
Model-Based Trade Space Exploration for Near-Earth
Space Missionsl,2

Ronald Cohen, Wayne Boncyk, James Brutocao, Iain Beveridge
NASA Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 9 1 109

818.354.1002
ron.cohen@jpl.nasa.gov

Abshc t - We developed a capability for model-based
trade space exploration to be used in the conceptual
design of Earth-orbiting space missions. We have created
a set of reusable software components to model various
subsystems and aspects of space missions. Several
example mission models were created to test the tools and
process. This technique and toolset has demonstrated
itself to be valuable for space mission architectural design.

1. LNTRODUCTION .. 1
2. OBJECTIVES .. 1
3. FRAMEWORK ... 1
4. COMPONENT MODELS .. 2
5. MODELING PROCESS ... 2
6. SCHEDULER2
7. SAR MISSION MODEL .. 4
8. MULTI-SAR MISSION MODEL 5
9. BLUE HORIZONS MISSION MODEL 7
10. UNCERTAINTY MODELING 10
11. CONCLUSIONS 10
ACKNOWLEDGEMENTS ... 10
REFERENCES .. 11
BIOGRAPHIES .. 11

Traditional space mission conceptual design involves
creation, typically by an engineering team, of a single
design that meets the mission requirements. Such a design,
while meeting the stated requirements, might not be
optimal because the requirements might be incorrect.
Customers are often unaware of possible tradeoffs
between their requirements and the resulting design.
Exploring these possible trade-offs means understanding
the relationships between requirements and key metrics,
such as mission effectiveness and cost. An understanding
of these trade-offs, i.e., an understanding of the "trade

space," would enable both the customer and the designers
to choose an optimal design rather than simply a feasible
one.

We have developed a preliminary set of s o h a r e tools
and processes that provide such trade spaces for Earth-
orbiting space missions, thus enabling the above-
mentioned design optimization. This work was performed
as part of the Model-Based Engineering and Design
(MBED) project at the NASA Jet Propulsion Laboratory.
In this paper we summarize the results of the first of year
of the MBED work on modeling near-Earth missions. This
work is planned to continue beyond the progress reported
here.

The objectives of this task were:

1. Provide a framework for assembling mission models,
where a "mission model" is an executable assembly of
software "component models." A mission model
models those aspects of a space mission necessary to
answer the questions at hand.

2. Provide a set of reusable component models, each of
which modeis a subsystem (e.g. power) or aspect (e.g.
cost) of a space mission.

3. Develop a process for building mission models.

4. Develop example mission models as a means of
developing and proving the above products.

Our framework consists of the general-purpose software
infrastructure that connects component models into
mission models, executes mission models, facilitates the

I
0-7803-8155-6/041$17.0002004 IEEE COITFC~ 2005 mumher ~cquil-ed

2
IEEEAC paper #1196, Version 3, Updated October 10,2004

building of mission models, and provides for analysis and
visualization of trade space data.

For model connection and execution, we chose Phoenix
Model Center after evaluating various alternatives. For
trade space data visualization and analysis we use the
Advanced Research Laboratory Trade Space Visualizer
(ATSV), developed by the Pennsylvania State University
P I .

We have created a set of component models that model
key spacecraft subsystems and aspects. Some models were
developed internally while others are either COTS or
adopted fiom other sources. The current component
models are shown in Table 1. This list will expand as
more component models are developed.

Table 1 - Component Models
I I Models I I source I

l~arametric Mission Cost 1 Excel 1 JPL I
Model (PMCM)
Spacecraft Subsystems I Excel)DL, and Dr. Wiley
(thermal, propulsion, Larson3
telecomm, structure,
power, attitude control.

Time-based simulation

Launch vehicle selection Excel JPL
Instruments (SAR, Excel Aerospace Corporation,
VNIR/SWIR/TIR
Imager, Sounder,
LIDAR, Laser Altimeter)

models (power, data)

Radiation Exposure

The modeling process consists of the following steps:
Customer interaction
Model development
Trade space generation
Trade space analysis

C++

Orbit coverage (SOAP,
STK, JPL code)

In practice these steps are generally not discrete; they
overlap and often repeat as the nature of the problem is
better understood through iterations of the process.

