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Abstract- Future space missions will depend more on low- 
thrust propulsion (such as ion engines) thanks to its high 
specific impulse. Yet, the design of low-thrust trajectories 
is complex and challenging. Third-body perturbations often 
dominate the thrust, and a significant change to the orbit re- 
quires a long duration of thrust. In order to guide the early 
design phases, we have developed an efficient and efficacious 
method to obtain approximate propellant and flight-time re- 
quirements (i.e., the Pareto front) for orbit transfers. A search 
for the Pareto-optimal trajectories is done in two levels: op- 
timal thrust angles and locations are determined by Q-law, 
while the Q-law is optimized with two evoIutionary algo- 
rithms: a genetic algorithm and a simulated-annealing-related 
algorithm. The examples considered are several types of orbit 
transfers around the Earth and the asteroid Vesta. The opti- 
mized Q-law leads to a decent Pareto front which contains 
the optimal solutions found with other trajectory optimiza- 
tion algorithms. At the same time, the decent Pareto front is 
obtained within a few hours of computation time. It is both 
the high optimization quality and the high computational ef- 
ficiency that make our method attractive as a guiding tool for 
the early design phases. 
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Future missions DAWN and JIM0 will use electric propul- 
sion for the inter-planetary cruise and orbital operations. 
The control of the low-thrust-driven spacecraft poses a new, 
challenging design problem. Third-body perturbations often 
dominate the thrust, and a significant change to the orbit re- 
quires a long duration of thrust. With the aim of providing 
rapid estimates of propellant requirements and flight times for 
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low-thrust orbit transfers, a control law called Q-law was de- 
veloped by Petropoulos [I] It has been demonstrated that the 
Q-law with a reasonable set of parameters efficiently finds ap- 
proximate Pareto-optimal solutions (i.e., a propellant-optimal 
solution for a given flight time or a flight-time-optimal solu- 
tion for a given propelianl requirement) [1][2]. On the other 
hand, it is also suggested from a grid sampling of the Q-law 
parameters that a better solution can be found if optimal Q- 
law parameters are chosen [2]. Finding an optima1 set of the 
Q-law parameters for a11 possible orbit transfers is analyti- 
cally impossible and can be computationally expensive with- 
out good heuristic algorithms. There is no guarantee that one 
set of the internal parameters is superior for all types of or- 
bit transfers. It is also not expected that one particular set 
is superior for all propellant requirements and flight times of 
a specific orbit transfer. In this paper, we demonstrate that 
a genetic algorithm and a simulated-annealing-related algo- 
rithm efficiently optimize the Q-law parameters, and thus im- 
proves an estimation for propellant-mass and Aight-time re- 
quirements for various orbit transfers. 

Q-law was developed by Petropoulos I11 in order to provide 
good initial guesses for propellant-optimal low-thrust orbit 
transfers. The Q-law determines when and at what angles to 
thrust based on the proximity function termed Q. The func- 
tion Q judiciously quantifies the proximity of the osculating 
orbit to the target orbit. We will describe the expression of 
the function Q in the next paragraph. In the Q-law, the cen- 
tral body is modeled as a point mass, and no perturbing forces 
are considered. 

The Q-law consists of two main control rules. 1) At any 
point on the orbit transfer, the Q-law chooses thrust angles 
which reduce Q the most. 2) The Q-law determines whether 
to thrust or coast according to a given thrust effectivity thresh- 
old qcut = [O, 11 as follows: 

thrust, if mina,p Q > %ut 

min,,p,o Q 

where Q is the time rate of change of Q, a and /3 are thrust 
angles (more specifically, azimuthal and polar angles of the 
thrust with the pole being given by the osculating orbital an- 



gular momentum), and 0 is the true anomaly of the osculating 
orbit. Q is the minimum of Q over a: and p at a given 
8, whereas rnin,,p,e Q is the minimum of Q over a, p, and 0. 
Thus, vcut is a handle to control the effectivity of the trust. In 
general, a larger vcut leads to a smaller propellant mass and a 
longer Right time. 

The function Q, which serves as a candidate Lyapunov func- 
tion in the Q-law, is defined as follows: 

for @ = a ,  e, i, w,  0. (3) 

The five orbital elements (e) are the semimajor axis (a), ec- 
centricity (e), inclination (i), argument of periapsis (w), and 
longitude of the ascending node (R); Wp and the We are 
scalar weights greater than or equal to zero; the subscript T 
denotes the target orbit element value (without subscript, the 
osculating value is indicated); k,, denotes the maximum over 
thrust direction and over true anomaly on the osculating orbit 
of the rate of change of the orbit element (due to thrust). The 
analytical expressions for de,, are available [I]; P is a penalty 
function; S. is a scaling function; and d(ar, arT) is a distance 
function. The penalty function is used in the present paper to 
en€orce minimum-periapsis-radius constraints and takes the 
form 

P = e x p  k I-- [ ( (4) 
where k is a scalar, r, is the osculating periapsis radius, 
and rpmi, is near or equal to the lowest permissible value of 
r,. The scaling function is used primarily to prevent non- 
convergence to the target orbit and takes the form 

where m, n, and r are scalars. The distance function is de- 
fined as 

for CE = a ,  e,  i 
d ( @ , @ ~ )  = (6) 

COS-I [COS(CE - CET)] for a: = W ,  !2 

where the principal value, namely 10, TI ,  is used for the arc 
cosine. The peculiar form of the distance function for w and R 
is used because it provides an angular measure of the distance 
between two positions on a circle using the "short way round" 
the circle, because it is differentiable with respect to a [except 
when d(ce, arT) = TI, and because the sign of the derivative 
indicates whether a: leads or lags c e ~  based on the short way 
round. 

