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Abstract 

This talk i about optimal linear prediction of processes with stationmy dth increments, 
which serve as a eIass of models for landom clock disturkces. The predictor is obtained 
orthogonal projection on the aEne space of estimators whose errors are i n v a h t  to additive 
polynomials of degree < d. The projection conditions give a system of linear equations that 
can be solved straight;forward~r for the regression coefficieats. H the data are equally spaced, 
theu the predictor can be obtained by an extension of Levinson's algorithm. 

1 Background 

A clock can be e~aluated only against other clocks. Therefore, the title actually refers to the 
prediction of the difference of two cIocks. Each natfolial timing center  ants to keep its reference 
cloclc clwe ko Coordiaated UniversaI Time (UTC), or at least to keep track of the difference. - 

W C  is a timescale, a virtual cloclc that is defined by its offsets from physical clodis. The offsets 
of UTC from the national reference clocks in units of ~~moseeonds, as calculated for a given 
month by the L~ter~lational Bureau of T7treights a id  haeasures from satellite observations, are 
disseminated around the middle d tlze following month. B e u s e  of this monthly sd~edule and 
delay, a timing center needs to be able to pr-edict its offset up to 50 days f m i  the lastst available 
data. 

To predict a clock ogset (&so called "phase") ancl to evaluate the predictioa ul~certaiiity, a 
stochastic model for the clock's random fluctuations is needed. TVe observe samp1es of phase, 
but most of the underlying stationary noise rn&anisms are buried one to thee  time derivatives 
deep. Accordingly, a suitable general model for clock phase is the class of stochastic processes 
wit11 stationary dth incrernen%s, where d = 1, 2, or 3. KoImnogorov developed a theory for d = 1 
in the 1940s and applied it to i;he study of kurbulence. Theories for ct 2 1 were developed 
by A. M. Yaglom and M. S. Pinslcer in the 1950s; 1-agloln's version was published as an AMS 
translation paper [I]. Here I will give some of the elements of this theory, as filtered through 
111y own preferences. 

Let nle quicHy review widesense statior~ary processes. A real-vaIued process X (t) ,  contin- 
uous in rnean-square, is stationary if 

EX (t) = c, EX ('c) X (u) = sx [t - ti) 

for some constant c and autocovariance function (ACV) sx (t). Then 

where Sx (f) df represents a finite Baire measure, e.iren about 0, calIed the spectrum, but I am 
xniting it as a spectral density. It could have an atom at f = 0, which gives rise to a. random 
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constant component, but T a s m e  that that is not the case. If a it) is a real-valtied funcl;ion of 
finite support on P (zem outside a frnihe set of reals), \.rite 

i; (f) = C a (t) ei2rf? 
t 

For any a It) and b (t) of finite support, 

a /ti 6 (u) sx (t - u)  (3) 

= c2 (C a ( t ) )  (C b (t)) + Srn 5 (.f) ZTsx (i) df. (4 
-03 

We say that a real mean-srpare continuous process X (t) has stativnary dth increments 
(d > 11, and write X E SI (d), if for any T the increment process 

d a$x (t) = C (,) ( -1 )"~  (t - k7) 
k=l 

is staeionaxy. Then SI (0) [stationary processes) SI (d) C SI (d + 1). 
Let us say that a hnction a (t) of finite support kills P"' (polynomials of degree _< d - 1) 

if C, a (t) tJ = 0 for j = 0 to d - 1. Then Z ( f )  has a. zero of order 2 d a t  f = 0. For example, 

a (t - k r )  = (t) (--1)Qm k = 0 to d (t fixed) and O elsewhere, 2i (f) = ei2"fyl - e - ' ~ l ~ ) * .  
Let X E SI ( d )  and define Sd as the space of lkw comKinati~ns C, a (t) X it) where a (t) 

lrills Pd-I. Then A$X (t) f Sdr and Sd is a non-clad subspace of the L2 closure of the span of 
g X  (t) for dl 7, t .  If T is a finite set of reals, let Sd (T) be the members of Sd with coeAicieilt 
functions a (t) supported on T. 

