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Abstract

This talk is about optimal linear prediction of processes with staticnary dth increments,
which serve as a class of models for random clock disturbances. The predictor is obtained by
orthogonal projection on the affine space of estimators whose errors are invariant to additive
polynomials of degree < d. The projection conditions give a system of lnear equations that
can be solved straightforwardly for the regression coefficients. If the data are equally spaced,
then the predictor can be obiained by an exfension of Levinson's algorithm.

1 Background

A clock can be evaluated only against other cdlocks. Therefore, the title actually refers to the
prediction of the difference of two clocks. Each national timing center wants to keep its reference
clock close to Coordinated Universal Time (UTC), or at least to keep track of the difference.
UTC is a timescale, a virtual clock that is defined by its offsets from physical clocks. The offsets
of UTC from the national reference clocks in units of nanoseconds, as calculated for a given
month by the International Bureau of Weights and Measures from satellite observations, are
disseminated around the middle of the following month. Because of this monthly schedule and
delay, a timing center needs to be able to predict its offset up to 50 days from the last available
data.

To predict a clock offset (also called “phase”} and to evaluate the prediction uncertainty, a
stochastic model for the clock’s random fluctuations is needed. We observe samples of phase,
but most of the underlying stationary noise mechanisins are buried one to three time derivatives
deep. Accordingly, a suitable general model for clock phase is the class of stochastic processes
with statiopary dth increments, where d = 1, 2, or 3. Kolmogorov developed a theory for d=1
in the 1940s and applied it to the study of turbulence. Theories for d > 1 were developed
by A. M. Yaglom and M. 5. Pinsker in the 1950s; Yaglom’s version was published as an AMS
translation paper [L]. Here I will give some of the elements of this theory, as filtered through
my own preferences.

Let me quickly review wide-sense stationary processes. A real-valued process X (¢}, contin-
uous in mean-square, is stationary if .

EX{#)=¢, EXO X (u)=sx(t—-u)

for some constant ¢ and autocovariance function {ACV} sx (£). Then
ext)=c+ [ e Tise () o
-0 ) .

where Sy (f) df represents a finite Baire measure, even about 0, called the spectrum, but I am
writing it as a spectral density. It could have an atom at f = 0, which g¢ives rise to a random
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constant cornponent, but I assume that that is not the case. H « {f) is a real-valued function of
finite support on R (zero outside a finite set of reals), write

B =3 alt) et

For any a (t} and b () of finite support,

Ed a®)X(®) = ey o), (2)
t t

E(Za{t}X(t)) (Zb(t)X(t)) = > a(t)b{u)sx (t—u) (8)
1 5 £,

& (T a(®) (D) + [ (AT () (0

We say that a real mean-square contimuous process X (£} has stationary dth increments
(d = 1), and write X € SI(d), if for any 7 the increment process

d
AIX ()= (d) (> X g — k)
E==1 k
is stationary. Then SI{0) (stationary processes) < SI{d} C SI{d+ 1}.

Let us say that a function a (¢) of finite support kills P41 (polynomials of degree < d —-1)
if S, a()t? =0for j=0tod— 1. Then &(f) has a zero of order > d at f = 0. For example,
a(t —kr) = (§) (=1)* for k =0 to d (¢ fixed) and 0 elsewhere, & (f) = 27/ (1 — ¢~27f T)]c

Let X € SI(d) and define S; as the space of linear combinations 3, a (£} X (£} where a (%)
kills P41, Then AZX (¢) € Sy, and S is a non-closed subspace of the L? closure of the span of
A2X (¢) for all 7,%. If T is a finite set of reals, let S;(T") be the members of S; with coefficient
functions & (£) supported on T

For X € SI{(d), Yaglom established extensions of the mean and spectrum of a stationary
process. There is a constant ¢z, which I call the trend coefficient, such that

s
EZa(t)X(t)zcha(t)g—‘ 5)
& t ’

for any o (¢} that kills P21 In fact, ¢y = BAYX (). The spectrum Sx (f) df is now a measure
on the punctured real line R~ {0}, even with respect to 0, such that

1 Io'e)
/ FSx (f) df < o0, / Sy (1) df < oo, ()
0 1 .

d
E (ga@) x (t)) (Zb (z)X(t}) ~4(za0 %) (zew )+ [ animscna
- (7)
whenever a (£) and b (t) kill P41, | am assuming that X (£) contains no random trend component
Wil/d! where EW == 0. For any even measure Sx (f) df satisfying (6) there is an X & SI(d)
whose Sy is a system of jointly Gaussian random variables.