As shown above, the Q-law specifies the general form of 
the proximity function Q and the general rules for opti- 
mal thrust angles and thrust locations. However, the Q-law 
involves a set of internal parameters that needs to be de- 
termined by a mission designer. The set is composed of 
{~clcut,Wa, W z ,  Ww, Wa, W ~ , m , n , r , ~ ~ m i n ,  k ) .  

3. Q-LAW OPTIMIZATION WITH GA AND SA 
Mathematically, the Q-law parameter optimization problem 
is expressed as 

minimize y = { t f ( x ) ,  m,(x)} E Y, (7) 

where x = {Wa,We,Wi,W,,Wa,Wp, 

m, n, r, Tpmjn, k ,  vcut, oi) E X- (8) 

Here, x is the Q-law parameter vector, y the objective vec- 
tor given by required flight time (Cf) and required propellant 
mass (m,) for a given orbit transfer, X the decision space, 
and Y the objective space. We add one Inore parameter to 
the decision space: the inilial true anomaly Oi which is not a 
Q-law parameter per se but a mission-design parameter. One 
decision vector x, leads to one candidate trajectory with a 
final fight time and a consumed propellant mass, that is an 
objective vector yi. In the following paragraphs, we will de- 
scribe how the optimization problem is solved with two evo- 
lutionary algorithms: a genetic algorithm and a sirnulated- 
annealing algorithm. 

Genetic Aigorithm 

Genetic algorithms (GA), first introduced by John Holland 
and his colleagues [3], are search algorithms based on the me- 
chanics of natural selection and sexual reproduction. GAS are 
theoretically and empirically proven to provide robust search 
in complex spaces. Furthermore, they are not fundamentally 
limited by restrictive assumptions about the search space such 
as continuity and existence of derivatives. 

The standard GA proceeds as follows. A possible solution 
of a given problem is encoded as a f nite string of symbols, 
known as the genome. An initial population of the possible 
solutions called individuals is generated at random or heuris- 
tically. Every evolutionary step, known as a generation, the 
individuals in the current population are decoded and evalu- 
ated according to some predefined quality criterion, referred 
to as the fitness. To form the next generation, parents are se- 
lected according to their fitness. Many selection procedures 
are currently in use, one of the simplest being Holland's orig- 
inal fitness-proportionate selection, where individuals are se- 
lected with a probability proportional to their relative fitness. 
This ensures that the expected number of times an individ- 
ual is chosen is approximately proportional to its relative per- 
formance in the population. Thus, high-fitness individuals 
stand a better chance of reproducing, while low-fitness ones 
are more likely to disappear. 

The parent selection process is followed by genetically- 
inspired operators to form offsprings. The most well known 
operators are crossover and mutation. Crossover is performed 
with probability p,,,, between two selected parents, by ex- 
changing parts of their genomes to form two offsprings; in its 
simplest form, substrings are exchanged after a randomly se- 
lected crossover point. This operator tends to enable the evo- 
lutionary process to move toward "promising" regions of the 
search space. The mutation operator is introduced to prevent 



Table 1. Initial and final orbit elements, thrust characteristics, spacecraft initial masses, and central bodies associated with the 
orbit transfers studied in this paper. The orbit elements are given by the semimajor axis (a), the eccentricity (e), inclination (i), 

argument of periapsis (w), and longitude of the ascending node (a).  Note that the true anomaly (8) is left free for both the 
initial and final orbit. 

premature convergence to local optima by randomly sampling 
new points in the search space with some probability pmt. 
Genetic algorithms are stochastic iterative processes that are 
not guaranteed to converge. The termination condition may 
be specified as some fixed, maximal number of generations 
or as the attainment of an acceptable fitness level. 

Case 

A 

C 

E 

We apply the standard GA to optimize the Q-law parameters. 
While the standard GA is closely followed, a ranking scheme 
known as nondominated sorting is added in the process of fit- 
ness assignment (101. Optimizing the Q-law parameters is a 
type of multi-objective optimization problems, because both 
propellant masses and flight times need to be minimized. In 
such a problem, there may not exist one solution that is best 
with respect to all objective. Therefore, the goal of the multi- 
objective optimization problem is to determine the trade- 
off surface, which is a set of nondominated solution points, 
known as Pareto-optimal or non-inferior solutions. A conven- 
tional way to solve multi-objective problems is to transform 
the original problem in a singIe-objective one, by weighting 
the objectives with a weight vector. However, this process 
tends to lead to a subgroup of Pareto-optimal solutions that is 
sensitively chosen to the weight vector used in the weighting 
process. In contrast, the nondominated sorting encourages 
equally all nondominated solutions to survive. The nondomi- 
nated sorting genetic algorithm (NSGA) is proven to be supe- 
rior [4] to other multi-objective evolutionary algorithms such 
as the vector evaluated genetic algorithm (VEGA) [5], the 
niched Pareto genetic algorithm (NPGA) 161, and the multi- 
objective genetic algorithm (MOGA) [7]. 

