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ABSTRACT 

In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, nf of which are 
drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor 
notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in 
an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft 
follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free 
control technology with formation Aying in order to mitigate the effect of differential aerodynamic drag on formation 
flying missions (e.g., Earth imaging applications) in low Earth orbit. 

1. INTRODUCTION 

The concept of a drag-free spacecraft was introduced by Lange in 1964 .~  The idea is based on placing a proof 
mass constructed from a gold-platinum alloy within a cavity of a larger spacecraft. As a result, the proof 
mass is shielded £rom aerodynamic forces, solar radiation pressure, and other environmental interactions. 
Protected inside the spacecraft, the proof mass is constrained to follow a purely gravitational t r a j e c t ~ r y . ~  
A control system is then utilized to maneuver the spacecraft about the proof mass so that the proof mass 
remains centered in the cavity. 

In this paper the translational equations of motion of a formation of spacecraft in low Earth orbit 
(LEO) are developed, where nf spacecraft are assumed to be drag-free. The eventual goal of this research 
is to couple formation-flying guidance and control,g10 with drag-free technology in order to mitigate the 
dominant aerodynamic disturbances acting on formations in LEO. For example, the science community has 
been actively considering using distributed spacecraft for Earth science missions. One specific application is 
to use a large number of small spacecraft in place of a large deployable antenna to achieve very large sparse 
for Earth imaging."ompared to their monolithic aperture counterparts, formation flying sparse antennas 
offer launch and deployment efficiency, and have the advantage of avoiding the structural complexity and 
pointing issues associated with large, lightweight, antenna dishes in space. However, the success of missions 
of this type is dependent on the ability to control the formation in the presence of the significant (differential) 
aerodynamic forces associated with LEO. The dynamic models derived in this paper are a critical step toward 
determining the feasibility of using drag-free control to mitigate aerodynamic disturbances for forrnation- 
flying based Earth imaging in LEO. 

In the sequel, the equations of motion of the formation are developed relative to a circular reference orbit. 
For non-drag-free spacecraft the objective is to determine the equations of motion of the center-of-mass of 
the spacecraft relative to the reference orbit. For drag-free spacecraft, the objectives are to (I) determine the 
equations of motion of the center of mass of the spacecraft relative to the reference orbit, and (2) determine 
the equations of motion of the proof mass relative to the center of mass of the spacecraft. The derivation 
of the equations of motion given here is based on the use of direct tensor notation. Direct tensor notation 
leads to physical insight into the structure of formation dynamics with a minimum of notational overhead. 
Further, direct tensor notation is especially powerful in applications such as formation flying where a large 
number of reference frames are involved in the dynamic analysis. Further, once a specific set of generalized 
coordinates has been chosen, the tensorial equations admit a concise matrix form which is amenable to 
computer simulation. 

This paper is organized as follows. First, some preliminary material from rotational kinematics and tensor 
analysis is reviewed. Next, the geometry of an Earth orbiting formation is described. A derivation of the 
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nonlinear equations of motion of a non-drag-free spacecraft about a circular reference orbit is then given. In 
the final set of motion equations, terms containing quadratic nonlinearities are retained. Next, the nonlinear 
equations of motion of a drag-free spacecraft are developed. A discussion of the various disturbances acting 
on the proof mass is also given. In the final section, conclusions and some directions for further research are 
presented. 

2. KINEMATIC PRELIMINARIES 

In this section a few basic concepts and notation from kinematics and tensor analysis are reviewed; see5 and7 
for further discussion. 

In the sequel all vectors are geometric or Gibbsian vectors; i.e., directed line segments in three dimensional 
Euclidean point space E3 obeying the parallelogram rule of addition. A vector will be denoted as 0 and 
its magnitude as Q. A reference frame is a set of three dextral orthonormal vectors located at  an arbitrary 
point in E% A reference frame will be denoted as FA, FB, etc. 

A fundamental result relating the time rates of change of a Gibbsian vector relative to different rotating 
reference frames, FA and FB, is the Transport Theorem5: 

where denotes the skew-symmetric cross product operator [A3B]Q' = A  Z B  x Q", Q' denotes an arbitrary 
geometric vector, A ~ B  denotes the angular velocity of FB in FA, and 

A, B, 
The notation Q (resp. Q) can be interpreted physically as the rate of change of as seen by an observer 

A, 
rigidly fixed to FA (resp. FB). As a consequence, if 0 is a vector fixed in FA (resp. FB) then Q= (resp. 
B, 4 

Q= 0). 

