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Abstract: This paper focuses on the design of autonomous and collaborative control strategies to govern 
the relative distances among multiple spacecraft in formation with no ground intervention. A coordinate 
load-sharing control structure for formation flying and a methodology to control their dynamic models 
with slow t ime-varymg and uncertain parameters are the main objectives of  this work. The method is 
applied to a deep space formation example, where the uncertainty in spacecraft fuel masses is also 
considered. Copyright O 2005 IFAC 

1. INTRODUCTION 

I 
Formation Plying (FF) of multiple spacecraft pose 
significant research issues for future NASA 
missions. Due to limitations of launch vehicle 
fairing sizes and of the ability to phase optical 
elements over long distances on flexible 
structures, separated spacecraft formation flying 
is the only viable means to enabIe imaging at 
micro-arc-second resolution. Several NASA 
missions, with high priority science objectives 
that exploit, formation flying technology in the 
next two decades include Terrestrial Planet 
Finder, Stellar and Planet Imager and Life Finder 

1 missions. 

Spacecraft in Formation is mainly a load-sharing 
control problem when the spacecraft try 
colIaboratively to control the relative distances 
and angIes among them. Typically FF approaches 
avoid the load-sharing problem by moving only 
one spacecraft at a time (e.g. ieaderlfollower, 
cyclic aschitectures, etc.). Moving all the satellites 
at the same time has additional challenges as 
interactive loops and stability problems. In fact 
non-collaborative controllers at every spacecraft 
can o d y  be applied with reduced bandwidth 
objectives to preserve stability. 

problem is solved by combining Load-Sharing 
control theories (LS) and the Quantitative 
Feedback Theory (QFT), both in the kequency 
domain approach. 

A coordinate load-sharing control st~ucture for 
spacecraft in formation and a methodology to deal 
with their dynamic models with slow time- 
varying and uncertain parameters are the main 
objectives covered for this work. 

The paper aIso applies the methodology to a 3 
degrees-of-freedom (DOF) deep space problem, 
where uncertainty in spacecraft fuel masses is 
also considered. 

The model of PF spacecraft in deep space is 
presented in Section 2. Section 3 provides an 
example to show the limitation of non- 
collaborative control in FF. Sections 4 and 5 
introduce a coordinate load-sharing control 
structure for spacecraft in formation, its main 
equations and the related controller's synthesis 
methodology. Section 6 applies the methodology 
to a deep space formation example. Section 7 
summarizes the conclusions. 

This paper deals with the problem of movlng 2. MODEL OF FF SPACECRAFT 
I several collaborative spacecraft at the same time 

with no ground intervention. The paper focuses The non-linear equations of motion of a formation 
on the'theory needed to design autonomous and consisting of n spacecraft (dc)  were derived via 
collaborative control strategies to govern the Lagrange's e quations by P loen et a l(2004). For 
relative distances among satellites, sharing the low E arth Keplerian orbit, w ith a slow variation 
load according to frequency specifications. The of the orblt radius of the center of mass of the 
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where mi and mj are the mass of the i and j SIC (5) 

respectively, wi = p = 3.9860 lo5 Krn3/s2 0 0 7  
denotes the gravitational parameter of the Earth, L sL 1 
Ro and o, are slow time-varying functions, and which presents a three independent SISO systems. 
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I formation & (which means 4 = 0; & = 0 ), the 
relative equations of motion of a spacecraft j 
relative to a spacecraft i are (see Fig. I), 
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Qq Qx; (1) which is a 2x2 M M O  system (axes X and Y) plus 
m, mi a SISO system (axis 2) -Low Earth Orbit-. If Ro 

tends to infinity (i.e. deep space case) then 
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where, is the resulting force acting on the s/ci. Spaceaaff in is mainly a load-sh-g 
control problem, where the relative distance d 
between two satellites is controlled by moving 
both at the same time (signals Q,, Qi in every 

S'C axis). This section introduces an example of two 
satellites in deep space. It shows how two non- 
collaborative control systems, one at each 
spacecraft, do not work properly when controlling 
the relative distance between them. The example 
compares the case of only one spacecraft 
controlling the relative distance, with the case of 
two spacecraft: controlling it at the same time. 