The nondominated sorting proceeds as follows. First, the 
nondominated individuals in the current population are iden- 
tified, as described in the Appendix. Then, the same fitness 
value is assigned to all the individuals constituting the first 
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Initial 
Target 

Initial 
Target 

Initial 
Target 

Initial 
Target 
Initial 
Target 

nondominated front. Afterwards, the individuals are ignored 
temporarily, and the rest of the population is processed in the 
same way to identify the nondominated individuals. A fitness 
value that is smaller than the previous one is assigned to all 
the individuals belonging to the second nondominated front. 
This process continues until the whole population is classified 
into nondominated fronts. 

Simulated Annealing 

a e i w a 
(km) (degree) (degree) (degree) 

7000.00 0.010 0.050 0.0 0.00 
42000.00 0.010 free free free 
24505.90 0.725 7.050 0.0 O.Oo 
42165.00 0.001 0.050 free free 
9222.70 0.200 0.573 0.0 Oaoo 

30000.00 0.700 free free free 
944.64 0.015 90.060 156.9 -24.60 

401.72 0.012 90.010 free -40.73 
24505.90 0.725 0.060 180.0 180.00 
26500.00 0.700 116.000 270.0 180.00 

Simulated annealing (SA) is a widely used and well- 
established optimization technique especially for high- 
dimensional configuratio~~ spaces [8][9]. The goal is to min- 
imize an energy function E (in our case, the required flight 
time and propellant mass), which is a function of N variables 
(in our case, the Q-law parameters), with N being a large 
number. The minimization is performed by randomly chang- 
ing the value of one or more of the N variabIes and reeval- 
uating the energy function E. Two cases can occur: 1) the 
change in the variable values results in a new, lower energy 
function value; or 2) the energy function value is higher or 
unchanged. In the first scenario the new set of variable values 
is stored and the change accepted. In the second scenario, the 
new set of variable values is only stored with a certain Iikeli- 
hood (Boltzmann probability, including an annealing temper- 
ature). This ensures thal the overall optimization algorithm 
does not get stuck in local minima too easily (greedy down- 
hill optimization). The annealing temperature directly influ- 
ences the Boltzmann probability by making it less likely to 
accept an energetically unfavorable step, the longer the opti- 
mization lasts (cooling schedule). Then the overall procedure 
is repeated until the annealing temperature has reached its end 
value or a preset number of iterations have been exceeded. 

Thrust Specific Initial Central 
(N) Impulse (s) Mass (kg) Body 

1 3100 300 Earth 

0.350 2000 2000 Earth 

9.3 3100 3 00 Earth 

0.0045 3045 950 Vesta 

2000 2000 Earth 

We apply a derivative of the canonical SA algorithm to the 



low-thrust-trajectory optimization problem, by replacing the 
Boltzmann probability acceptance with an energy threshold 
acceptance: each configuration with an energy E < Emin + 
Ethreshold will be automatically accepted, with Etllreshold OS- 
cillating between to preset boundaries ("simulated reheating 
and cooling"). 

The parameters of the Q-law are optimized by GA and SA 
for five different types of orbit transfers. Table 1 lists the ini- 
tial and final orbit elements, thrust characteristics, spacecraft 
initial mass, and central bodies associated with the five orbit 
transfers termed case A, B, C, D, and E. The Pareto fronts 
obtained with the optimized Q-law are compared with those 
obtained with the normal (unoptimized) Q-control law and 
available solutions generated by other optimization tools. 

The normal Q-law uses We = 1 for orbit elements with tar- 
get values, We = 0 for orbit elements without target values, 
and m = 3, n = 4, T = 2 for the scaling function of the 
semimajor axis a. The penalty function to enforce minimum- 
periapsis-radius constraints is applied only for case D and E 
orbit transfers. The penalty function of the nolrnal Q-law 
uses W, = 1, k = 100, and r,,i, = 300 for case D and 
?-,,in = 6578 for case E. The Pareto front of the normal 
Q-law is acquired by varying the thrust effectivity threshold 
rlcut = 10,1] and the initial true anomaly Bi = {O, 2 ~ 1 .  

The GA optimization uses the following GA parameters: the 
population size Np = 1000 for case A, B, C and Np = 2000 
for case D and E, the number of generations N, = 100, the 
population replacement rate p, = 0.1, the crossover prob- 
ability pc = 0.8, the mutation probability p, = 0.3. The 
relatively high mutation rate is chosen to ensure the diver- 
sity of the population. Each Q-law parameter is represented 
as a real-valued gene. The fitness of each individual is as- 
signed according to the nondominated sorting as described 
in Sec. ??. Possible parents are selected by tournament (i.e., 
randomly pick two individuals and choose the one who is bet- 
ter fitted between the two). The crossover is performed by 
choosing one point in the gene string at which the two strings 
are crossed. The mutation is performed by randomly choos- 
ing a gene in the string according to the mutation probability 
and resetting the gene randomly within a given range. 

