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Abstract 

We propose a new method for the detection of energy-efficient trajectories 
for spacecraft. Via a so called target-shooting approach a pseudo-orbit between 
the relevant points in space is constructed in a simple model of the problem. 
This approximate trajectory is meant to serve as input for a more sophisticated 
direct method in order to compute a true trajectory in the full model. We 
demonstrate the applicability of the new method by considering the redesign 
of part of the trajectory of the NASA/JPL Genesis discovery mission. 

1 Introduction 

The Genesis Discovery Mission [I] will collect and return solar wind sample from an 
L1 halo orbit for research on Earth to address the formation of the Solar System, 
a key question of NASA's Origins Program. The Genesis trajectory is unique; it is 
the first space mission to be designed using modern dynamical systems theory. A 
spectacular result of this approach is the fact that: if everything is performed per- 
fectly with perfect knowledge and precision, the optimal Genesis trajectory requires 
no deterministic maneuvers after launch to complete its three-year mission. This 
encompasses transfer and insertion into an L l  halo orbit, remain in the halo orbit 
for four revolutions (two years) to collect the solar wind samples, depart the halo 
orbit, and return the samples to the Utah Test and Training Range (UTTR) before 
noon where a helicopter will capture the capsule containing the samples. 

The original Genesis launch was scheduled for Feburary of 2001. But, in Decem- 
ber 2000, the Genesis launch was delayed to  July of 2001. For Genesis this required 
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a complete redesign of the delicate trajectory which depended on the heteroclinic 
connection between the L1 and L2 region and the stringent requirement to  return 
to UTTR during the day. Initial redesign produced trajectories which required an 
extra loop around the Earth which lengthened the return time by roughly 5 months, 
cf. Figure 1. This is no surprise as studies of heteroclinic connections between L1 
and L2 in the Sun-Earth system frequently required such a loop. In the end, the 
loop was removed by going to a completely different family of halo orbits using JPL's 
LTool. 

Figure I: Initial redesigned return trajectory for the Genesis discovery mission. The 
Earth is located near ( 1 , O ) .  

In this paper, we explore a systematic approach to removing the undesired loop 
whithout changing to  a different halo orbit. The technique is inspired by recently 
developed set-oriented methods for the global numerical analysis of dynamical sys- 
tems [3, 41 - in particular by the set-oriented approximation of invariant manifolds 

[2, 51. The underlying idea of the advocated target shooting algorithm (which is 
reminescent of the multiple shooting techniques for solving boundary value prob- 
lems, see e.g. [ 6 ] )  is to search for pseudo-orbits in a simple model of the problem (i.e. 
the Circular Restricted Three Body Problem). Roughly speaking a pseudo-orbit is 
a finite sequence of short trajectories which connect a given initial point to  a given 
end point while allowing for (small) discontinuities between the individual trajec- 
tories. These pseudo-orbits should provide a good initial guess for a direct method 
for the determination of the final trajectory (e.g. for the differential corrector as 



implemented in LTool) in the full model. We apply the algorithm within the context 
of the Genesis mission and show how to generate candidates for return trajectories 
without the undesired loop around the Earth. 

2 Target shooting 

We consider an autonomous differential equation of the form 

where X is a subset of Rn, and denote by q5 : X x B + X the flow generated by (1). 

DEFINITION 2.1 Let E = ( E ~ ,  . . . , Ee) be a vector of jumps ~j E Rn with ( E ~ ) ~  > 0, 
i = 1,.  . . ,n, and let t = (t l , .  . . , te)  E Re be a positive vector of integration times. 
An (E, t)-pseudo-orbit of the flow 4 is a sequence J = (xo, . . . , xe) of points, x j  G Rn, 
such that 

where the inequality is meant to be read componentwise. 

Our goal is to find some pseudo-orbit J which connects a given initial point y to 
a given end point x within a given accuracy E .  More precisely, for a given vector of 
jumps E we are looking for integration times t = ( t l ,  . . . , te) and an (E, t)-pseudo- 
orbit J = (xo, . . . , xe), such that 

On a less ambitious level one would choose reasonable integration times t I ,  . . . , te-l 
as well as a maximum time for te a priori and let only te be determined automatically. 
This is the actual task which is eventually accomplished by the following algorithm. 