Second rank tensors (also called dyadics) will also be utilized in the derivation of the equations of motion. 
t-f 

In complete analogy with vecto~s, a second ra,nlr tensor T is a geometric object that is independent of any 
H 

observer. For our purposes, we regard a dyadic as a linear operator T :  E~ w E3; i.e., a dyadic is a linear 
mapping on the space of geometric vectors. An important class of second rank tensors is defined via the 
tensor (dyadic) product: 

(u'v').'= Z(C. F) (4) 

where ii,i,v', and r'denote arbitrary vectors, and . is the standard Euclidean dot product. The tensor product 
will be used extensively in the derivation of the equations of motion. 

3. FORMATION DYNAMICS: TRANSLATIONAL EQUATIONS OF MOTION 

3.1. Orbital Geometry 

In this section we consider a formation of n spacecraft in Earth orbit. We will assume that nf spacecraft 
are drag-free. An inertial frame of reference FN, is attached to the center of the Earth and described by 
the unit vectors (Sl, C 2 ,  ?is). The motion of the formation will be described with respect to a circular 
reference orbit (See Figure 1). The reference orbit defines an orbiting reference frame .To as shown in Figure 
1. The orbital fi-ame serves as the primary frame to analyze the dynamics of the formation. The unit vector 

points anti-nadir, the unit vector Z3 points in the direction of the orbit normal, and completes the 



right-handed triad. The location of the origin of the reference orbit, denoted E,, is a circular solution to the 
following two-body problem with Earth as the central body: 

Here p = 3.986 x 10' [F] denotes the gravitational parameter of the Earth, and R, denotes the magnitude 
of R,. 
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Figure 1. Formation Geometry: Non-Drag-Free Spacecraft 

3.2. Formation Equations of Motion: Non-Drag Free Spacecraft 

The equations of motion of the non-drag-free spacecraft in the formation are given by 

where R; is the absolute position of the center-of-mass of the ith spacecraft, R; denotes the magnitude of 
Ei, @i is the resultant of all external forces at the center-of-mass of the ith spacecraft, and mi is the mass of 
the i th spacecraft. In LEO 

+ -. 
Fi = Fai+@si+FQ:,i+fl. PZ + Fci (7) 

where gai denotes the resultant aerodynamic force, is the resultant solar radiation force, flOi is the force 
due to Earth oblateness effects, @'i is the gravitational perturbation due to the Moon and Sun, and is 
the control force due to thrusters. Analytical models of the disturbance forces are well-known and will not 
be discussed here. The reader should consults for further information. 

The position of the center-of-mass of the ith spacecraft relative to the origin of the reference orbit is 

Differentiating (8) twice and substituting (5 )  and (6) yields 



where the differential acceleration due to gravity is: 

- +  R, 
Act$(Ri, R,) = - - - 

R; R: 

The nonlinear reIative equations of motion of the ith non-drag-free spacecraft about the reference orbit are 
given by (9). 

Under the assumption that pi << R,, the expression A Z ~ ( & ,  go) can be expanded in a Taylor series 
about the circular reference orbit. From (8) we find 

Substituting (12)  into (9) yields 

Noting that pi << R, it follows from the Taylor approximation (1 + 2)' m 1 + qx that 

Substituting (14) into (13) and rearranging yields 

The following identities are an immediate consequence of the definition of the tensor product given in equation 

(4) 3 

-+ 

( R ~  .$)I?, = (ri,ii0)& 
+ 

(16 )  

( R o  . p'i)p'i = (&go)& (17) 

(p'i '6) a. = ( Z o p ' i ) $  (18) 
(& . p'.) '. = (p'. '.) -. z PZ z P z  Pz (19) 

Substituting (16)-(19) into (15) yields the equations of motion of the formation relative to a reference orbit 
under the assumption pi << R,, 

where the gravity gradient dyadic is 

tf 

and 1 denotes the unit dyadic. Note that we have used the fact that 6 = 2 in the above expression. An 
U 

alternate form for the gravity gradient dyadic results from applying the identity 66 = 1 +[&I [GI yielding 
H H 

G= -2 1 -3[oi][&]. 



Upon expressing inertial derivatives in terms of orbital frame derivatives via two applications of the 
transport theorem (1) we find 

where w' denotes the angular velocity of .Fo in .FN. The magnitude of w' is the mean motion of the circular 
orbit and is given by wz = 5. The equations of relative motion (23) are the main result of this section 

A useful control design model results from neglecting all quadratic coupling terms in (23), 

From Figure 1 it follows that the geometric vectors appearing in (24) have the following representations in 
Fo 

Substituting (25)-(29) into (24) results in 

Under the further assumption that only involves control forces, (30)- (32) are called the Clohessy- Wiltshire- 
Hill (CWH) equati0ns.l 

