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Abshc t  - We developed a capability for model-based 
trade space exploration to be used in the conceptual 
design of Earth-orbiting space missions. We have created 
a set of reusable software components to model various 
subsystems and aspects of space missions. Several 
example mission models were created to test the tools and 
process. This technique and toolset has demonstrated 
itself to be valuable for space mission architectural design. 
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Traditional space mission conceptual design involves 
creation, typically by an engineering team, of a single 
design that meets the mission requirements. Such a design, 
while meeting the stated requirements, might not be 
optimal because the requirements might be incorrect. 
Customers are often unaware of possible tradeoffs 
between their requirements and the resulting design. 
Exploring these possible trade-offs means understanding 
the relationships between requirements and key metrics, 
such as mission effectiveness and cost. An understanding 
of these trade-offs, i.e., an understanding of the "trade 

space," would enable both the customer and the designers 
to choose an optimal design rather than simply a feasible 
one. 

We have developed a preliminary set of s o h a r e  tools 
and processes that provide such trade spaces for Earth- 
orbiting space missions, thus enabling the above- 
mentioned design optimization. This work was performed 
as part of the Model-Based Engineering and Design 
(MBED) project at the NASA Jet Propulsion Laboratory. 
In this paper we summarize the results of the first of year 
of the MBED work on modeling near-Earth missions. This 
work is planned to continue beyond the progress reported 
here. 

The objectives of this task were: 

1. Provide a framework for assembling mission models, 
where a "mission model" is an executable assembly of 
software "component models." A mission model 
models those aspects of a space mission necessary to 
answer the questions at hand. 

2. Provide a set of reusable component models, each of 
which modeis a subsystem (e.g. power) or aspect (e.g. 
cost) of a space mission. 

3. Develop a process for building mission models. 

4. Develop example mission models as a means of 
developing and proving the above products. 

Our framework consists of the general-purpose software 
infrastructure that connects component models into 
mission models, executes mission models, facilitates the 
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building of mission models, and provides for analysis and 
visualization of trade space data. 

For model connection and execution, we chose Phoenix 
Model Center after evaluating various alternatives. For 
trade space data visualization and analysis we use the 
Advanced Research Laboratory Trade Space Visualizer 
(ATSV), developed by the Pennsylvania State University 
P I .  

We have created a set of component models that model 
key spacecraft subsystems and aspects. Some models were 
developed internally while others are either COTS or 
adopted fiom other sources. The current component 
models are shown in Table 1. This list will expand as 
more component models are developed. 

Table 1 - Component Models 
I I Models I I source I 

l~arametric Mission Cost 1 Excel 1 JPL I 
Model (PMCM) 
Spacecraft Subsystems I Excel )DL, and Dr. Wiley 
(thermal, propulsion, Larson3 
telecomm, structure, 
power, attitude control. 

Time-based simulation 

Launch vehicle selection Excel JPL 
Instruments (SAR, Excel Aerospace Corporation, 
VNIR/SWIR/TIR 
Imager, Sounder, 
LIDAR, Laser Altimeter) 

models (power, data) 

Radiation Exposure 

The modeling process consists of the following steps: 
Customer interaction 
Model development 
Trade space generation 
Trade space analysis 

C++ 

Orbit coverage (SOAP, 
STK, JPL code) 

In practice these steps are generally not discrete; they 
overlap and often repeat as the nature of the problem is 
better understood through iterations of the process. 

SOAP, Aerospace 
Corporation 

- - 

3 
Worksheets provided by Dr. Larson adapted from SMAD book [Z] 

C-H 

Customer Interaction comprises interviewing the 
customer to determine the trade space variables. Trade 
space variables are those independent and dependent 
variables of primary importance to the customer. Strictly 
speaking, intermediate variables (defined below) are also 
often included in the trade space. 