SOAP, Aerospace
Corporation

- -

3
Worksheets provided by Dr. Larson adapted from SMAD book [Z]

C-H

Customer Interaction comprises interviewing the
customer to determine the trade space variables. Trade
space variables are those independent and dependent
variables of primary importance to the customer. Strictly
speaking, intermediate variables (defined below) are also
often included in the trade space.

Aerospace Corporation,
Analytical Graphics,
Inc., JPL)

Model Development begins with the development of an
overall mission model algorithm that will calculate the
dependent variables from the independent variables. The
overall algorithm generally consists of a set of discrete
calculations of intermehate variables. Next, component
models are either selected (fiom existing models) or
developed as required to calculate the intermediate (and
dependent) variables. Finally, the component models are
integrated into a mission model in the Model Center
framework.

Trade Space Generation consists of cyclic execution of
the mission model, resulting in many sets of independent
and dependent variables. These variable sets make up a
trade space. We generally use noise distributions on
independent variables to broadly populate a trade space
without the structure that results from regularly spaced
independent variables. While it is possible to use
optimization algorithms to optimize the variable sets, we
currently do not use this technique. Rather our intent is to
understand trade space features and the trade-offs between
variables.

Trade Space Analysis begins with importation of the
trade space data into the ATSV visualization software.
ATSV provides the capability to create and view
multidimensional plots of any trade space variables. These
plots are usually in at least 3 dimensions, with other
attributes (glyph color, size, and orientation) providing
visual cues for additional dimensions. By interacting with
the trade space data, trends and correlations can be
observed and analyzed. It is common for unforeseen
effects to be discovered through this process.

Furthermore, it is often not clear what variables should be
optimized in the conceptual design phase. Customers are
oRen unsure of their requirements and funding. Once
presented with a rich option space, customers typically
pursue a "design by shopping" process, which leads to
refinement of requirements, a more optimal design, and
better customer satisfaction. In other words, this process
enables customers to directly make trades between their
basic requirements and resources with knowledge of the
consequences.

The time-based Scheduler is an adaptable, C++ object
oriented framework that autonomously creates time-based

schedules of activities for planetary orbiters. Its primary These include sun in-view activities and ground station in-
output consists of a schedule of observations and other view activities. These external activities set the timing
activities for multiple spacecraft. The schedule maximizes limits for potential activities such as solar m y charging
science return given user-specified constraints. The and downlii activities, respectively. AAer this, the
Scheduler is designed for mission planning for resource- scheduler requests the set of potential activities from the
constrained missions, where time-based modeling is candidate activity generator (see fig.-- "
required to make mission and spacecraft design trade-offs.
While its support for mission models makes it ideal for
conce~tual ~-&e design, its adaptability and extensibility
provides the potential for it to be-applied to all phases of H
mission's lifecycle. against tbe

priority timeline
The Scheduler supports multiple spacecratl constellations,
multiple swath angles per sensor, and multiple polygonal

timeline
area targets to be observed on the planet's surface. Area
targets are broken into eanal-area pixels (the constant area
ofwhich is specifiable by the I&), &ch of which are
individually tracked with regard to coverage statistics. The

I
Scheduler interfaces with orbit models such as the
Satellite Orbit Analysis Program (SOAP) by the

u
Aemspace Corporation, or the Satellite Tool Kit (STK) by
Analytical Graphics, Inc., for obtaining target observation,
sun, and ground station view period windows. Figure 1 - Scheduling Algorithm.

There are 5 main C+t classes, each of which is l l l y The scheduler then iteratively adds these as candidate

customizable to the needs of a particular project through activities to the timeline in priority order. Each time an

C U inheritance. They are: activity is added to the timeline, the constraints are run,
one at a time in user-specified order, against the timeline.

1. Activity: Any schedulable process with a begin time
and an end time Constraints, while checking for scheduling violations

(such as activity timing violations), are also allowed to

2. Candidate Activity Generator: An algorithm that modify the tim&ie. For instance, a constraint may add

recommends activities in priority order ancillary activities to the timeline, such as pre and post
observation activities (includine if needed. slewine

3. Timeline: The holder where all currently proposed activities), which surro*d each-candidate observation.

activities reside ordered by start time Such ancillary activities are illustrated in brown (labeled
"Anc.") adjacent to the orange candidate observations

4. Constraint: Resource models and scheduling mles (labeled "Activity") in figure 2.

that run against the Timeline
Another constraint may apply a rule whereby 0bservationS

5. Scheduler: The controlling algorithm separated by less than a user-specified duration are
mereed into a single observation activity. Other

The Scheduler algorithm is based on the approach used in constraints may --resource models (such as data

the ASTER Earth remote sensing project [3,4]. handling and power models) against the timeline.

