 
conditions for overall system stability are marc stringent than the single con);roller 
case; the controllers' open-loop dynamics necessarily appeas in the closed-loop 
dynamics. Communication amongst the spacecraft can be used to specify the 
complete system dynamics and a framework for integrating the design of the 
communication links into the formation flying control design problem is presented. 
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1. INTRODUCTION 

Formation flying spacecraft are able to  perform 
science missions that are infeasible with mono- 
lithic spacecraft. For example a formation of in- 
terferometric imaging spacecraft can realize an 
optical imaging system with an aperture of kilo- 
meters giving the resolution required to image 
planets in other solar systems. Precision in the 
spacecraft control is critical to  the performance of 
such formations, and motivates this work. 

Each spacecraft in the formation bases its control 
action on an estimate of the observable part of the 
entire fbrmation. Note that in formations defined 
only by relative measurements, not all states are 
observable. Smith and Hadaegh (2004) illustrates 
how the unobservable states may be removed from 

the problem and for notational simplicity this 
paper simply assumes observability. 

There are two major advantages in having each 
spacecraft estimate the entire formation state. 
The first is that it is then possible to implement 
a control which is optimal from the point of view 
of the entire formation. The second advantage is 
that each spacecraft also has sufficient inforina- 
tion t o  implement higher level functions in the 
system hierarchy. Examples of such functions in- 
clude: collision avoidance, path planning, forma- 
tion reconfiguration, and communication networli 
reconfigur ation. 

We contrast this with alternative approaches, 
based on leader-follower architectures (see for 
example: Wang and Hadaegh (1996); Robertson 
et al. (1999); Kapila et al. (1999); Tillerson et al. 



(2003)) or local controllers networked via a com- 
munication system (see for example: Mesbahi and 
Hadaegh (2001); Fax and Murray (2003)). Such 
controller strategies may be simpler to implement 
but do not have the advantages listed above. The 
issue of decentralized estimation for formations 
has been considered by Carpenter (2000). The 
theory on parallel estimation given in this paper 
is has a much wider applicability, and early work 
in this area can be found in Khalil and Kokotovii: 
(1978) and Speyer (1979). 

2. NOTATION 

Vector subscripting has one of two meanings; 
when discussing a vector, 'u E Rnu , ui will refer to 
the ith component. This paper deals with parallel 
estimators, each estimating a state vector, x E 
Rn=. In this case the subscripted vector, j.i E Rn=,  
refers to  the ith estimate of x. Note also the use 
of 53 to denote an estimate of x. 

The identity matrix of dimension N x N is denoted 
by IN.  The use of the Kronecker product simplifies 
a great deal of notation. Given X E R m X n  and 
Y E 'RPX4, the Kronecker product, X @ Y E 
Rmpxn4, is defined by 

3. PROBLEM DEFINITION 

Consider the collected (observable) dynamics of 
the formation in a discrete-time LTI framework, 

where x(k) E Rn=. A network of N controllers- 
one on each spacecraft-collectively applies the 
actuation s igna ls  via, 

For notational simplicity define projections, Qi, 
onto each controller's "local7' actuation signal via, 
u,(k) = Qiu(k). Note that Qi is also considered 
to be a partition of the identity, 

effectively augmenting ui ( k )  with zeros to expand 
it to the dimension of ~ ( k ) .  The controllers have 

Application to the continuous-time case is straightfor- 
ward. 

the same measurement of the plant output, al- 
though they may have different noise contribu- 
tions, 

The formulation in (2) assumes that each space- 
craft has access to the same set of measurements. 
Smith and Hadaegh (2004), showed that equiva- 
lent controllers can be constructed from an over- 
parametrized set of relative measurements in a 
formation. This approach can be applied here to  
relax the assumption of identical measurements. 
In the more general case each spacecraft would 
have a different Ci matrix, and in this case the 
results cannot be stated as succinctly, although 
the relevant formulae are given. 

Each controller is assumed to consist of an estima- 
tor and a static state feedback gain. A stabilizing 
state-feedback, u ( k )  = Kx(k),  has been designed 
to give the desired formation closed-loop dynam- 
ics, A,, := A + BK. The task is now to imple- 
ment this state-feedback via parallel estimators, 
with each estimator providing the state-feedback 
control for their components of the input. 