Aerospace Corporation, 
Analytical Graphics, 
Inc., JPL) 

Model Development begins with the development of an 
overall mission model algorithm that will calculate the 
dependent variables from the independent variables. The 
overall algorithm generally consists of a set of discrete 
calculations of intermehate variables. Next, component 
models are either selected (fiom existing models) or 
developed as required to calculate the intermediate (and 
dependent) variables. Finally, the component models are 
integrated into a mission model in the Model Center 
framework. 

Trade Space Generation consists of cyclic execution of 
the mission model, resulting in many sets of independent 
and dependent variables. These variable sets make up a 
trade space. We generally use noise distributions on 
independent variables to broadly populate a trade space 
without the structure that results from regularly spaced 
independent variables. While it is possible to use 
optimization algorithms to optimize the variable sets, we 
currently do not use this technique. Rather our intent is to 
understand trade space features and the trade-offs between 
variables. 

Trade Space Analysis begins with importation of the 
trade space data into the ATSV visualization software. 
ATSV provides the capability to create and view 
multidimensional plots of any trade space variables. These 
plots are usually in at least 3 dimensions, with other 
attributes (glyph color, size, and orientation) providing 
visual cues for additional dimensions. By interacting with 
the trade space data, trends and correlations can be 
observed and analyzed. It is common for unforeseen 
effects to be discovered through this process. 

Furthermore, it is often not clear what variables should be 
optimized in the conceptual design phase. Customers are 
oRen unsure of their requirements and funding. Once 
presented with a rich option space, customers typically 
pursue a "design by shopping" process, which leads to 
refinement of requirements, a more optimal design, and 
better customer satisfaction. In other words, this process 
enables customers to directly make trades between their 
basic requirements and resources with knowledge of the 
consequences. 

The time-based Scheduler is an adaptable, C++ object 
oriented framework that autonomously creates time-based 



schedules of activities for planetary orbiters. Its primary These include sun in-view activities and ground station in- 
output consists of a schedule of observations and other view activities. These external activities set the timing 
activities for multiple spacecraft. The schedule maximizes limits for potential activities such as solar m y  charging 
science return given user-specified constraints. The and downlii activities, respectively. AAer this, the 
Scheduler is designed for mission planning for resource- scheduler requests the set of potential activities from the 
constrained missions, where time-based modeling is candidate activity generator (see fig.-- " 
required to make mission and spacecraft design trade-offs. 
While its support for mission models makes it ideal for 
conce~tual ~-&e design, its adaptability and extensibility 
provides the potential for it to be-applied to all phases of H 
mission's lifecycle. against tbe 

priority timeline 
The Scheduler supports multiple spacecratl constellations, 
multiple swath angles per sensor, and multiple polygonal 

timeline 
area targets to be observed on the planet's surface. Area 
targets are broken into eanal-area pixels (the constant area 
ofwhich is specifiable by the I&), &ch of which are 
individually tracked with regard to coverage statistics. The 

I 
Scheduler interfaces with orbit models such as the 
Satellite Orbit Analysis Program (SOAP) by the 

u 
Aemspace Corporation, or the Satellite Tool Kit (STK) by 
Analytical Graphics, Inc., for obtaining target observation, 
sun, and ground station view period windows. Figure 1 - Scheduling Algorithm. 

There are 5 main C+t classes, each of which is l l l y  The scheduler then iteratively adds these as candidate 

customizable to the needs of a particular project through activities to the timeline in priority order. Each time an 

C U  inheritance. They are: activity is added to the timeline, the constraints are run, 
one at a time in user-specified order, against the timeline. 