The algorithm works as follows. The scheduler breaks the Figure 2 illustrates a constraint violation, where a pre-

mission into segments (usually one day long or less), observation activity overlaps with a post-observation

called "short schedules." Shorter short schedules offer activity. When a constraint fails, the most recently

higher performance (i.e., lower CPU time) because they proposed activity is removed.

take less time to be checked for constraints. However,
longer short schedulers offer higher optimality (i.e.,
amount of science return) because the scheduler has a
higher range of options as to where to place candidate
activities.

For each short schedule, the scheduler fmt places all of
the activities external to the spacecralb onto the timelime.

t i I & I c m s b t s
against the

~&ritv h l i n e

Figure 2 - Consmint Violation.

Alter each activity proposal, the changes that the
constraints made to the timeline are undone so that they
may be reapplied afresh in the next iteration. Figure 3
illustrates the case where all constraints pass (including
merging the newly-added activity with another activity
already on the timeline), and thus the newly merged
activity is made permanent.

Pigure 3 - Successfil Activity Addition.

This process is repeated until each of the candidate
activities have been proposed to the timeline. At the end
of this process, the short schedule is completely populated
with a valid schedule of activities that were placed onto
the timeline in priority order. This process is repeated for
each short schedule.

The scheduling algorithm that has been implemented
currently uses a greedy scheduling algorithm. While it
may not produce the most optimal schedule possible, it
executes in a fraction of the time required by algorithms
that produce a provably optimal schedule. Minimizing
execution time is especially important when the scheduler
runs hundreds or thousands of times to populate a trade
space. However, if computing power allows, other
algorithms (such as genetic algorithms) can be plugged in
to the scheduler by using C++ inheritance.

The greedy algorithm works as follows. Area target
observation windows received from SOAP or STK are
broken into smaller, overlapping segments. Then, the
priority, meaning the relative importance of being
observed, of each segment is calculated based upon
adding up the priority of each pixel underlying it.
Segments are then placed in a priority queue, and
proposed in priority order. Segments that overlap when
placed on the timeline are merged by the tirst constraint
that is run against the timeline.

The algorithm for determining priority for each pixel is a
function of which area targets share the pixel, and how
many times the pixel has been observed. Since the priority
of each pixel can change as it is observed throughout the
mission (presumably, by becoming lower in priority),
candidate activities must be reprioridzed as pixels get
observed. The following algorithm is currently being used
to efficiently reprioritize candidate observation activities:

1. Add new observation segment to timeline.

2. Merge with smunding observation windows.

3. If all constraints pass, determine the observation
window on the timeline that is new.

4. Reprioritize the pixels in this new observation window.

5. Recalculate the priority of the next observation in
priority queue.

6. If the priority of the next observation has been lowered
as a result of step 5, reinsert it into the priority queue
and repeat from step 5, otherwise repeat from step 1.

The scheduler supports file-based user inputs and outputs,
which depend upon which are variables needed to support
trade studies. Examples of inputs include number of
spacecraft battery size, initial battery energy, and data
storage capacity. Examples of outputs include total
observation time, percentage of total targets observed
once, and percentage of total targets observed a user-
specified number of times.

7. SAR MISSION MODEL

We developed a mission model of an Earth-observing
LEO Synthetic Aperture Radar (SAR) mission. This
fictitious mission performs spotlight observations of fixed
Earth surface point targets, uses a solar array and battery
for power, stores observation data on a solid-state
recorder (SSR) and downlinks data to ground stations.
Observation and activity sequences are created at run-time
by the Scheduler (as discussed in section 6) and are
optimized according to the priorities of the targets.

The dependent variables for this mission model were: total
observation time and total system cost. The independent
variables were: solar m y size, battery size, SSR size,
and orbit semi-major axis. Circular orbit was assumed.