In this scenario, the ith controller is given by, 

where Act,) := A+BK+LC. This control is based 
on an estimate of the full system state, denoted 
by 2;(k) .  A wide range of methods are available 
for the design of the estimator error dynamics, 
given by the eigenvalues of A+ LC. For notational 
simplicity, AeSt := A + LC. The structure of the 
system is illustrated in Figure 1. 

In this structure BKZi(k) is used as the plant 
input contribution to  each of the estimates. This 
is actually an estimate of the actuation input 
applied by each of the other spacecraft and will 
not, in general, be correct for the non-local com- 
ponents of u(k). The motivation for doing this is 
to  consider structures that do not require that 
complete actuation information to  be communi- 
cated amongst the spacecraft in the formation. 
The consequence of a lack of complete information 
about the plant input is that the estimator error 
dynamics become coupled. 

4. PARALLEL ESTIMATOR DYNAMICS 

The main result of this section is a separation 
principle giving the complete dynamics of the 
system i!!nst;r.tec! in Figure I.  Define, for each 
estimator, an estimation error, 
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Fig. 1. System structure with N parallel estimators 

The closed-loop plant dynamics are given by, 

There are n, states in the plant and n, in each of 
the estimators, giving a total of (N + l)n, states 
in the formation. The remaining N x n, state 
dynamics can be expressed in terms of .the error 
dynamics for each of the estimators, 

Note that for stability analysis the Lni (k) driv- 
ing term in the error update equations can be 
neglected. The complete system closed-loop dy- 
namics are therefore, 

These equations form the basis of the parallel 
estimator separation theorem given below. 

Theorem 1. Given a plant, defined by (I), and N 
parallel estimators, each defined by (3) and (4), 
the closed-loop system eigenvalues are: 

eig(Acl) U eig(A,,t) U eig(Act,l) U - - . eig(Aa,i) . 
v 

N - 1 times 

This result extends the standard separation prin- 
ciple for LTI state-feedback and estimator designs 
in an interesting way. In the single controller case 
the necessary and sufficient conditions for closed- 
loop stability are that both A + BK and A + LC 
represent stable state dynamics. In the parallel 
estimator case this is no longer sufficient; we must 
also have each controller's open-loop dynamics, 
A+BK+LC, stable. The standard state-feedback 
and estimator design methods do not specify the 
eigenvalues of A + BK + LC and must be used 

where, with extreme caution. 



The formulation is easily generalized to the case 
where each estimator/controller uses a different 
measurement matrix, 

y i (k )  = Ci x ( k )  + n i (k ) ,  i = 1,.  . . , N. 
The design of each of the estimators now involves 
the design of a specific estimation gain, Li, i = 
1, . . . , N .  The closed-loop error dynamics are still 
decoupled from the closed-loop plant dynamics 
and are given by, 

IN t3 (A + BK) - [ B Q ~ K  - .  . BQNK] I;] 

Equation 7 can be used as the basis for estimator 
design. For a fixed state-feedback design, K, the 
heterogeneous estimator design problem can be 
viewed as using L1, . . . , LN to place the eigenval- 
ues of the matrix given in (7). 

5. COMMUNICATION AMONGST 
ESTIMATORS 

As the previous section made clear, the error dy- 
namics of a parallel estimator configuration will 
exhibit open-loop controller dynamics. This prob- 
lem can be addressed by communication amongst 
the estimators and a structure for doing this 
is now formulated. The original estimator er- 
ror dynamics, A + LC can be recovered-for 
all controller/estimators-by communicating each 
controller's actuation output, u,, to all of the 
other controllers. This requires N(N - 1) com- 
munication links. However, the complete parallel 
estimator error dynamics can be specified with as 
few as N - 1 links; any fewer and the open-loop 
controller dynamics must appear in the combined 
estimator error dynamics. 

5.1 A Communication Framework 

Consider M unidirectional communication links, 
with the communicated signal defined a s  a linear 
function of the estimated state of a particular 
estimator, 

v l ( k )  = N l f l ( k ) + w l ( k ) ,  I = l ,  . . . ,  M .  