Case A Orbit Transfer 

Case A is a simple coplanar, circle-to-circle orbit transfer 
from low Earth orbit to geostationary orbit. No periapsis con- 
straint is imposed during the transfer, as the natural dynamics 
do not decrease the periapsis altitude. Figure 1 shows the 
Pareto front obtained by the normal Q-law and the optimized 
Q-law. Note that each solution in the Pareto front for the op- 
timal Q-law is obtained with a different set of Q-law parame- 
ters. As shown Fig. 1, the GAISA Pareto front dominates the 
Pareto front given by the normal Q-law. 

The Pareto-optimal solutions found by GA and SA are com- 
pared with two available analytical solutions: Edelbaum 
transfer and Hohmann transfer. Edelbaum transfer pro- 
vides the lower limit for the required flight time [I I], while 
Hohmann transfer sets the lower limit for the required pro- 
pellant mass.When the Q-law optimized with GAISA is used, 
the flight-time-optimal solution is about 0.04days away from 
the lower limit of the flight time, and the propellant-optimal 
solution is about 0.04 kg away from the lower limit of the 
propellant mass. In contrast, the flight-time optimal soh- 
tion found by the normal Q-law is 0.11 days away, and the 
propellant-optimal solution is 0.81 kg away. This compar- 
ison clearly shows that the optimization of the Q-law with 
GAISA leads to substantial improvement in the estimation of 
the "true" Pareto front. In particular, the EdeIbaum transfer 
uses a limited thrust, thus can be compared with our low- 
thrust trajectory solutions in terms of both flight time and pro- 
pellant mass. Our solution that is closest to the Edelbaum so- 
lution in the objective space (propellant-mass vs flight-time) 
is about 0.2 days and 0.002 kg away from the Edelbaum so- 
lution. Tlie Hohmann transfer assumes a unlimited thrust, 
thus the direct comparison of the flight time of the Hohmann 
transfer with that of our low-thrust ( assumes a limited thrust) 
transfer is inappropriate. 

One of the critical limitations of the normal Q-law is that the 
particularly chosen Q-law parameters excludes a subgroup of 
Pareto-optimal solutions. The problem appears in Case A or- 
bit transfer. As shown in Fig. 1, the normal Q-law provides 
only two families of the Pareto-optimal solutions: one for 
short flight times (14 < tf < 17) and the other for long flight 
times (tf > 140). No solutions are found for the intermediate 
flight times (17 < tf < 140). In contrast, the GA-optimized 
Q-laws lead to the Pareto-optimal solutions in a wide range 
of flight times without a significant gap. This indicates that 
some Q-law parameters besides qcut and Bi strongly affect the 
trajectories to be taken. 

To show which parameters are important in determining the 
trajectory pattern, we investigate a correlation between the 
optimal parameters and the flight time (or the propellant 
mass). While other Q-law parameters do not show much cor- 
relation, the optimal We/Wa and qcut show a strong correla- 
tion with the flight time, as shown in Figure2. In other words, 
for a given set of Q-law parameters the resulting trajectory 
pattern is determined mainly by We/Wa and rlcut. The tra- 
jectory is less sensitive lo other Q-law parameters. For exam- 
ple, the trajectory with flight time 50 days can be found only 
with We/Wa = 0.81 and qcut = 0.84, while the rest of Q- 
law parameters can vary widely. This sensitivify/correlation 
analysis between the Q-law parameters and the resulting tra- 
jectory suggests that the Q-law can be effectively optimized 
by varying on1 y We/Wa and qcut. 

We present a few typical trajectories for flight-time optimal 
solutions, propellant-optimal solutions, and intermediate- 
flight-time solutions found by the optimized Q-law. The 
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Figure 1. Case A: Trade-off between propellant Figure2. Case A: Optimal Q-law parameters found by GA with respect 
mass and flight time. The Pareto fronts generated to flight time. There is a strong correlation hetween W,/W, and the 
by the normal Q-law and the GA optimized Q-law flight time, and between and the flight time, while other Q-law 
are plotted in comparison with the lower hounds parameters show a weak correlation. 
(solid lines) of the required flight time and pro- 
pellant mass given by the FAelbaum and Hohman 
transfers, respectively. 

Figure 3. Case A: flight-time-optimal Figure 4. Case A: propellant-optimal 
trajectory. Itisroughly acircularspiral, trajectory. In the first stage of the 
increasing the semimajor axis while trajectory, the same pcriapsis is main- 
maintaining the eccentricity close to tained while the apoapsis becomes su- 
zero. This is close to the Edclbaum pcrsyncronous to the target circular or- 
transfer. bit. In the second stage, only the pe- 

riapsis is increased while the apoapsis 
is kept constant. This is a type of the 
Hohman transfer with a limited thrust. 