1. Activity: Any schedulable process with a begin time 
and an end time Constraints, while checking for scheduling violations 

(such as activity timing violations), are also allowed to 

2. Candidate Activity Generator: An algorithm that modify the tim&ie. For instance, a constraint may add 

recommends activities in priority order ancillary activities to the timeline, such as pre and post 
observation activities (includine if needed. slewine 

3. Timeline: The holder where all currently proposed activities), which surro*d each-candidate observation. 

activities reside ordered by start time Such ancillary activities are illustrated in brown (labeled 
"Anc.") adjacent to the orange candidate observations 

4. Constraint: Resource models and scheduling mles (labeled "Activity") in figure 2. 

that run against the Timeline 
Another constraint may apply a rule whereby 0bservationS 

5. Scheduler: The controlling algorithm separated by less than a user-specified duration are 
mereed into a single observation activity. Other 

The Scheduler algorithm is based on the approach used in constraints may --resource models (such as data 

the ASTER Earth remote sensing project [3,4]. handling and power models) against the timeline. 

The algorithm works as follows. The scheduler breaks the Figure 2 illustrates a constraint violation, where a pre- 

mission into segments (usually one day long or less), observation activity overlaps with a post-observation 

called "short schedules." Shorter short schedules offer activity. When a constraint fails, the most recently 

higher performance (i.e., lower CPU time) because they proposed activity is removed. 

take less time to be checked for constraints. However, 
longer short schedulers offer higher optimality (i.e., 
amount of science return) because the scheduler has a 
higher range of options as to where to place candidate 
activities. 

For each short schedule, the scheduler fmt places all of 
the activities external to the spacecralb onto the timelime. 
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Figure 2 - Consmint Violation. 

Alter each activity proposal, the changes that the 
constraints made to the timeline are undone so that they 
may be reapplied afresh in the next iteration. Figure 3 
illustrates the case where all constraints pass (including 
merging the newly-added activity with another activity 
already on the timeline), and thus the newly merged 
activity is made permanent. 

Pigure 3 - Successfil Activity Addition. 

This process is repeated until each of the candidate 
activities have been proposed to the timeline. At the end 
of this process, the short schedule is completely populated 
with a valid schedule of activities that were placed onto 
the timeline in priority order. This process is repeated for 
each short schedule. 

The scheduling algorithm that has been implemented 
currently uses a greedy scheduling algorithm. While it 
may not produce the most optimal schedule possible, it 
executes in a fraction of the time required by algorithms 
that produce a provably optimal schedule. Minimizing 
execution time is especially important when the scheduler 
runs hundreds or thousands of times to populate a trade 
space. However, if computing power allows, other 
algorithms (such as genetic algorithms) can be plugged in 
to the scheduler by using C++ inheritance. 

The greedy algorithm works as follows. Area target 
observation windows received from SOAP or STK are 
broken into smaller, overlapping segments. Then, the 
priority, meaning the relative importance of being 
observed, of each segment is calculated based upon 
adding up the priority of each pixel underlying it. 
Segments are then placed in a priority queue, and 
proposed in priority order. Segments that overlap when 
placed on the timeline are merged by the tirst constraint 
that is run against the timeline. 

The algorithm for determining priority for each pixel is a 
function of which area targets share the pixel, and how 
many times the pixel has been observed. Since the priority 
of each pixel can change as it is observed throughout the 
mission (presumably, by becoming lower in priority), 
candidate activities must be reprioridzed as pixels get 
observed. The following algorithm is currently being used 
to efficiently reprioritize candidate observation activities: 

1. Add new observation segment to timeline. 

2. Merge with smunding observation windows. 

3. If all constraints pass, determine the observation 
window on the timeline that is new. 

4. Reprioritize the pixels in this new observation window. 

5. Recalculate the priority of the next observation in 
priority queue. 

6. If the priority of the next observation has been lowered 
as a result of step 5, reinsert it into the priority queue 
and repeat from step 5, otherwise repeat from step 1. 

The scheduler supports file-based user inputs and outputs, 
which depend upon which are variables needed to support 
trade studies. Examples of inputs include number of 
spacecraft battery size, initial battery energy, and data 
storage capacity. Examples of outputs include total 
observation time, percentage of total targets observed 
once, and percentage of total targets observed a user- 
specified number of times. 