The overall mission model algorithm is as follows:

1. Choose the design vector (i.e., the independent
variables).

2. Generate observation and downlink opportunities
h m the orbit model.

3. Calculate the SAR size and power for constant noise
equivalent (q) and ground resolution.

4. Size the spacecraft (SC) systems (i.e., its mass and
power).

5. Select the launch vehicle.

6. Calculate the costs of the SAR, the SC system
development, mission operations, and the launch
vehicle.

7. Create a time-based scenario using the Scheduler
(discussed in section 6), which is an optimized
schedule that maximizes observations within design
limits, using time-based subsystem modeling.

8. Calculate dependent variables.

9. Repeat from Step l

We generated approximately 20,000 design points with
uniform noise distributions on the independent variables.
Various correlations were observed, as expected, between
the trade space variables. Figure 4 shows the relationships
between total mission cost (on the axis into the page),
solid-state recorder capacity or "Memory" (on the
horizontal axis), total observation (on the vertical axis),
and semi-major axis (shown by color, red being the
largest). Mission cost incmases nearly linearly with semi-
major axis because the SAR antenna size (and thus mass
and cost) increases with altitude to maintain constant
imaging performance. Similarly, observation time
increases with semi-major axis due to increased target
view periods.

Mission C d
33 00

Figure 4 - SAR Mission Trade Space.

A non-intuitive result is sbown in Figure 5, which shows
the semi-major axis length versus minimum life cycle
cost The increase in cost at very low altitudes was
unexpected. This result was due to the effect of drag at
low altitudes. Increased drag required increased fuel (for
orbit maintenance) thus increasing structural mass and in
twn, cost.

., - -3

SomiMajor Axis '-' I
Figure 5 - Minimum Cost Semi-major Axis.

We developed a Multi-SAR mission model as follow-on
to the SAR mission model described in section 7. The

Multi-SAR mission model demonstrates the ability to
model and schedule a constellation of multiple
spacecrafts, each ohserving multiple area targets,-(shown
in Figure 6)-, as opposed to point targets as in the SAR
mission model. As with the SAR mission model, this
fictitious mission was modeled in LEO, at a circular
orbital altitude of 600 Ian, using a solar array and battery
for power, storing observation data on an SSR, and
sending downlink data to ground stations.

The elements of the design that were chosen as
independent variables were: solar array size, battery sue,
SSR sue, SAR bandwidth, SAR pulse length, and
downlink data rate. The dependent variables for this
mission were: total mission cost, coverage metrics, and
revisit metrics.

Figure 6 - Multi-SAR Area Targets

Figure 7 - Multi-SAR Flow Diagram

Output data are then exported into ATSV. One set of
results can be seen in Figure 8. This figure shows, as
expected, that increasing the number of spacecraft
significantly increases the Total Project Cost.

The Multi-SAR model flow diagram is shown in Figure 7.
The design vector elements are generated using a
randomizer script for each mission model run. The
elements are then fed into the subsystem models to design
the physical spacecraft and the SAR instrument. It was
assumed that all spacecraft in the constellation were
identical for each mission design.

The variable representing the number of spacecraft is
passed from the Independent Variable Generator into the Figure 8 - Multi-SAR Trade Space - Number of
Time Based Scheduler, and then into a Learning Curve Spacecraft vs. Total Project Cost
"module". This process determines the coverage and
revisit metrics as well as the total project cost. The Figure 9 shows the relationship between observation time
Learning Curve module uses an algorithm that estimates and number of spacecraft; the data suggest d i s h i n g
cost reductions for multiple spacecraft of the same design. return beyond 3 spacecraft. The number of spacecraft can

be seen represented by glyph sue; the smallest glyphs
correspond to 1 spacecraft and the largest glyphs
correspond to 4 spacecraft.

SAR Bandwidth , .
,-

Figure 9 - Multi-SAR Trade Space - Total Observation
Time vs. Total Project Cost

Figures 10 and I I demonstrate the Cost per Spacecraft
and Total Observation Time as a function of the SAR
Bandwidth. Figure 10 shows that increasing the bandwidth
results in an initial rapid decrease in the total observation
time. This suggests that regardless of the other design
factors, it is important to keep the bandwidth of the SAR
design low.

Figure 10 - Multi-SAR Trade Space - SAR Bandwidth
vs. Total Observation Time

The top down view shown in Figure I I also shows a
correlation between the SAR Bandwidth and the Cost per
Spacecraft. It indicates that as the Bandwidth increases the
Spacecraft Cost also increases, which further suggests that
for this mission it is important to keep the bandwidth low.