Figure 5. Case A: intcrmediate-flight- 
time tra,jectory. It is a mixed trajectory 
bctwecn the flight-time optimal trajcc- 
tory and the propellant-optimal trajec- 
tory. The tra.jectory initially increases 
both the eccentricity and the semimajor 
axis, and later reduces the eccentricity 
while continuing to increase the semi- 
major axis. 

flight-time-optimal trajectory is roughly a circular spiral, in- and apoapsis simultaneously. 
creasing the semimajor axis while maintaining the eccentric- 
ity close to zero, as shown in Figure 3 The propellant-optimal Case B Orbi t  Transfer 
trajectory takes a quite different form, maintaining the same Case B is a transfer from a slightly-inclined geostationary 
periapsis until the apoapsis becomes supersyncronous, and transfer orbit to gcos!ationary orbit. Figure 6 shows the trade- 
then increasing the periapsis to the target value, as shown in off between propellant-mass and flight-time for this transfer. 
Figure 4. As expected, the intermediate-flight-time trajectory, In comparison with the Pareto front generated by the normal 
shown in Figure 5,  is a hybrid between the flight-timeoptimal Q-law, the improvement or the Pareto front with the Q-la\\, 
one and the propellant-optimal one, increasing the periapsis 
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Figure 6. Case B: Trade-off between propellant mass Figure 7. Case B: Optimal Q-law parameters found by GA 
and flight time. The Pareto fronts generated by the nor- with respect to flight time. Optimal Wa, We, Wi are normalized 
ma1 Q-law and the GA optimized Q-law are plotted in to make its sum to be 100%. 
comparison with the Pareto-optimal solutions found by 
Geffroy and Epenoy using an orbit averaging technique. 

optimization is dramatic. A about 5-1 5% propellant savings 
is achieved with the optimized Q-law. To verify the quality of 
the improved Pareto front, we compare it with the two opti- 
mal trajectories found by Geffroy and Epenoy using an orbit 
averaging technique [12]. The inset of Fig. 6 shows that our 
Pareto-optimal solutions are as good as the soIutions found 
by Geffroy and Epenoy. 

A similar analysis about the correlation between Q-law pa- 
rameters and the resulting solution (flight time and propellant 
mass) for this transfer is performed, as shown in Figure 7. 
The dense population of optimal Wa around lo%, optimal 
We around 20%, and Wi around 70% shows that the normal 
Q-law (W, = We = Wi) is not an optimal choice. As ex- 
pected, the thrust effectivity threshold rl,ut is the important 
parameter to control the flight time. Other Q-law parameters 
(m, n, r)  and the initial true anomaly (Bi) show weak correla- 
tion with the flight time, indicating that the parameters are not 
as critical as W,, We, Wi, and qCut in the Q-law optimization. 

Case C Orbit Transfer 

Case C is a transfer from a low-eccentricity elliptic orbit 
to a coplanar, high-eccentricity, larger elliptic orbit. Fig- 
ure 8 shows the trade-off between propellant mass and flight 
time for this transfer. The Pareto front for the normal Q- 
law is obtained by varying the thrust effectivity threshold 
qcut = [O, 11 and the initial true anomaly 6, = [O, 2 ~ 1 .  The 
Pareto front for the GA optimized Q-law is generated by op- 
timizing {W,, We, m, n, r, rlcut, 6%). The GA optimized Q- 
law provides a better estimation of the Pareto iront than the 
normal Q-law particularly for short flight limes. Several solu- 
tions found by the optimization tool named Mystic are plotted 
for comparison. Mystic uses the staticldynamic control algo- 

rithm [13] [14]. The comparison shows that the Pareto front 
generated by the optimized Q-law is as good as or better than 
the Mystic solutions. 

The optimal Q-law parameters found by GA are plotted with 
respect to flight time in Fig. 9. The optimal W,/W, and 
vat are strongly correlated to the flight time, while other Q- 
law parameters show a weak correlation. Generally, flight- 
time-optimal solutions have We/Wa > 1, while propellant- 
optimal solutions have W,/W, < I. This means that 
the flight-time-optimal solutions emphasize the eccentricity 
target while the propellant-optimal solutions emphasize the 
semi-major axis target. 

Case D Orbit Transfer 

Case D is roughly a circle-to-circle orbit transfer around 
the asteroid Vesta, involving a small plane change. Fig- 
ure 10 shows the trade-off between propellant mass and 
flight time for this transfer. The Pareto front of the 
normal Q-law is obtained by varying the thrust effectiv- 
ity threshold rlcut = [O, 11 and the initial true anomaly 
Bi = [O, 2 ~ 1 .  The Pareto fronts of the GA opti- 
mized Q-law are generated in three different ways: the 
first Pareto front (GA Q-law I) is obtained by oplimizing 
{Wa, We, Wi, WQ, qcut, O i l ,  the second Pareto front (GA Q- 
law 11) by optimizing (W,, We, Wi, WQ, qcut, Qi, m, n, r) ,  
and the third Pareto front (GA Q-law 111) by optimizing 
{Wa, W e ,  Wi, %Utr @i, 7 7 ~ ,  12, r, WP, rpminr k ) -  In compari- 
son with the normal Q-law, the GA optimized Q-law im- 
proves an estimation of the Pareto front for dl the flight times 
considered. The GA optimized Q-law leads to a propellant 
mass savings as much as 16%. More promisingly, the Pareto- 
optimal solutions found by the optimized Q-law are as good 
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Figure 8. Case C: Trade-off between propellant Figure 9. Case C: Optimal Q-law parameters found by GA with re- 
mass and flight time. The Pareto fronts generated spect to flight time. There is a strong correlation between W,/W, and 
by the normal Q-law and the optimized Q-law are the flight time and between qcut and the flight time, while other Q-law 
plotted in comparison with several Pareto-optimal parameters show a weak correlation. 
solutions found by optimization tool Mystic. 