7. SAR MISSION MODEL 

We developed a mission model of an Earth-observing 
LEO Synthetic Aperture Radar (SAR) mission. This 
fictitious mission performs spotlight observations of fixed 
Earth surface point targets, uses a solar array and battery 
for power, stores observation data on a solid-state 
recorder (SSR) and downlinks data to ground stations. 
Observation and activity sequences are created at run-time 
by the Scheduler (as discussed in section 6) and are 
optimized according to the priorities of the targets. 



The dependent variables for this mission model were: total 
observation time and total system cost. The independent 
variables were: solar m y  size, battery size, SSR size, 
and orbit semi-major axis. Circular orbit was assumed. 

The overall mission model algorithm is as follows: 

1. Choose the design vector (i.e., the independent 
variables). 

2. Generate observation and downlink opportunities 
h m  the orbit model. 

3. Calculate the SAR size and power for constant noise 
equivalent (q) and ground resolution. 

4. Size the spacecraft (SC) systems (i.e., its mass and 
power). 

5. Select the launch vehicle. 

6. Calculate the costs of the SAR, the SC system 
development, mission operations, and the launch 
vehicle. 

7. Create a time-based scenario using the Scheduler 
(discussed in section 6), which is an optimized 
schedule that maximizes observations within design 
limits, using time-based subsystem modeling. 

8. Calculate dependent variables. 

9. Repeat from Step l 

We generated approximately 20,000 design points with 
uniform noise distributions on the independent variables. 
Various correlations were observed, as expected, between 
the trade space variables. Figure 4 shows the relationships 
between total mission cost (on the axis into the page), 
solid-state recorder capacity or "Memory" (on the 
horizontal axis), total observation (on the vertical axis), 
and semi-major axis (shown by color, red being the 
largest). Mission cost incmases nearly linearly with semi- 
major axis because the SAR antenna size (and thus mass 
and cost) increases with altitude to maintain constant 
imaging performance. Similarly, observation time 
increases with semi-major axis due to increased target 
view periods. 

Mission C d  
33 00 

Figure 4 - SAR Mission Trade Space. 

A non-intuitive result is sbown in Figure 5, which shows 
the semi-major axis length versus minimum life cycle 
cost The increase in cost at very low altitudes was 
unexpected. This result was due to the effect of drag at 
low altitudes. Increased drag required increased fuel (for 
orbit maintenance) thus increasing structural mass and in 
twn, cost. 

., - -3 

SomiMajor Axis '-' I 
Figure 5 - Minimum Cost Semi-major Axis. 

We developed a Multi-SAR mission model as follow-on 
to the SAR mission model described in section 7. The 



Multi-SAR mission model demonstrates the ability to 
model and schedule a constellation of multiple 
spacecrafts, each ohserving multiple area targets,-(shown 
in Figure 6)-, as opposed to point targets as in the SAR 
mission model. As with the SAR mission model, this 
fictitious mission was modeled in LEO, at a circular 
orbital altitude of 600 Ian, using a solar array and battery 
for power, storing observation data on an SSR, and 
sending downlink data to ground stations. 

The elements of the design that were chosen as 
independent variables were: solar array size, battery sue, 
SSR sue, SAR bandwidth, SAR pulse length, and 
downlink data rate. The dependent variables for this 
mission were: total mission cost, coverage metrics, and 
revisit metrics. 

Figure 6 - Multi-SAR Area Targets 

Figure 7 - Multi-SAR Flow Diagram 

Output data are then exported into ATSV. One set of 
results can be seen in Figure 8. This figure shows, as 
expected, that increasing the number of spacecraft 
significantly increases the Total Project Cost. 

The Multi-SAR model flow diagram is shown in Figure 7. 
The design vector elements are generated using a 
randomizer script for each mission model run. The 
elements are then fed into the subsystem models to design 
the physical spacecraft and the SAR instrument. It was 
assumed that all spacecraft in the constellation were 
identical for each mission design. 