Let X € S1{d). ¥ ¢; is known, it can be eliminated by subtracting c;£%/d! from X (). We can
also treat X as a member of SI{d + 1); then Sx (f) stays the same but e;41 = 0. Any indefinite
integral Y (£) of X (¢) is in ST{d + 1), cqy1 for ¥ equals ¢z for X, and Sy () = Sx (f)/ (2xf)*.
But there are members of SI{d + 1) that cannot be obtained in this way.



My contribution to this theory was to establish an analog of the ACV [2][8]. For X & SI{d},
define the generalized autocovariance (GACV) function sy (£) by the following Fourier integral:

2d~—1

nr [_t2)d 2T _ (i2r )" 2wt - 21
sx () = Cd—@d)! +{/1ﬁgi ': Z i +~/|fl>l Sx {f}df mod P*7. (8}

k=0

For the GACV we may use any real-valued function that differs from the indicated formula
by a polynomial of degree < 2d. In particular, the breakpoint 1 is arbitrary. Any GACV ig
continuous, and we may specily that sx (—) = sx (£). From {7), (3) follows easily, but only for
a (t) and b{¢) that kill P%~L. For example, if d = 1 then

BIX (t+7) = X @ = —sx () +25x (0) — sx (~7) (9

{the “structure function™). Once we have found sx (£}, we can compute covariances of random
variables in & by finite sums. But the GACV is not an ACV; we cannot compute EX (¢) X (u)

without more information.

Because of the ruod P21 arbitrariness of the GACV, we can calculate alternate versions by
means of Fourier transforms in the complex t-domain. Here are some examples for “power-law”
processes.

Name d Sx (f) sy ()
11
Wiener process 1 (2m ) * _
o 3 1 2[t|25w1
- . . % 1 3
Fractional Brownian motion [4] 1 [2xf]7%, 3 <é < 3 2005271' 5T 5
Tntegrated flicker 2 |27 £~ 5 log |#
, 3
Integrated Wiener 2 (2nf)~* %

What we are calling the Wiener process is the standard Wiener process plus an arbitrary con-
stant. Similarly, the SI(2} processes have an arbitrary additive constant and slope. We can only
compute covariances of linear combinations that are transparent to these ambiguities. Ford=1
1t nay seem strange to generate variances from a negative function, yet {9) works out coxrectly.

Integrated flicker can be used as a model for the phase of some quartz clocks or hydrogen
maser clocks over limited time scales. Here is a simulated sample. To remove the ambiguous
constant and slope, a straight line was added to make X {0} = X (500) = 0. This process is not
mean-square differentiable, and abrupt slope changes occur at all scales. There is a temptation
to blame such slope changes on external events. A

Integrated ficker, pinned att =0 and 500
150 : — - r .

—r 1 el I 1
0 200 400 600 800 1000



2 Linear invariant prediction

Let X € SI{d) with a known even GACV function sx (£). Assume that the trend coefficient cy

is0. Let T={¢:,...,4} CR, where p > d, and ¢ € R, We want the linear estimator
Xty=> a)X @) (10)
=

of X (t*) that is optimal in the mean-square sense.
If X (¥) is stationary with mean zero and ACV sx (2}, we can let X (.} be the orthogonai
projection of X (#,) on the span of X {t),t € T. Let

XM =@t a=[a(t):tei']T
(column vectors). Then E [X (i) — a"X (T} X ()" = 0, giving
Ve ==r, (11)

where
re=[sx (t—t)teT]", Ve=l[sx(t—u):t,uecT].

Equation (11}, called the Yule-Walker equations, have a solution for a, and any solution (in case
V is singular) gives the same X (£,).

Now let d > 1, so that we can only compute covariances of members of Sg. We adopt two
principles that will determine the optimal estimator of form (10).