3.3. Formation Equations of Motion: Drag-Free Spacecraft 

In the formation of n spacecraft, we will assume that nf  spacecraft are designated as drag-free. The geometry 
of a single drag-free spacecraft in Earth orbit is shown in Figure 2. A free-floating proof mass (or ball) B of 
mass rnB is confined to a cavity in a larger spacecraft of mass ms.  A spacecraft-fixed reference frame .Fs has 
origin at the center-of-mass of the spacecraft S. By design, the proof mass is shielded from all aerodynamic 
forces, solar radiation pressure, and other ambient disturbances. Protected from the space environment 
inside the cavity, the proof mass follows a pure gravitational orbit. The goal of drag-free control is to 
actuate the spacecraft in such a way that the proof mass B remains centered a t  S; i.e., the drag-free control 
system forces the spacecraft to follow the proof mass. In practice, the null point of the proof mass position 
sensor, denoted C, is not coincident with the spacecraft center-of-mass S. As a result, we will assume that 
the control system acts to drive ?Bc, rather than p'ss, to zero. Moreover, although it is desirable to have the 
control null point, the spacecraft center of mass, and the point of zero self-gravity (i-e., the point where the 
resultant gravitational attraction of the spacecraft on the proof mass vanishes) coincide, this is not possible 
in practice." 

The translational equations of motion of a drag-free spacecraft consist of (1) the translational equations 
of motion of the proof mass about the nominal reference orbit, and (2) the translational equations of motion 
of the center-of-mass of the spacecraft relative to the proof-mass. See Figure 2 for a complete description of 
the system geometry. 



The equations of motion of the proof mass are given by 

where gg is the absolute position of the proof mass, and 2' is the resultant force acting on the proof mass. 
The resultant force can be decomposed as @B = PBs + gBNc where PBs is the gravitational force on the 
proof rnass due to the rnass distribution of the spacecraft, and ~ E N G  is the resultant of all non-gravitational 
forces acting on the proof mass. Although the dominant force acing on the proof mass is the mass attraction 
of the surrounding sateIlite on the proof mass y ~ s ,  other disturbance forces are still present. Specifically, 
RBNG may contain forces due to electric fields if a capacitive pickoff is used, radiation pressure if an optical 
pickoff is used, gas pressure in the cavity, Brownian motion, magnetic field gradients, and thermal gradients. 

Noting that = go + ?B where p s  << R,, the translational equations of motion of the proof mass 
relative to the reference orbit are identical in form to the translational equations developed in the previous 
section, 

where & denotes the position of the center-of-mass of the proof mass relative to the origin of FO. 
We now develop the translational equations of motion of the proof mass B relative to the spacecraft 

center of mass S. The equations of motion of the spacecraft are 

where Zs is the absolute position of the center-of-mass-of the spacecraft, m, is the mass of the spacecraft, 
and fls denotes the resultant force acting on the spacecraft. The resultant force can be decomposed as 
l?~  = f l s ~  + F , ~ N G  where $ 3 ~  = -pBs is the gravitational force on the spacecraft due to the proof mass, 
and PSNG is the resultant of all non-gravitational forces acting on the spacecraft (e.g., aerodynamic drag, 
solar radiation pressure). 

From Figure 2 we find 

Upon substituting (33) and (35) we find 

As discussed above, we assume that the position sensor measures the displacement of the proof mass B 
relative to a null point C, rather than the spacecraft center of mass S. The most common position sensors 
are based on optical and capacitive measurement te~hniques.~ It follows from Figure 2, 

where ,TBC is the position of the null point relative to the proof mass, and p'sc is the position of the null 
point relative to the spacecraft center-of-mass. As the drag-free control system will act to drive p'sc to zero, 
we will express (37) in terms of j7Bc. Upon expanding the differential acceleration A Z ~ ( R ~ ,  & B )  in a Taylor 
series about the circular orbit, and expressing all inertial rates of change in terms of rates of change relative 
to Fs via two applications of the transport formula, we obtain 



and LSS is the angular velocity of FS relative to FN. Note that we have assumed that p'sc is fmed in Fs.6 
In summary, the translational equations of motion of the drag-free spacecraft are given by (37) and (39). 
These equations will serve as the starting point for the synthesis of control logic and sensitivity analysis. 
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Figure 2. Geometry of a Drag-Free Spacecraft in Earth Orbit 

4. CONCLUSIONS 

In this paper the translational equations of motion of a formation containing both drag free and non-drag 
free spacecraft were derived using direct tensor notation. The results presented in this paper are a first 
step toward coupling drag-£ree control technology with formation flying in order to mitigate the effect of 
differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth 
orbit. For example, the feasibility of creating a virtual drag free instrument (e.g., distributed antenna) 
via precision formation control will be studied. Specifically, the ability to make the formation behave in a 
drag-free manner even though only a single spacecraft may be drag free will be investigated. 
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