as the solution found by Whiffen using the static/dynamic 
control algorithm [14] [15]. 

Among the three GA optimization schemes described above, 
GA Q-law 11 and GA Q-law 111 outperform GA Q-law I but 
the difference between GA Q-law 11 and GA Q-law I11 is in- 
significant. This result indicates that the trajectory does not 
depend strongly on {Wp, rp,i,, k) (the parameters of the 
penalty function for the minimum periapsis constraint) and 
thus a decent Pareto front can be obtained by optimizing only 
{W,, We, W,, qcut, Bi, m, n, T). The difference between the 
Pareto fronts generated by GA Q-law I and GA Q-law I1 (or 
111) becomes smaller as the flight time becomes longer. This 
sheds some light on the effect of Q-law parameters m, n, T 

on the Q-law performance. The parameters m, n, T are intro- 
duced for the scaling function in the semimajor axis to ensure 
the convergence of the trajectory which involves the increase 
of the semimajor axis. However, the semimajor axis steadily 
decreases in this orbit transfer indicating no strong need for 
the scaling function. Therefore, it is preferred to have the pa- 
rameter set rn, n, r that yields a smallest modification to the 
distance function. 

Optimal Q-law parameters found by GA are plotted 
with respect to flight time in Figure 11. Optimal 
W,, We, Wi, Wo are normalized to make the sum to be 
100%. The Q-law optimization shows greater selecliv- 
ity about W,, We, Wi, Wn, vcut, Qir m, n, and r than about 
W,, r,,i,, and k. This explains why the Pareto front gen- 
erated by GA Q-law I1 is as good as the Parelo front gener- 
ated by GA Q-law 111, shown in Figure 10, Similar to others, 
this transfer also shows a strong correlation between rlcut and 
flight time. However, the correlation does not follow a sim- 

ple trend: the larger qcut, the longer flight time. The optimal 
qcut shows a discontinuity around flight time 60 days. The 
discontinuity also appears in other optimal Q-law parameters 
such as W,, We, Wa. This indicates that the pattern of the 
trajectory changes around the flight time. 

To understand the cause of the discontinuity of the optimal Q- 
law parameters, we examine the trajectory of the flight time 
just below the discontinuity point (TI) and that of the flight 
time just above the discontinuity point (T2). Rgure 12 shows 
orbit elements as a function of time during the orbit transfer. 
The two trajectories show a significant difference in the time 
history of eccentricity, while other orbit elements (a, i, w,  a) 
show a small difference. T1 keeps the eccentricity close to 
zero all time, but T2 shows the large increase and decrease of 
the eccentricity during the orbit transfer. This trend is similar 
to that observed in case A transfer, where the circular spiral 
trajectory (Edelbaum-type transfer) is flight-time optimal and 
the elliptic trajectory (Hohmann-type transfer) is propellant 
optimal. The two types of trajectories can be obtained with 
the Q-law by either emphasizing the eccentricity target or not. 
This result is shown in the distribution of the optimal We in 
Figure 11.  The optimal We is greater for short-flight-time 
solutions than for long-flight-time solutions. 

Case E Orbit Tkansfer 

Case E is a transfer from a geostationary transfer orbit to 
a retrograde, Molniya-type orbit, involving a large plane 
change. Figure 13 shows the trade-off between propel- 
lant mass and flight time for this transfer. The Pareto 
front for the normal Q-law is obtained with varying qcut = 
[O, 11 and the initial true anomaly Qi = LO, 2x1. Three 
Pareto fronts are generated with GA optimization as fol- 



lows: the first Pareto front (GA-Q-law I) by optimizing 
{W,, I&, Wi, W,, Wn). the second Pareto front (GA Q-law 
11) by optimizing ( W a ,  We, Wi, Wu, Wn, m, n, T ,  V C U ~ ,  Qi}, 
and the third Pareto front (GA Q-law 111) by optimizing 
{ W a ,  We, Wi, W w )  Wa, m,n,r, rlcut) Qi, Wp,rpmin,  k ) -  The 
GA optimized Q-law provides a better estimation of the 
Pareto front than the normal Q-law for a11 the flight times 
considered. The propellant mass savings as much as 30% is 
obtained with the GA optimized Q-law. Similar to the case 
D, GA Q-law I1 and GA Q-law I11 outperform GA Q-law I, 
while the difference between GA Q-law 11 and I11 is insignif- 
icant. This result reflects the degree of the influence of each 
Q-law parameter on the Q-law performance. The difference 
between GA Q-law I and GA Q-law I1 (or 111) becomes larger 
as the flight time increases in opposite to the case D. 