The maximum singular value of HE is proportional 
t o  the maximum communication power amplifica- 
tion. Noise, wl, is assumed to corrupt the received 
signal. This is a simplistic model of a communi- 
cation channel but it serves to determine the Tun- 
damental relationship between the communicated 
state information and estimator error dynamics. 

The estimator receiving the noisy signal, vl, up- 
dates its estimate in the following manner. As- 
sume that the ith estimator receives the Eth com- 
municated signal. The f j ( k  + 1) update is pa -  
formed as follows, 

f i(k + 1) = Act,l 2i-i ( k )  - Lyi(k) 

+ Fzvl ( k )  - F~Hz2i(k)-  (8) 

Note that noise enters the estimator through both 
the plant measurement, yi(k) ,  and the received 
signal, ul(k) .  The matrix fi specifies how the 
received signal is applied to the estimated state 
update q d  is proportional to  the receiver's sensi- 
tivity. The effect of the communicated signal is ap- 
plied to the update differentially; a s  a function of 
the difference between the estimated states of the 
transmitting and receiving estimators. This has 
the effect of maintaining the separation between 
the plant's closed-loop poles and the estimators' 
error dynamics. 

If the ith estimator receives Mi communicated 
signals the state estimate update will be, 

where li.l(k) is the estimated state of the lth trans- 
mitter received by the ith spacecraft estimator. 
Note that, 2j ( k )  - & ( k )  = e i (k )  - e j ( k ) ,  giving 
the estimation error dynamics, 

The error dynamics do not explicitly involve x ( k ) ;  
the plant's closed-loop dynamics and the parallel 
estimators' dynamics therefore remain decoupled 
under this communication scenario. 

Communicating all actuator signals to all other 
spacecraft is sufficient to restore N copies of the 
designed estimator error dynamics to the closed- 
loop system. 

Theorem 2. If each estimator/controller commu- 
nicates its actuation input signai, 

to all other estimator/controllers, then with the 
choice of 

the closed-loop system eigenvalues are: 

/ 
' eig(AC1) U eig(AeSt) U . v . . u eig(AeSt) 

N times 



This result also holds in the case where each es- 
timator is designed with different error dynamics; 
A+LICI, .  .. , A  t LNCN. 

This result makes it clear that the source of the 
coupled estimator error dynamics is the use of an 
incorrect estimated input signal uj(k), for j # i. 
The communication strategy used in Theorem 2 
is no more than subtracting off the incorrect 
estimated actuation signals and replacing them 
with the correct communicated actuation signals. 

The practical advantages of this scheme are lim- 
ited; N(N - 1) communication links are required. 
A viable alternative may be to  implement a single 
estimator which calculates and then communi- 
cates the required actuation signal to each of the 
other N - I controllers. This approach requires 
only N - 1 bidirectional links but introduces a 
latency in the actuation. 

5.2 A Graph Theory Communication Specification 

The more interesting case of incomplete commu- 
nication (every estimator does not communicate 
with every other estimator) is now considered. 
The approach taken here is similar to that used by 
Fax and Murray (2003) in their work on coopera- 
tive control of vehicle formations. Our definition of 
the Laplacian differs and our work is conceptually 
closer t o  that of Pecora and Carroll (1998) on 
synchronized coupled systems. 

The communication links are specified by an ad- 
jacency mat*, A € 7ZNxN, where Ai,j = 1 if 
there is a communication link from estimator 3 
(transmitter) to  estimator i (receiver). This cor- 
responds to a directed graph where each estim& 
tor/controller is a node, and each communication 
link is an arc. The in-degree of each node (esti- 
mator/controller) is the number of links for which 
that node is a receiver. The Laplacian of the graph 
is defined as, 

where D is a diagonal matrix with the in-degree of 
each node on the diagonal. It is easy to  show that 
every Laplacian has at least one zero eigenvalue. 

Each communication link in our network can be 
defined by a simple Laplacian. Note that the sum 
of such links is also a Laplacian. Define, Ll ,  2 = 

1,. . . , M as the Laplacian associated with the Lth 
communication link. Tedious algebra shows that 
this has the effect of replacing the state transition 
matrix for the full system dynamics (given in (5) 
with, 

where, G is given by ( 6 ) .  In the case where the 
communication update term, FLITr, is the same for 
each link, a signscant and illustrative separation 
result can be proven. Define, 

M 

L : = ~ L ~ ,  and FH:=FIHl ,  1=1, ..., M. 
z=1 

(12) 

This gives, 

in the above. Denote the eigenvalues of L, ordered 
by increasing real part, by, 

where yo = 0. 