Let us consider two spacecraft, i and j, flying in 
formation in deep space. Let us also consider the 
plant models with uncertainty due to fuel 
consumption, so that, 

Fig. 1. Spacecraft FF. Orbital geometry. 
- 1 

Grouping the variables, the relative distances 4 =-, mi E [360,460] kg (6) 
between two spacecraft are: mi 

1 Pj =-, m, E [1350,1500] kg 
& = x i - x i ;  a5)=rj-y;; dz=zi-z , ;  

(7) 
mj 

l 
and the control signals are: A=- 2 (8) 

S 

Qxj . Q QY , Qz, Qzl u = A -  u = X -  u = -  where the 3 DOF system is represented by 
Y z 

M I  m, m, m ~  m, m, equation (5), and the control diagram of every 
axis is represented by Fig. 2. 

The origin of the load-sharing problem in the 
~ Q Z ~ ~ ~ ; , Q E  z e  ~e variables 9, 1/, CT,, -?&ere The compensators (loop compensator G, and 

every one has two components: Q, and Qr, one  refilter F m )  of every spacecraft are designed so 
from each spacecraft. Applying the Laplace that: 
Transform, equations (1) to (3) are written as, 



4. LOAD SHARING CONTROL STRUCTURE 

where k, = 3290, and kgi = -12600. 

Fig. 3 shows that if there is only one spacecraft 
controlling the distance with Eqs. (9) and (10) 
while the second one is Off, then the system is 
stable md works well. However, when the system 
tries to control the distance moving both 
spacecraft at the same time with the same 
compensators, then the result is undamped and 
almost unstable (Fig. 4). Note that in both cases 
the bandwidth specifications are not very tight. 

I 
Because of that, and to reach more demanding 
control specifications, a coordinated load sharing 
control structure for Formation Flying is needed. 
It is introduced in next section. D 

--- - - - . 

Fig. 2. Two Spacecraft Control Diagram 
Mrd Gm d (-), dreii) al (-) 

I 
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Fig. 3. One compensator. G,, ON, Gmi OFF. 
[ a) d (solid line), drq(dashed line); b) 

C o r n  Gm: d (-1, dref g) Lmd S h m :  a1 rr). al(4l 

Many physical and engineering systems share the 
burden of controlling some signals (plant outputs) 
between two or more actuators. This is the case of 
the electrical network, where the frequency (50 or 
60 Hz) is controlled by many different power 
stations distributed across the geography. It is also 
the case of the macro-economic system, where 
many different inputs can change the stock-prices, 
inflation, rates, etc. It is definiteiy the case of the 
formation flying problem, where several 
spacecraft try to control the relative distances 
among them at the same time. 

In these three cases, and also in many other 
systems, some special control measures must be 
adopted to share the load among different 
actuators. An excellent analysis of that problem 
can be found in the book Load Sharing Control, 
written by Eitelberg (1999). 

4.1.- Independent Load-Sharing Control 

An independent implementation of the load- 
sharing control problem is the simpler option, but 
in many cases not the best solution. Fig. 5 shows 
a typical independent load sharing control 
structure, with a common plant A, a common load 
D and output y; n individual plant inputs u,, plant 
references ri and noise measurements n,. 

Fig. 5. Independent load-sharing control structure 

As shown in Eitelberg book, such an independent 
structure presents significant control problems, 
because the pair-wise discrepancies between 
feedback signals errors (N, - 4) and mismatches 
between the filtered references ((FiIGi) Ri - (FjlGj) 
Rj). Both are amplified by the supply distribution 
cross-sensitivity function Sij = Li L, 1 (PC (l+L)), 
where I, = Ll -I- L2 .. ., and Li = A  Pi Gi, and finally 
affect the behavior of the plant output y. 