Figure 11 - Multi-SAR Trade Space - Cost per
Spacecraft vs. SAR Bandwidth

These results reveal several interesting trends, many of
which are beyond the scope of this paper to discuss.
Several improvements yet to be made will increase the
usefulness of the tools further, such as higher integrity
models and a greater number of points in the trade space.

The next steps for the Multi-SAR mission model is to
incorporate uncertainty analysis (see section 10) to
determine the cloud of uncertainty surrounding the
mission model design output points, and to generate a
pixel coverage map as output. A pixel coverage map will
aid in analyzing coverage and revisit metrics through
visualizing coverage and revisit metrics for the pixels
contained within the area targets, highlighting the areas
observed most as well as the areas not observed at all.

Finally, future effort will be given to improvements in
run-time performance. The SOAP runs that were
performed prior to the mission model runs involved over
100 hours of CPU time for one orbital altitude. Ideally for
a mission of this scope, a number of different orbits would
be examined. By utilizing more computing power for both
the SOAP runs and the mission model runs, we hope to
decrease the run-time to a matter of hours instead of days.

The charter of the Blue Horizons (BH) effort is to develop
a suite of measurement capabilities, which will be flown
on one or more platforms, at various orbits, to collect
measurements of trace atmospheric constituents (gases
and aerosols). The measurements will enable
comprehemive study of the generation and transport of
atmospheric pollution, the effects of that pollution on both
local air quality and global climate, and also the tracking
of emissions from volcanic events. The scope of the BH

mission is large, with the need to characterize nearly three
dozen molecular species and atmospheric parameters. BH
instruments can be flown individually, or in suites of
multiple instruments, and even on multiple platforms at
various orbits. The BH mission model is intended to be
used both as a science optimization tool and a
programmatic (cosf schedule) evaluation tool.

The model is shown schematically in Figure 12. Design
Vector elements, which include desired molecular species,
spatial resolution, orbit altitude and incliation, as well as
programmatic metrics (cost and schedule constraints) are
shown in blue (Input Parameters). A radiative transfer
model, models of eight different types of remote sensing
instruments, and an orbital coverage and revisit calculator
are used to compute the resulting trade space output
vector for each independent input set. The instruments are
both nadir and limb looking, with solar occultation
instruments modeled as well. There are over 300
parameters of interest in each output vector, representing
measurement precision and accuracies for each sensed
atmospheric quantity, the characteristics of each
instrument (mass, power, aperture

Figure 12 - BH Mission Model Schematic

size, etc.) and similarly the characteristics (mass, power,
volume, net downlink data rate, etc.) of the resulting
instrument platforms, and a variety of cost and schedule
mehics. Uniform random distributions of each input
parameter are used in the synthesis of each design vector.

An initial run of 18,000 design vectors was completed to
populate a hade space sufficient for a first-cut evaluation
and calibration of the model. This is a sparse hade space
for a model of this degree of complexity; nevertheless, a
rich hade space resulted, where fundamental relationships
between parameters in the model can be seen when the
data are visualized (see figure 13).

The utility of user customizahle filters contained within
the ATSV tool to facilitate hade space analysis is evident
in Figures 14 and 15. Figure 14 is a visualization of the
BH data relating the cost of an instrument to its aperture
size and verticaI spatial resolution. It shows the entire
hade space, including all possible instrument types
measuring all desired atmospheric constituents. Figure 13 - BH Trade Space

Color = Development Cost

lnstr 1 ~erIloaikePolution

Figure 13 - Btl Trade Space

Figure 14 - BH Trade Space - Instrument Cost vs.
Aperture Size

Figure 15 shows the same dataset filtered to only show
those instruments capable of measuring water vapor.

Color = Development Cost

Figure 15 - BH Trade Space - Instrument Cost vs
Aperture Size for Water Vapor Measurements

To avoid making decisions based on misleading data, it is
important to know the magnitude of the uncertainties in
trade space data. We therefore developed a generic
process to estimate the magnitude of uncertainties on
dependent variables.