Theorem 3. Given a plant, defined by (I), and 
N parallel estimators/controllers, defined by (8) 
and (4), and with the communication between 
estimators defined by a Laplacian, L, as in (12), 
the closed-loop system eigenvalues are: 

I t  is immediately apparent that in order to control 
the complete error dynamics the Laplacian must 
have N - 1 non-zero eigenvalues. This means 
that it must have at least N - X receivers in 
the network. The result given in Theorem 3 uses 
identical communication matrices (F and H) for 
each of the links. It is a simple matter to generalize 
this to a sum of Lapiacians, each with different 
communication matrices, in the case where the 
Laplacians are sirnultaneousIy diagonalizable. The 
details are omitted for brevity. 

An interesting case occurs when we have a "star" 
topology with one transmitter and N-1 receivers. 
If each communication link has transmission &d 
receiver matrices, I f L ,  Fl, I = 1, . . . , N - 1, respec- 
tively, then the closed-loop eigenvalues &e given 
by, 

eig(ACi) u eig(AeSt) Ueig (Actr] + PI&) U. . - 
U eig (Actrl+ FN-~HN-1) - (14) 

6 .  NETWORK TOPOLOGY AND SYSTEM 
DESIGN 

The first point to note is that unlike the case of the 
"ciassical" separation principle, the controllers' 
open-loop dynamics appear in the closed-loop 
system. One can consider designing a parallel 
estimator network without communication but in 
such cases the open-loop dynamics of each of the 



7. ACKNOWLEDGMENTS controllers must be taken into consideration. This 
is a non-trivial problem. 

A communication framework has been introduced 
that allows the design of communication links via 
a communication network dehed  through Lapla- 
cians, L1, transmitter matrices, Hi, and receiver 
matrices, Fl, 1 = 1,. . . ,M. The designer can 
use communication to modify the open-loop con- 
trollers' dynamics that would otherwise appear in 
the closed-loop system. Note that the communica- 
tion design can be performed independently of the 
control and estimator designs and will not affect 
the closed-loop eigenvalues that arise from those 
designs. The separation with respect to  cornmuni- 
cation is not complete as the converse is not true: 
redesign of either the state feedback gain or the 
estimator gains will affect the eigenvalues placed 
via the communication system gains. 

Design of the communication links has several 
components, all of which contribute to  the closed- 
loop eigenvalue locations. The first aspect is the 
design of the network topology itself. This may 
be specified as a single Laplacian with multiple 
communication links, or via several Laplacians, 
each specifying a subset of the communication 
links. The eigenvalues of the Laplacian determine 
how the communication matrices, FLHL, modify 
the open-loop controller dynamics that appear in 
the closed-loop system. 

Every Laplacian has at least one eigenvalue at 
zero and to completely remove the open-loop loop 
controllers' eigenvalues from the dynamics the 
Laplacian must have N - 1 non-zero eigenval- 
ues. This observation has significant engineering 
consequences; the functioning of receivers is more 
critical than the functioning of transmitters. A 
network in which open-loop controller dynamics 
do not appear in the error dynamics must have 
N - 1 functioning receivers. It need have only one 
functioning transmitter. 

At first glance it appears that the minimum 
communication required to specify the complete 
closed-loop dynamics is the same as that re- 
quired to implement a centralized controller with 
all calculations carried out by a single estima- 
tor/controller. This is not the case; the dimension 
of the communicated signals, vi, may be smaller 
than the dimension of the actuation signals, u,. 
The centralized control option also has the disad- 
vantage of introducing a latency into the feedback 
loop as actuation commands must be communi- 
cated and then applied. An additional advantage 
of the parallel estimator structure is that the com- 
munication links specified by Fl and Hl may be 
designed specifically for the communication noise 
levels, wl. 

The work described in this paper was carried out 
in part at the Jet Propulsion Laboratory, Califor- 
nia Institute of Technology, under a contract with 
the National Aeronautics and Space Administra- 
tion. 
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