1 Tmvariance. The estimation error X (f.) — X (£,) is to be invariant to any polynomial of
degree < d — 1 that we may add to X (). In other wards,

X ()~ X (&) e Sa(TU Y. (12)
'This statement is equivalent to
a%A =g~ (13)
where
1 -
A= ; P
Loty - et

Because p > d, A hasrank d. A random variable a7 X (T} with a satisfying (13) is called a &near
inveriant estimator (LIE) of X (¢.). Because ., ¢ (£) = 1, any LIE is unbiased. The LIEs form
a nonempty affine space Ay, whose set of differences A —Ag 1s just $; (T). I p = d there is just
one LIE, the value at ¢, of the interpolating polynomial of X (£}, ¢ € T. When p = d == 2, linear
extrapolation is often used for clock prediction; its mean square error is often close to optimal
when it is minimized with respect to |is — #1].

2 Orthogonality. The optimal estimator X (£,) is to be the LIE that is closest to X (£,) in
L?. It is not hard to show that a unique best LIE (BLIE) exists and satisfies the orthogonality
condition N .

X ()~ X (&) L Sg(T), (14}
that is,

BX (t.) ~ X (T)] {x (1T aj =0 (15)

whenever the entries of b = [b(Z) : t € 7] &ill P4~L. Both factors of (15) being in Sy, we can
use the GACV sx (¢) to evaluate it by (3), gdving

{r* - 2V} b= 0 whenever b*4 == 0. (16}
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Then r — Vo must be in the column space of A:
r—Va=A8 : (17)

for some 8 = [8;...84-1)".
We now have the equations

ATa=gq, Va+A=r, (18)

in p + d unknowns, which generalize the Yile-Walker equations (11). But V is not positive
definite; its main diagonal is usually zero. I don’t knew conditions for V to be nonsingular, but
if it is, then (18) has the following solution: let A = ATV~L4; then

§ = ATH(ATV Ir—g),
a = Vl{r—Af. (19)
Another approach, which I call “brute force”, is to write (18) as the single matrix equation

o olll=l 2

and tell Matlab to evaluate M\[7|, where M is the square matrix in (20). Matlab often reports
that M is poorly scaled or conditioned (V" by itself can be bad enough), yet this method seems
to work all right in practice, too.

Having solved for ¢ and # we can easily evaluate the mean square error from the GACV and
(3). Using {18) we have

E [X () ~ X (&) Y - B[xX@)-dX (T)]l [X (t) - X (1)T a]
= sx(0)—rTa—a'r+a'Ve
sx (0) —rTa—qlo. (21)

Initially 1 assumed ¢z = 0. If ¢z 5 0 but is known, then we can predict the corrected phase
X () ~ cqt?/d!, whose trend is 0. If we don't know ¢, then we are obliged to treat X as a
member of SI(d + 1} (if T has at least d-- 1 points). The penalty is a greater mean square error,
becanse we are projecting X (£,) on a smaller affine space A, 3. For example, if the long-term
average phase slope (rate error) of a caesium clock is known, then the corrected phase is well
modeled by a constant thmes the Wiener process, for which d = 1. For the standard Wiener
process, the optimal predictor of X {7) based on {—t,...,0} (7,2 > 0) is X (0) with mean square
error 7. But if the average slope is uncertain, then we have to use d = 2 to get a predictor that is
invariant to level and slope. In this case, X (7) = (1 + %) X (0) — £X (¢} with MSE 7 (1 + ).
As t — oo, the two-point predictor recovers the unknown slope, and the MSE tends to r.

3 Equally spaced data

Solving the Yule-Walker equations (11) or their generalization (18) by genieral linear equation
solving methods requires O {p*} operations for fixed 4. If 7' is equally spaced, however, then V'
is a Toeplitz matrix. For stationary X (£), the Levinson-Durbin algorithm 5], which is a loop on
#, calculates the regression coefficients and the mean square error in O {p?) operations. I have
- been able to extend this algorithm to the ST {d} case while keeping the O (p*} property for fixed
d, but 1 will not present this material here. In the cases [ have tried, the two general algorithms
(V! and brute force) and the extended Levinson elgorithm agree within roundoff error.