Optimal Q-law parameters found by GA are plotted with re- 
spect to flight time in Figure 14. The overall distribution of 
the optimal Q-law parameters shows the greater sensitivity of 
the Q-law performance to { W,, We, Wi, WG, vcut) than to 
{ m ,  n, r ,  W,, r,,,,i,, k). The optimal qmt shows a strong cor- 
relation with flight time similar to other transfers. A strong 
preference of relative size order Wi > Wn > W, > W, > 
We is observed for all flight times. 

Case E involves specified changes in all orbit elements, mak- 
ing it the most complicated transfer among the five transfers 
studied here. We examine how the change of each orbit el- 
ement interacts with other orbit-element changes. Figure 15 
shows the time history of each orbit element for four different 
Pareto-optimal trajectories found by GA Q-law 111. It is com- 
monly observed for all four trajectories that the plane changes 
(i.e. i, w ,  R) occurs when the semimajor axis reaches near 
the maximum values, and the increase of semimajor axis is 
accompanied by the increase of eccentricity. This behavior 
stems from the orbit-transfer energetics that the larger apoap- 
sis radius (i.e. larger semimajor axis and larger eccentricity) 
makes the plane change less costly in terms of propellant. 

Figure 15 also shows the general trend of the orbit-element 
changes with respect to the flight time. In general, the tra- 
jectory with a longer flight time involves a larger change of 
semimajor axis and a late start of plane change. For example, 
the shortest-flight-time trajectory (the solid line) exhibits the 
early start of the plane change and the semimajor axis peaked 
at 50000 km. In contrast, the longest-flight-time trajectory 
(the line with circles) shows almost zero plane change until 
the semimajor axis reaches its maximum 100000 km. The dif- 
ference is directly related to the orbit-transfer energetics that 
the plane change with a larger apoapsis radius is propellant 
efficient. The longer flight-time trajectory takes more advan- 
tage of the energetics. The top panel of Fig. 15 ilIustrates 
the time history of propellant usage during the transfer. The 
shortest-flight-time trajectory uses propellant with almost a 
constant rate. The longer-flight-time trajectories use propel- 
lant with a lower rate during the first stage of increasing the 
sernimajor axis followed by a higher rate of propellant con- 

Table 2. Computation times required to obtain a Pareto 
front for each orbit transfer. GA computation was performed 
with 10 processors in parallel, thus required the wall-clock 

time that is one tenth of the listed computation time. 

sumption in the second stage of changing the plane. 

Orbit Transfer 
Case 

A 
B 
C 
D 
E 

Computational Requirement 

Computation Time (minutes) 
GA S A 
705 
800 
57 

1548 
2480 

The computation time required to obtain the Pareto front of 
each orbit transfer is listed in Table 2. Case C requires a 
relatively short computation time because the evaluation of 
each Q-law takes less time due to the short flight time in Case 
C transfer. Beside Case C, the required computation time is 
about between 700 to 2500 minutes. For Case A, B, and C, 
the GA computation evaluates 1100 sets of Q-law parame- 
ters, while for Case D and E it evaluates 2200 sets of Q-law 
parameters. Therefore, the time to evaluate one set of Q-law 
parameters (equivalently to obtain a candidate trajectory and 
to assign its fitness) is only about 1 minute in average. 

In addition to the efficient evaluation of candidate Q- 
lawsltrajectories, GA is straightforward to perform parallel 
computation thanks to the independent evaluation of each 
candidate Q-lawltrajectory in population. The parallel com- 
putation significantly reduces the wall-clock time for a given 
computational work. For this work, we take advantage of the 
easy parallelism of GA. The GA computation was performed 
with 10 processors in parallel, thus required the wall-clock 
time that is one tenth of the computation time listed in Ta- 
ble 2. It is the short wall-clock time (70 - 250 minutes ) 
that makes our optimization method attractive as a guiding 
tool for the early stage of mission design where many possi- 
ble scenarios need to be considered. It is important to note 
that our method provides a decent Pareto front (i.e., a group 
of Pareto-optimal solutions) within a few hours, while other 
optimization algorithms tend to require a similar amount of 
computational time to acquire just a single Pareto-optimal tra- 
jectory. 
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Figure 10. Case D: Trade-off between propellant mass and flight time. The Pareto front of the normal Q-law is obtained by 
varying %,t = [O, 11 and the initial true anomaly di = [O, 2x1. Three Pareto fronts of the GA optimized Q-law are generated 
as follows: the first Pareto front (GA Q-law I) is obtained by optimizing {W,, We, Wi, Wsl, xut, Oil, the second Pareto front 
(GA Q-law 11) by optimizing {W,, We, Wi, Wn, vcut, 19,, m, n, r) ,  and the third Pareto front (GA Q-law 111) by optimizing 
(W,, We, Wi, Wn, vclcut, di, m, n, r, Wp, rpmin, k) .  A Pareto-optimal solution found by Mystic is plotted for comparison. 