The variable representing the number of spacecraft is 
passed from the Independent Variable Generator into the Figure 8 - Multi-SAR Trade Space - Number of 
Time Based Scheduler, and then into a Learning Curve Spacecraft vs. Total Project Cost 
"module". This process determines the coverage and 
revisit metrics as well as the total project cost. The Figure 9 shows the relationship between observation time 
Learning Curve module uses an algorithm that estimates and number of spacecraft; the data suggest d i s h i n g  
cost reductions for multiple spacecraft of the same design. return beyond 3 spacecraft. The number of spacecraft can 

be seen represented by glyph sue; the smallest glyphs 
correspond to 1 spacecraft and the largest glyphs 
correspond to 4 spacecraft. 
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Figure 9 - Multi-SAR Trade Space - Total Observation 
Time vs. Total Project Cost 

Figures 10 and I I demonstrate the Cost per Spacecraft 
and Total Observation Time as a function of the SAR 
Bandwidth. Figure 10 shows that increasing the bandwidth 
results in an initial rapid decrease in the total observation 
time. This suggests that regardless of the other design 
factors, it is important to keep the bandwidth of the SAR 
design low. 

Figure 10 - Multi-SAR Trade Space - SAR Bandwidth 
vs. Total Observation Time 

The top down view shown in Figure I I also shows a 
correlation between the SAR Bandwidth and the Cost per 
Spacecraft. It indicates that as the Bandwidth increases the 
Spacecraft Cost also increases, which further suggests that 
for this mission it is important to keep the bandwidth low. 

Figure 11 - Multi-SAR Trade Space - Cost per 
Spacecraft vs. SAR Bandwidth 

These results reveal several interesting trends, many of 
which are beyond the scope of this paper to discuss. 
Several improvements yet to be made will increase the 
usefulness of the tools further, such as higher integrity 
models and a greater number of points in the trade space. 

The next steps for the Multi-SAR mission model is to 
incorporate uncertainty analysis (see section 10) to 
determine the cloud of uncertainty surrounding the 
mission model design output points, and to generate a 
pixel coverage map as output. A pixel coverage map will 
aid in analyzing coverage and revisit metrics through 
visualizing coverage and revisit metrics for the pixels 
contained within the area targets, highlighting the areas 
observed most as well as the areas not observed at all. 

Finally, future effort will be given to improvements in 
run-time performance. The SOAP runs that were 
performed prior to the mission model runs involved over 
100 hours of CPU time for one orbital altitude. Ideally for 
a mission of this scope, a number of different orbits would 
be examined. By utilizing more computing power for both 
the SOAP runs and the mission model runs, we hope to 
decrease the run-time to a matter of hours instead of days. 

The charter of the Blue Horizons (BH) effort is to develop 
a suite of measurement capabilities, which will be flown 
on one or more platforms, at various orbits, to collect 
measurements of trace atmospheric constituents (gases 
and aerosols). The measurements will enable 
comprehemive study of the generation and transport of 
atmospheric pollution, the effects of that pollution on both 
local air quality and global climate, and also the tracking 
of emissions from volcanic events. The scope of the BH 



mission is large, with the need to characterize nearly three 
dozen molecular species and atmospheric parameters. BH 
instruments can be flown individually, or in suites of 
multiple instruments, and even on multiple platforms at 
various orbits. The BH mission model is intended to be 
used both as a science optimization tool and a 
programmatic (cosf schedule) evaluation tool. 

The model is shown schematically in Figure 12. Design 
Vector elements, which include desired molecular species, 
spatial resolution, orbit altitude and incliation, as well as 
programmatic metrics (cost and schedule constraints) are 
shown in blue (Input Parameters). A radiative transfer 
model, models of eight different types of remote sensing 
instruments, and an orbital coverage and revisit calculator 
are used to compute the resulting trade space output 
vector for each independent input set. The instruments are 
both nadir and limb looking, with solar occultation 
instruments modeled as well. There are over 300 
parameters of interest in each output vector, representing 
measurement precision and accuracies for each sensed 
atmospheric quantity, the characteristics of each 
instrument (mass, power, aperture 

Figure 12 - BH Mission Model Schematic 



size, etc.) and similarly the characteristics (mass, power, 
volume, net downlink data rate, etc.) of the resulting 
instrument platforms, and a variety of cost and schedule 
mehics. Uniform random distributions of each input 
parameter are used in the synthesis of each design vector. 