This process consists of the following steps:

1. Select Key Output Parameters. With a model as
complex as Blue Horizons, performing an uncertainty
analysis for over 300 output parameters is neither
necessary nor practical. Thus, we select a subset of the
entire output parameter set that will reflect the needs of a
particular user. For example, a BH program manager may
be most interested in cost and schedule uncertainties,
while a science user would be primarily concerned with
net uncertainties on the measurement accuracies of
specific molecular species.

2. For every lnput Parameter in the Design Vector,
determine an estimate of uncertainty (I u) , based upon a
priori knowledge of the characteristics of that parameter,
obtained either from quantitative measurements or from
expert opinion.

4. Declare those input parameters which have a significant
effect on the Key Outputs as Key Uncertainties.

5. Repeat Steps 2 through 4 for any internal model
constants that are estimated rather than known, and for
each model shuctural component that has been estimated
rather than known. This yields a comprehensive set of Key
Uncertainties.

6. Within the model, replace all Key Uncertainties with
distribution functions. Perform a Monte Carlo analysis
with all Key distributions.

7. The observed uncertainties in the Key Outputs resulting
from these Monte Carlo runs define the net uncettainty in
the model.

We have built an initial capability for rapid model-based
trade space exploration in the conceptual design phase of
Earth-orbiting space missions. This technique enables the
discovery and analysis of relationships between key
design variable and thus the optimization of designs at an
early stage in the design process. Ow capability includes a
continuously expanding set of reusable component
models, a framework for assembling the component
models into mission models, and a process for creating
mission models. We have demonstrated this capability by
building several example mission models. We have shown
that this capability enables systemic trades across all
aspects of a mission, including engineering, cost, science
objectives, and performance.

The authors gratefully acknowledge Adam Ross (JPL),
Jason Derleth (JPL), and Bohak Ferdowsi (JPL) for their
work on the SAR Mission.

3. With other Input Parameters at fixed values, run the
model with the expected value, the 1-0 high value, and the
1u low value for each lnput Parameter, independently.

[I] Stump, G.M., Yukish, M., Simpson, T.W., and
O'Hara, J.J., "Trade Space Exploration of Satellite
Datasets Using a Design By Shopping Paradigmgm', IEEE
Aerospace Conference, 2004, Big Sky, MT, March 6-13,
Paper No. 1039.

[2] Larson, W.J., Wertz, J.R., "Space Mission Analysis
and Design Third Edition", Volume 8, Space Technology
Library, Space Technology Series, Microcosm Press,
1999

[3] Ohno, et al., ''Data Acquisition Scheduling Algorithm
for Multitelescope Instnunent With Pointing Function",
European Symposium on Satellite Remote Sensing Dl,
1996

[4] Muraoka, et al., "ASTER Observation Scheduling
Algonth.", SpaceOps 98, Tokyo, 1998

Ron Coben is a senior engineer at the
NASA Jet Propulsion Laboratory, task
manager of the Model-Based
Engineering and Design Earth Team,
and Project System Engineer for the
NASA Exploration Design Team. He
war previously manager of the JPL
Project Design Center and served in

various positions in system engineering, mission
operations, and sofhYae development at JPL, TRRW; and
NASA-JSC. He holdr a BS in Aerospace Engineeringfrom
Penn State and a MS in Engineeringfrom Stanford

I Laboratory, currently involved with the
development of eanh remote sen sin^ -
mission architecture planning tools.
Throughout his career he has been
mvolved in the design, development,

characteruation and calibration of a variety of NASA
microwave and optical remote sensing insfruments.

James Bruiocao specializes in
software architecture, design, and
development, particularly in the area
of discrete event simulation technology.
He began his career at JPL in 1991.
focusing on integrated circuit
reliability for deep space. Since then, L

hr ,.os developed multi-mission software, including
models for telecom and aftitude and ammfrculation control,
and a tool to support mission planning. He has also
served ar a Senior Softwme Engineer at Metron, Inc.,
where he developed object oriented sofhvare for parallel
discrete event simulation technology used to support
military wargaming simulations. James holds a B.S.
degree in Physics from Harvey Mudd College.

1 Iain Beveridge is a systems engineer
at the NASA Jet Propulsion
Laboratory, currently involved with
the development of Model Based
Engineering and Design technology.
lain was previously employed as an
academic part-time employee by Sun
Microsystem. He holds a BEng in

Mechanical and Electrical Engineming from the
University of Edinburgh (Scotland) and a Meng in Space
Systemsfrom the University of Michigan.