For X E SI (d), Yaglom established ex-tensions of khe mean and spectrum of a st,;itionary 
process. There is a constarrt cd, urllich I c d  the trend coe%cient, such that 

for arty a (2) that ldlls pd-l. In fact, cd = EAfX ($1. The spectrum Sx (4) cif is now a measure 
on the punctured real h e  W\ {O), even with respect to 0, sucl-~ t h t  

~d~enexre.er a (t) and b ($1 kill PdA1. I am assuming Ghat (6) mntains no random trend component 
wP/d! where ETV = 0. For any even measure Sx ( J )  df satisfying (6) there is an X x ESI ((1) 
wl~ose Sd is a system of joiiltly Gaussia~~ ra~~dorn variables. 

Let X E SI (d ) .  Hcd is lmoax, it can be eliminated by subtracting edtd/d! horn X (t). We can 
dm treat X as a member of SI fd + 1); then Sx ( J )  stays the same but cd+1= 0. Any indeft~lite 
integral Y (t) of X (t) is in ST (d + L), cd+l for Y equ& cd for X, and Sr- (f) = Sx ( f )  / ( 2 ~ f ) ~ .  
But there are msibers of SI (d + I) that canilat; Se obtained in this 



My contributior~ to this theory was to establisll m atlalog ofthe ACV [2]13]. For X E ST (d) .  
define the generalized autocovariance (GACV) function sx (t) by the following Fourier integral: 

For the GACV we may use any real-valued fur~ction Ghat Mers  froin the indicated fornmb 
by a poIynomial of degree < 2d, In particular, &he brealrpoint 1 is arbitrary. Any GACV is 
continuous, and we may specify illat sx (-ti = s x  ( t ) .  Ram (7), (3) follows easily, but onlq' for 
a (t) and b (8)  that kill pd-I. For example, if d = 1 tien 

(the L'struct~re function"). Once we have found sx It), we car1 compute covariai~ces of r-andom 
variables in Sd by f i t e  sums. But the GACV is not an ACV; we cannot compute EX (t) X (u) 

without laore infbrm-natio~~. 
Became of the mod pZd-l arbitmiiness of the GACV, we cao c d d a t e  alternate versions by 

means of Fourier transform in the complex &domain. Efere are some examples for "power-law" 
processes. 

Name d SX (1) sx (4 
Wiener pxocess 1 ( z ~ . f ) - ~  It1 -- 

0 

What we are cd!kg the Wiener process is the standard Wiener process plus an arbitrary con- 
stant. Similarly, the SI (2) processes have an arbitrary additive constant and slope. We c m  only 
compute covariances of h e a r  combinations that me transparent to these ambig6ties. For d = 1 
it may seem strange to generate variances from a negative Iu~dion,  yet ( 9 )  works out correctly. 

Integrated flicker can be used as a model for the phase of some quartz docks or hydrogen 
maser clocks oler limited time scales. Here is a simulated sample. To 1-emo17e the ambiguous 
constant and slope, a straight h e  was- added to make X (C) = X (500) = 0. This process is not 
mean-square differentiable, and abrupt slope changes occur at all scales. mere is a temptation 
to blame such slope changes on eritenlal events. 

Integrated Ricker, pinned at t = 0 and 500 
150, I 



2 Linear invariant prediction 

Let X E SI (d)  with a Imomrn even GACV function s x  (t). Assume that the trend coefficient cd 

is 0. Let T = Itl,. . . , tp) c R, where p 2 d , and t, E R. We want the linear estimator 

of X (t,) that is optimal in the mean-squw sense. 
If X (t) is stationmr with Inlean zero and ACV sx It), we c%n let 2 (t*) be the orthogonal 

projection of X (t*) on the span of X ( t ) ,  t  E T .  Let 

(co1umn vectors). Then E [X 6) - a (T)] X ( T ) ~  = 0, giving 

where 
= [ ~ ~ ( t * - t ) : t f ~ ] ~ ,  I ~ = [ s X ( t - u ) : f , u ~ T ] .  

Equation (111, called the Yule-Wallcer equations, llave a solution for a, and any solut;ion (in case 
V is singular) gives the same IZ' (t,). 

Now let d >_ I, so that we can only wuzpute co~.'z1ria1ces of mexnbem of Sd. We adopt t\vo 
principles that Q ~ I  determine the optimal e s t i o r  of foim (10). 