Even if the whole data set is equally spaced, the general case is still useful. On examining
the regression coefficients a (£) for an equally spaced T, one often sees that miost of the a(¢)
are small. Then, by applying the general method to a subset of 7" where the @ (¢} are relatively
large, one can vertfy excellent suboptimal estimators that use only a few of the available data.
The ones you use are often bunched near the minimum and maximum of 7.
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Need for prediction of clock differences

Monthly eycle of BIPM Circular T reporls

UTC - UTC(R) [ Cilr,'[‘ : 1 CiT.T |
T
) Y / g Prediclion needed

PIPM = Buzeau International des Poids et Mesures, Sévres
UTC = Coordinated Universal Time
UTC(k) = Laboratory k's version of UTC
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General noise model:
processes with stationary increments of order d

d = L Kolmogorov (1940s)
d = 1: Yaglom, Pinsker (1950s)

A. M. Yaglom, 1958, Correlation theory of processes with

random stationary nth increments, -AMS Translations, Series 2,
Volume 8, pp. §7-141.
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Stationary processes (real-valued)
X (t),t e I, contimuous in 7 (Q2),"
EX{1)X(u)=sy (f-u); s, (t)=autocovadance (ACV) function
8y (t):\_".C2 +jle'2"ﬂSX ()5
Sy (f )df = spectral meagure, finits, no atom at/ = 0

ol o R ;
C= ;’ﬂf."n X(#)dtin L’ = moan (possibly random)

a(t): "finite window", nonzero on a finite set, 3( /)= 7 a(¢)e™
!

E[Za(z).Y(t)}[Zb(i)X(f)} = Tl e-8)

t

=EC [Sa(n) [ Zo()]+ [T @ #)(r)5, (f)df

FPRAC 035, 2005-06-24 5

Processes with stationary dth increments

d ¢ N
X e 81{« ): Fos every 7, the process AYX (1) = ZL} J(—l)‘t X (- k) is stalionary.
ok
LetC, = lim lr ALY ()t inI? : rend coefficiens (0 for X {t)mc—éf—)
T S rdo ! : “ A
SI0}c SI{d)c SI{d+1), X eSU(d)=>Cyy =0, [dt:SI(d)— SI{d+1).
Yagiom detived a spectral measure 5, (f )df on B~ [0}, even, such that

1 o
s ryar <o, {78, (1)df <eoo.
Say that a{1) satisfies the mement condition for 4 i€ 3" e(t)e/ =0, 0= j<d-1,

t

Then ,'E[E4{1>X(’)]{Zb(t)x(t)}

d d o . -
=EC] {za(f)ﬂ{zb(z)%} a5 F)8 (1)t
whenever a{1),b(#) satisfy the momient condition for d,

FPSAC 05, 2005-06-24 6

Generalized autocovariance (GACV)

iy 21 (12
Define s, (1)=EC} ((Ttd))T*. J'lflﬂ[e:m - E&i—g}_] Sy [y

+ jE/I 1e"’9'8';f ()df mad P,

Then s, (1) is continuous; may assume s, (—#)= s, (¢).

If a(¢),b(2) satisfy the moment condition for d, then
B Zalt) ()| Te(0)x ()] Sale)sn)ec i)
¢ ¢ '™
Example: "structure function” for o =1

D(z)=E[X (1+1)~ X(z)]z =25 (0) =5, ()= s, (1) = (753% )(©)
More generally, ACV of stationary process A‘:X {t):

BALY (1)A2X ()= (-1) (87, Y(z-2)

FPSAC ‘05, 2005-06-24 7

Examples of spectrum and GACV

Name d 8,(7) se(f)
Wiener 1 {2 )” —!;—'l
. " { r|26«|
Fractiopal BM 1 o/, 4<6<d ——tlow
2cosn8T(28)
N 2
Integrafed flicker 2 |2 . t—E;—SH
" - il
Integrated Wiener 2 |21tf | o

FPSAC*C3, 2005-06-24 8




Sample of simulated integrated flicker (= noise)

integrated flicker, pinned att = 0 and 500

T T

0 200 400 600 800
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Linear invariant prediction
GivenX & 8I(d), 5, (¢) known, C, =0.