Flight Time (days) Flight Time (days) Flight Time (days) Flight Time (days) 

Figure 11. Case D: Optimal Q-law parameters found by GA with respect to flight time. The overall distribution of the opti- 
mal parameters shows that the Q-law performance is more sensitive to the choice of {W,, We, W,, Wa,  qcut, 4, m, n, r )  than 
{Wp, rpmin, k). There is a strong correlation between qcul and the flight time as shown in other transfer cases. However, the 
optimal 77cul: shows a discontinuity around flight time 60 days, indicating a change of trajectory patterns. Optimal W,, W,, Wn 
also show a discontinuity around the flight time. 
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Figure 12. Case D: Orbit elements as a function of time for a Pareto-optimal trajectory with flight time 58 days (just below the 
discontinuity point of the optimal qCut shown in Fig. 11) and one with flight time 62 days (just above the discontinuity point). 
A large difference in the time history of eccentricity between the two trajectories is shown, while other orbit elements show 
little difference. 
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Figure 13. Case E: Trade-off between propellant mass and flight time. The Pareto front for the normal Q-law is obtained 
by varying vCut = [O, 11 and the initial true anomaly 0, = LO, 2nl. Three Pareto fronts for the GA optimized Q-law are gen- 
erated as follows: the first Pareto front (GA Q-law I) by optimizing {W,, We, Wi, W,, War qcut, %i), the second Pareto front 
(GA Q-law 11) by optimizing {W,, We, Wi, W,, Wsl, riot, 8,, m, n, r )  and the third Pareto front (GA Q-law 111) by optimiz- 
ing {W,, We, Wi, W,, Wa, rlcut, Bi, m, n, r, Wp,  rpmin, k) .  The GA optimized Q-law provides a better estimation of the Pareto 
front than the normal Q-law for all the flight times considered. The propellant mass saving as much as 30% is obtained with the 
GA optimized Q-law. 
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Figure 14. Case E: Optimal Q-law parameters found by GA with respect to flight time. There is a strong correlation between 
qcut and the flight time, while other Q-law parameters show a weak correIation. A strong preference of small values of W,/W, 
and W,/W, is observed, whereas a wide range of Wi/W, and Wsl/Wa values is found to be optimal. 
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Figure 15. Case E: Consumed propellant mass and orbit elements as a function of time for four Pareto-optimal trajectories 
among the solutions found by GA Q-law 111. The solid line is the trajectory with flight time 60 days, the dashed line is the 
trajectory with flight time 156 days, the line with x symbols is the trajectory with flight time 275 days, and the line with circles 
is the trajectory with flight time 482 days. As a general pattern, the trajectory with a longer flight time involves a larger change 
of semimajor axis and a later change of inclination. 



For the design and optimization of trajectories powered by 
low-thrust propulsion, we have developed an efficacious 
and efficient method to obtain approximate propellant and 
flight-time requirements and Pareto-optimal trajectories. The 
method involves two-level optimizations: i) optimal thrust 
angles and locations are determined by the Q-law, ii) the Q- 
law is optimized with two evolutionary algorithms: a genetic 
algorithm and a simulated-annealing-related algorithm. We 
have applied our method to four different types of orbit trans- 
fers around the f i r th  and one orbit transfer around the aster- 
oid Vesta. The resulting Pareto front with the optimized Q- 
law shows as much as a 30% savings of propellant in compar- 
ison with an unoptimized Q-law, and the Pareto front contains 
the optimal solutions found by other trajectory optimization 
algorithms. 

In optimization problems, there is always a trade-off between 
the optimization quality and the computational requirement. 
Most of efficient (fast) optimization tools tend to yield low- 
quality solutions while high-quality optimization tools tend 
to demand high computational requirements. It is both de- 
cent quality of optimization and low computational require- 
ment that are needed for the early stage of mission design 
where many possible scenarios are considered. Our method 
offers both the high optimization quality and the high com- 
putational efficiency. The trajectory quality of our method is 
shown to be as good as that of other available optimization 
tools. Our method provides not only a few Pareto-optimal 
trajectories but also a decent Pareto front for a given orbit 
transfer within a few hours of computation time. The compu- 
tational efficiency arises from both the efficiency of the Q-law 
in obtaining a candidate trajectory and the easy parallelism 
of GAISA computation involving the population of candidate 
Q- la\vs/trajectories. 
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Mathematically, a multi-objective optimization problem is 
expressed as 

minimize y = (yl (x) , . - . , yM (x)) E Y, (A. I) 
where x = {xI , - + . , XN) E X, (A-2) 

and x is the N dimensional decision vector, y the M dimen- 
sional objective vector, X the decision space, and Y the ob- 
jective space. 

W~thin the multi-objective optimized problem, a nondomi- 
nated solution is the solution that is not dominated by any 

other feasible solutions. The condition for the solution xa to 
dominate xb is given by 

'd i E {l, , M ) ,  yi(xa) 5 yi(xb) 
A 3 i ~ ( 1  ,...,M),yi(xa)<yi(~b). (A.3) 

The second condition ensures that y(xa) # y(xb). 
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