Fig. 4. Two compensators. Gmj ON, Gmi ON. 
a) d (solid line), d*(dashed line); b) Qj and Q, 



4.2. - Coordinated Load-Sharing Control 

To avoid the problems presented in sections 3 and 
. 4.1, an alternative structure for coordinated load- 
sharing control in formation flying is presented in 

I Fig. 6.  The structure is based on a previous work 
introduced by Shinskey (1988), modified to take 
into account the special characteristic of the 
Formation Flying model [Eqs. (4) and (511. 

Fig. 6 Coordinate load-sharing control structure 
for Two Spacecraft in FF, where: Gi < 0, Pi < 0. 

The proposed control diagram avoids the pair- 
I wise discrepancies problems that present the 

independent load-sharing control structures (Figs. 
2 and 5). In addition it can deal with model 
uncertainty and does not introduce RHP zeros, as 
the original Shinkey structure does, when it is 
applied to the Formation Flying problem. The 

I main equations of the block diagram are, 

5.- COMPENSATOR SYNTHESIS 

The methodology to design the compensators of 
the proposed structure has three steps, starting 
from the inner compensators to the outer ones. 

I First the inner compensators G,(s) and Gi(s), have 
to be defined. Their objective is to share the load 
in terms of frequency. The proposed structure 
gives the freedom to define the fiequency 
response that the designer wants for every 

I channel (i and j), regarding to fuel consumption, 
time requirements or other politics. For instance, 

I if the system has two satellites with different 
masses, it is possible to assign to the biggest one 
an active response at low frequency and an 
attenuated response at high frequency. Similarly, 
for the smallest one, it is possible to assign an 
attenuated response at low fiequency and an 
active response at high frequency. Thus the 
control structure is very general and allows 
defining the load sharing strategy in many ways, 

according to the requirements of the formation. 
Moreover, it is also possible to define different 
frequency responses for every axis (X,Y,Z) and 
channel i f  it is necessary. 

The second step is the design of the GAS) 
compensator. The main objective of this 
compensator is to keep the sum of the two 
channels, QI(s) + Q,(s), equal to the demand Q(s) 
of the outer compensator G,(s). It is also possible 
to define different dynamics for every axis 
(X,Y,Z) if it is necessary. The Quantitative 
Feedback Theory (QFT) is applied in this work to 
design the Gds) compensator. The integral part of 
the compensators has to receive an special 
treatment. To avoid the channels fighting against 
each other, if the system needs an inner 
compensator with an integral part, then it is 
necessary to implement it in only one channel, 
G,(s) or G,(s), or better only in the inner 
compensator GAS). 

The third and last step is the design of the outer 
compensators G,(s) and F,(s). The objective for 
these compensators is to govern the distance d 
between the spacecraft according to some 
previous performance specifications (reference 
tracking, disturbance rejection, stability, etc). 

The design of the Gm(s) and Fm(s) compensators 
depends on the formation flying scenario. If the 
formation is in deep space, then equation (5) 
governs the dynamics and there is an independent 
SISO problem for every axis. QFT is applied to 
design G,(s) and F,(s). 

6. SIC FORMAlITON IN DEEP SPACE 

Let us consider again the two spacecraft presented 
in Section 3 [Eqs. (6) and (7)], but now flying in 
formation in deep space Eq. (5). 

6.1.- G, Gi Compensators 

First, the inner compensators, G,(s) and G,(s), 
have to be defined. The objective is to share the 
load in terms of frequency. Here two transfer 
hct ions  are chosen so that the biggest spacecraft 
Pj shows an active response at low frequency and 
an attenuated response at high ffequency, and the 
smallest one PI an attenuated response at low 
fi-equency and an active response at high 
frequency (see Fig. 7). The selected Gj(s) and 
Gl(s) compensators are: 

-800 s 
Gi (s) = 

S 
(13) 

(li 0.628 inU3)  0.62; 10') 
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Fig. 7. [Gj(s) Pj(s)] and [Gi(s) P,(s)] transfer 

functions, with fuel mass uncertainty. 

6.2.- Gf Compensator 

I The second step is the design of the GAS) 
compensator. Its main objective is to keep the 

I sum o f t  he two channels, Qi(sj + Q,{s), e qua1 t o 
the output Q(s) of the outer compensator Gm(s). 