1 Invariance. The estimation error X it,) - x (t,] is to be invariant to any polynomial of 
degree 5 d - 1 that w e  may add to X [t) . In other words, 

This statement is equivderzt to 
a T ~  = qT, 

Because p 2 d, ,4 Im rank d. A raidom variable uTx [T) with a satisfying (13) is called a Einear 
invar2ant estimator f L B j  of X ( t , ) .  Because Ct a (t) = 1, any LEE is unbiased. The LlEs form 
a nonempty f i n e  space A, whose set of diEerences Ad-& is just S d  (TI. E p  = d there is just 
one LIE, the wvaX at t, OF the intel-poIating polyxomia1 of X (t) , t E T.  When p = d = 2, linear 
extrapolation is often used for clock prediction:. its mean square error is often close to optirnd 
when it is minimi - xed with resped to It2 - f 

2 Orthogonality. The optimal estimator -$ (&) is to be the LIE that is closest to X (t,) in 
L2. It is not hard to s l m  that a unique best LIE (BLfE) exists and satisfies the orthogonality 
condition 

x (t*) - 2- (t,) -L s d  (T) ,  (14) 

tlmt is, 

E [X  (t.) - aT2C (T)] [X ( T ) ~  61 = 0 (15) 

whenever the ent~ies of b = [b (i) : t f qT kill pd-l. Both factors of (15) being in *Id, we can 
use the. GACV sx (t) to evaluate it by (3): giving 

(rT - aTv) b = 0 wlie11erier bTL4 = 0. (16) 



The11 r - Va must be in tlie column space of A: 

T f& some 8 .= loo.. . . 
We now have the equations 

T A a=q, Va+AB=r, 

in p + d unknowns, which generabe tlie YduleM7a1lcer equatiorx (11). But V is not positive 
definite; its main diagonal is 'usually zero. I dm't know conditions for V to be nonsingular, but 
if i t  is, then (IS) has the following solution: let A = AT~- l , 4 ;  then 

8 = A-I ( A ~ v - ~ T  - q ) ,  

a = Y - l ( r - A B j .  (1% 

Anatlzer approach, which I caZI %brute forcey7, is to  write (18) as the single matrix equation 

and tell Matlab to e d u a t e  I@, where A4 is tlie square matrix in (20). LIatiiah often reports 
that M is poorly scaled or conditioned (V by itself can be bad enough), yet this method seems 
to work all right in practice, too. 

Raving solved for a and B IW can easily evaluate the rnean  square error burn the GACV and 
(3). Using (18) we liave 

Initially I assumed cd = 0. If cd # O but is kno~rl1, then we can predict the corrected phase 
X (t) - cdfd/d! ,  whose trend is 0. If we don't know cd, then w e  are obliged to treat X as a 
member of SI (d + 1) (if 7' has at I& d +  l points). Tlze penalty is a greater mean square error, 
because we are projecting X (t*) on a smaller a f h e  space Sfdtf,. For example, if the long-ten11 
average phase slope (rate error) of a c s i m  clock is known, then the corrected pl~ase is well 
modeled by a constant times the Wiener process, for which d = 1. For the standard Wiener 
pl*ocess, the optimal predictor of X ( T )  based 011 {-t, . . . , 0) (T, t > 0) is X (0) wit11 mean square 
error T. But if the average dope is uncertain, the11 we have to use d = 2 to get a predictor that is 
invariant to l e d  arid slope. In this case, x (T)  = ( I  + 5 )  X (0) - $X (4) with MSE r (1 + 5 ) .  
As t 4 GO, the bnpoint  predictor recovers the unknowx slope, and the MSE bends to r. 

3 Equally sp;ec:ed data 

Solx.iag the YuleWalker equations (11) or their generalization (18) by general linear equation 
solving t~iethods requires 0 (p3)  operations for kid d. If T is equally spaced, however, then T/ 
is a Zbeplih matrix. For stationary X (t), the Levj,on-Durbin algorithm {5], ~ ~ % c h  is a bop on 
p, calculates the regression coefficients and the mean square error in O (p2) operations. 5 have 
been able to  extend this algorithm to the SI(d) case mhile keeping the O ( p 2 )  property for fixed 
d, but I will not present t l ~  materid here. In the cases I have t~ied,  the two general algorithm 
( V - I  and brute force) and the extended Levinson algorithm agree witbjn roundoff error. 

Even if the whole data set is equally spaced, the general case is st31 useful. On examining 
the regression coefficients a (t) for an equaIly spaced T, one often s4es that most of the ci (t) 
are small. Then, by xpp1ying the general rnetl~od to a subset of T w11ere Che n (6)  are relatir4jr 
large, one can wri$ excellent suboptimal estimators that use only a few of the a~ailable data. 
The ones you use are oftell bunched near the minimum aid maximum of T. 
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