ALGORITHM 2.2 (Target shooting) 

f ind-pseudo-orbit (x, E, t ,  x, o) 
I i f  l eng th( t )= l  
2 if 3 s 5 tl such t h a t  l4(x, s) - xl I EI 

3 output s and [o, x] and r e tu rn  
4 choose po in t s  yl, . . . , y, such t h a t  l$(x, t l )  - yi[ I el 
5 f o r  i =  1, . . .  ,m 
6 f ind-pseudo-orbit (yi, E' ,  t', z, [o, x]) 



Here E' = ( ~ 2 , .  . . , E ~ )  and t' = (tz, . . . , te) when E = ( E ~ ,  . . . , E ~ )  and t = ( t l ,  . . . , te). 
For a list o = [xo, . . . , zk] of vectors xj E Rn we write [o, x] for the list [xo, . . . , xk, x]. 
The symbol [ ] denotes the empty list. A call of f ind-pseudo-orbit (x, E ,  t, x ,  [ 1 )  
eventually outputs pseudo-orbits connecting x to  x. 

REMARK 2.3 (i) Depending on the (initial) number of steps ! of the algorithm 
the number m of intermediate points in each step should not be chosen too 
large since the numercial effort increases exponentially in l. 

(ii) For the approximation of 4 one would typically employ a numerical scheme 
with stepsize control. This stepsize control actually has to be amended in 
such a way that the neighborhood check in line 2 of Algorithm 2.2 can be 
performed. 

(iii) The determination of a suitable pseudo-orbit can be viewed as an optimization 
problem. After all one is interested in minimizing the size and the number of 
jumps as a function of the pseudo-orbit and the integration times. An approach 
along these lines is currently under investigation. 

3 Target Shooting for the Genesis Discovery Mis- 
sion 

In the context of the Genesis Discovery Mission we consider a halo orbit in the 
vicinity of the libration point L1 of the circular restricted three body problem 

where 

C1 = - P 
c2 = - 1-P  

((x + ,!L - + y2 + 22);  ' ((2 + p)2 + g2 + 22);' 

with the Sun and the Earth as the primaries (i.e. p = 3.040423398444176. 
and try to detect an energetically efficient trajectory back to Earth. We apply the 
target shooting method with end point 

(i.e. the center of the Earth) and a couple of initial points which approximately lie 
at  a distance of lop8 (= 1.5 km) of the halo orbit on its unstable manifold. We 
choose 



i.e. we allow for a Av of approximately 30m/s after 3 time units (FZ 174 days) and 
require the spacecraft to reach a box of radius (==: 15.000 km) around the Earth 
after at  most 4 time units (x 232 days), while only loosely restricting the speed at  
the end point (E 6000m/s). One of the computed pseudo-orbits is 

cf. Figure 2 - this is actually an ( E ,  (3.0,1.33605681636518))-pseudo-orbit. Observe 

Figure 2: Sequence of two trajectories corresponding to the pseudo orbit J1. The 
jump is marked with the box. 

that these curves avoid the loop around the Earth as desired. We stress that such 
"no-loop trajectories" could not be found if one restricts the computations to tra- 
jectories lying entirely inside the unstable manifold of the halo orbit. 

We finally use the pseudo-orbit as input for the differential corrector as im- 
plemented in LTool. The underlying model in this case is the restricted three body 
problem with the Sun and the Earth-Moon barycenter as the primaries. The cor- 
rected trajectory is shown in Figure 3. 



Figure 3: Pseudo-orbit (dark) and corrected trajectory in LTool. 

A pseudo-orbit in the vicinity of the loop-trajectory 

Note that the initial point of the pseudo-orbit (and also of the corrected trajec- 
tory) generated in the previous section (Figures 2 and 3) lie rather far away from 
the initial point of the return trajectory with loop (Figure 1). Our aim is now to 
find a pseudo-orbit connecting the initial point of the latter trajectory to the Earth. 
To this end we employ the target shooting algorithm with data 

i.e. this time we allow for two jumps after 2 and again 2 time units. The gener- 
ated ( E ,  (2.0,2.0,0.68312146298093113))-pseudo-orbit together with the correspond- 
ing trajectories is shown in Figure 4. Finally we use the pseudo-orbit & as input for 
the differential corrector in LTool, Figure 5 shows the resulting corrected trajectory. 
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Figure 4: Initial return trajectory with loop (without markers) and sequence of 
three trajectories corresponding to  the pseudo orbit c2. The jumps are marked with 
boxes. 

Figure 5: 
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