1 
Open-Loop Phase (deg) 

-ill) iiR 

1 Fig. 8. Loop Shaping of Gf (Gj - Gi). 

The transfer function between Q and xl  is PL, 
according to Eq. (12). The plant to be controlled 
by Gfis (Gj - Gi). The complexity of the design of 

I GAS) i s c onditioned by t he c ompensators G, and 
Gi, selected previously. In this paper GAS) is 
designed using standard QFT -Eq. (15). The loop 
shaping of Gf (G, - Gi) on the Nichols Chart (NC) 
is shijw-p in Fig. 8. 

6.3.- G,, F,,, Compensators 

The third and last step of the method is the design 
of the outer compensators Gm(s) and Fm(s). Their 
objective is to govern the distance d between the 
spacecraft according to some previous 
performance specifications. In this example the 
seIected specifications are: 

i. Robust Stability. Gm 'L A 5 1.1, Vw , 
I l+Gm PL Al 

which involves a phase margin of at least 55' 
and a gain margin of at least 1.99 (5.9 dB). 

ii. Disturbance rejection. 

where coo = 12 radlsec, and for 
o=[0.001,0.01,0.05,0.1,0.5,1,5,30,50,100,500,1000]~d/s. 

iii. Tracking specifications. 

Gm PL A 7u( jm)< /  l + G m  P, A I<T%ja ) ,  where, 

1 
T R ~  (jm) = . where 

(=+I) (*+I) - 

Using standard QFT, the G,(s) compensator and 
the prefilter Fm(s) -Eqs. (16),(17)- are designed. 
Fig. 9 shows the QFT loop shaping on the NC. 
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Fig. 9. .Loop Shaping of G,,, PL A 

6.4.- Simulation Results 

This section applies the previous design to control 
the 3 DOF distance between two spacecraft in 
formation in deep space, moving b 0th -spacecraft 
at the same time. Three unit step inputs at the 
references of the three channels, X, Y, Z, are 

] applied at different times: t = 5, t = 10 and t = 15 
sec respectively. Fig. 10 shows a good tracking 
control with more demanding specifications than 
in case of Figs. 3,4.  

h l r d  Gm*. dx (-), b f x  (:) anl rd  Gmy: dy (-) dm b )  
1.02, . , , . , 1.02 ,-.-I-.-, 

nw i!ll a a9 gz o 5 io 15 20 25 

Time (m) 
Canlroi Gmi: dz (-1 diek C )  

aM 

0.92 El 0.S 0 5 10 15 20 25 

rime (ses) 

nme [see) 
d ~ ,  drel 

Fig. 10. Tracking in channels X, Y and Z, and 3D 

Once the 3 DOF reference is reached, a sinusoidal 
disturbance of unit amplitude and f = 70 radlsec is 

I applied to axis X from t = 30 sec to t = 40 sec. 
Fig. 11 shows how the spacecraft i (the fastest 
one) carries with most of the load, and the 
spacecraft j (the slowest one) does not carry with 
load. Similarly, a sinusoidal disturbance of unit 
amplitude and f = 0.05 rad/sec is applied to axis Y 
from t - 60 sec to f = 180 sec. Fig. 12 shows how 
the spacecraft j (the slowest one) canies with 
most of the load, and the spacecraft i (the fastest 
one) does not. Both agree with the design. 

Lo& Sharing: Ph (:I. O i  (-i 

Pme Lsec) 

Fig. 11. Load sharing: Qi (dashed), Qj (solid) 
Load Shmrg: OIY g), Qy (-1 

2 ' ' ' ' ' . I 
60 M 1W 1a 140 160 lev3 2M 

xme is=) 

Fig. 12. Load sharing: (dashed), Qj (solid) 

7. CONCLUSIONS 

This paper introduced the design of an 
autonomous and collaborative control strategy to 
govern the relative distances among spacecraft in 
formation. A coordinate load-sharing control 
structure for formation flying that shares the load 
between spacecraft according to frequency 
specifications and a methodology to control their 
uncertain dynamic models were presented. The 
method was applied to a deep space formation 
example with fuel masses uncertajnty. 
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