An initial run of 18,000 design vectors was completed to 
populate a hade space sufficient for a first-cut evaluation 
and calibration of the model. This is a sparse hade space 
for a model of this degree of complexity; nevertheless, a 
rich hade space resulted, where fundamental relationships 
between parameters in the model can be seen when the 
data are visualized (see figure 13). 

The utility of user customizahle filters contained within 
the ATSV tool to facilitate hade space analysis is evident 
in Figures 14 and 15. Figure 14 is a visualization of the 
BH data relating the cost of an instrument to its aperture 
size and verticaI spatial resolution. It shows the entire 
hade space, including all possible instrument types 
measuring all desired atmospheric constituents. Figure 13 - BH Trade Space 

Color = Development Cost 
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Figure 13 - Btl Trade Space 

Figure 14 - BH Trade Space - Instrument Cost vs. 
Aperture Size 

Figure 15 shows the same dataset filtered to only show 
those instruments capable of measuring water vapor. 



Color = Development Cost 

Figure 15 - BH Trade Space - Instrument Cost vs 
Aperture Size for Water Vapor Measurements 

To avoid making decisions based on misleading data, it is 
important to know the magnitude of the uncertainties in 
trade space data. We therefore developed a generic 
process to estimate the magnitude of uncertainties on 
dependent variables. 

This process consists of the following steps: 

1. Select Key Output Parameters. With a model as 
complex as Blue Horizons, performing an uncertainty 
analysis for over 300 output parameters is neither 
necessary nor practical. Thus, we select a subset of the 
entire output parameter set that will reflect the needs of a 
particular user. For example, a BH program manager may 
be most interested in cost and schedule uncertainties, 
while a science user would be primarily concerned with 
net uncertainties on the measurement accuracies of 
specific molecular species. 

2. For every lnput Parameter in the Design Vector, 
determine an estimate of uncertainty ( I u ) ,  based upon a 
priori knowledge of the characteristics of that parameter, 
obtained either from quantitative measurements or from 
expert opinion. 

4. Declare those input parameters which have a significant 
effect on the Key Outputs as Key Uncertainties. 

5. Repeat Steps 2 through 4 for any internal model 
constants that are estimated rather than known, and for 
each model shuctural component that has been estimated 
rather than known. This yields a comprehensive set of Key 
Uncertainties. 

6. Within the model, replace all Key Uncertainties with 
distribution functions. Perform a Monte Carlo analysis 
with all Key distributions. 

7. The observed uncertainties in the Key Outputs resulting 
from these Monte Carlo runs define the net uncettainty in 
the model. 

We have built an initial capability for rapid model-based 
trade space exploration in the conceptual design phase of 
Earth-orbiting space missions. This technique enables the 
discovery and analysis of relationships between key 
design variable and thus the optimization of designs at an 
early stage in the design process. Ow capability includes a 
continuously expanding set of reusable component 
models, a framework for assembling the component 
models into mission models, and a process for creating 
mission models. We have demonstrated this capability by 
building several example mission models. We have shown 
that this capability enables systemic trades across all 
aspects of a mission, including engineering, cost, science 
objectives, and performance. 

The authors gratefully acknowledge Adam Ross (JPL), 
Jason Derleth (JPL), and Bohak Ferdowsi (JPL) for their 
work on the SAR Mission. 

3. With other Input Parameters at fixed values, run the 
model with the expected value, the 1-0 high value, and the 
1u low value for each lnput Parameter, independently. 
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