GivenX (1) on 7' = {t,,...,tp},p = d, estimate X (1, } for some nther 1.

Want linear estimator ¥ (n)= Zm a(t) X (¢), optimal in L* sense.

Stationary case, d=0 - X )- )
. : ‘
Project X (1) onthogonatly an X (¢),re . Let X (T)=| * | a=]| !

Then E[ X (1,)-a" X (T)]X (T) =0,ie, X(t)) o lel,)

Va=r
(Yule-Walker equations), where

Sy (t,—!,)
y=Bx(Mx (1) =[s(t-1)], r=Bx(u)X{T)=| i

; ) . Sy (t, ~Iy )
. Here, Vis.a covariance matrix. -

FPAC '05; 2005-06-24 10

The spaces &,

&,: The (non-closed) space of random vatiables 3 5(¢)X {f)
t

whete 5{7) is a finite window satisfying the moment condition for 4.
&, {T): Same with b (1) supported on the finite set T.

Canuse GACVY s, (1] to caloulate inner. product of any two clements of S

B S (00| Z4 600 |- £ sl (-1

i

where b, (1), 4, (1) satisfy the moment condition for d.

FPSAC 05, 2005-06-24

vInvariance principle for predictor (4> 1)
Conditions for}?(t. Y=a* X (T) as estimate of X {1}
1, Invariance of error to polynomials of degree < d -1t
X{)-%(t)e & {TU{L}), e,
Sa(t) =i, j=0,..d-l ie,

tel

a’d=g", where

1g !
A= 5 s =16 e 8]
1 5"

Such an.f (7, ) calied a linear invariant estimator (LIE) of X ().
The LiDs form an affine subset A of L', and A~ A= &, (T).
For p = d, 3| LIE: exirapolation of interpolating polynomial.

FPIAC ‘05, 2005-06-24 12




Qrthogonality principle P : Solution methods for BLIE

2. Orthogonality of error fo .A: A 4 (Best linear invariant estimator)
X(Q)ﬁX(I*)J*Sd (T)7 i.e., \\\ ,X :

. N ATa=¢q, Vai+d0=r
B[x(n)-ax(T)][ X (1) b]:o Py
28, P ' If I is nonsingular, let A = 4™V 7' 4; then
whenever b satisfics the moment condition for 2, ‘
Can evalnate with GACV s, (¢):

= A" (ATV"1'~ q)

a=F"{r-48
(r’ - aTV)b =0 whenever 67 d = 0. ( )
Then for some d-vector 8, Brute-force approach: write system as
r=Fa= A6 Vv o4 |
S A 0]|e g
Result: p+ d equations in p + < urknowns 4,0

arl solve with one Matlab statement (complains).
Aa=gq, VarAO=r

Here, ¥ =[5, (1, ¢, )] 18 not 3 covariance mattix.

PPSAC 03, 2005-06-24 13 FRHAC 08, 2005-06-24

Mean square error of BLIE Inteprated flicker, prediction coefficients

E[x{)-#(u)] =B[x (1)~ (r)] x(a)- (1 a]

Pradletion coafictents of integrated ficker

F | —f uncer, = 6.63 prediction interval = 8
—® uncerl. = 6.75

=5, (0)-rfa-ar+a'Va

=8 [0)-1Ta~¢"0

For d 21, 5, (0) is often @, and the separats terms are meaningless
as covariances.

o > W
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Integrated flicker, prediction uncertainty

) Prediciion uncertainiy of lntegrated ficker
10 T +
+ 33 points
< 4 points E
. 107 16al (=, 0] B ]

: /
=
i
b=
] 4
(3 1
2 10 4
g '
2
i
ST 4

ol

10 L "
10° 10’ 10° 10
prediction interval
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Equally spaced data

. r
Predictor: X, = >, {p)X,,, #=z20
i

Stationary case,

Mateix I of Yule-Walker equations is Toeplitz.
Levinson-Durbin algoritlun iterates p—1 — p in O( ) steps,
giving Q(p‘) salution instead of O (p’ ]

SI(d) case.
Found extension of Levinson algorithen that preserves 0( pz] property,

with soine overhead depending on d. Uses 0 from previous batch equations.

FPSAC ‘05, 2005-06-24 18






