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ABSTRACT 

Knowledge of the global distribution of the vertical velocity of precipitation is important in in the study of energy 
transportation in the atmosphere, the climate and weather. Such knowledge can only be directly acquired with the use 
of spaceborne Doppler precipitation radars. Although the high relative speed of the radar with respect to the rainfall 
particles introduces significant broadening in the Doppler spectrum, recent studies have shown that the average vertical 
velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthennore, 
methods to correct for specific errors arising fiom NUBF effects and pointing uncertainties have recently been 
developed. In this paper we will present the results of the trade studies on the performances of a spaceborne Doppler 
radar with different system parameters configurations. Particular emphases will be placed on the choices of 1) the PRF 
vs. antenna size ratio, 2) the observational strategy, 3 )  the operating frequency; and 4) processing strategy. The results 
show that accuracies of 1 m!s or better can be achieved with the currently available technology. 
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1. DOPPLER VELOCITY MEASUREMENTS FROM SPACEBORNE RADAR 

Doppler velocity measurements require coherent processing of the radar signal. It follows that two consecutive radar 
echoes inust be correlated in order to allow the measurement of the relative phase shift (and therefore of the Doppler 
fiequency shift) without ambiguity. 

A Doppler radar transmitting one pulse every Ts seconds can measure without ambiguity the Doppler velocity of a 
single target in the range +v, where v,.,, is the Nyquist limit imposed by the finite sampling: 

v,, = PRF -114 
(1) 

where A is the radar operating wavelength and PRF = l /Ts is the Pulse Repetition Frequency. A Precipitation Radar 
measures the echo returned by the distributed target consisting of ail hydrolneteors within a radar voluine of resolution, 
therefore, in general, the Doppler signal is described through its Doppler velocity spectrum P(v) which can be expressed 
as : 

p ( ~ . , r , ~ ,  v )  = JjjqSlrln k, + r , v - v 1 w ( r , r v ) d r  (2) 

where p.9 is the satellite vector position, r is the vector position relative to the satellite, W(r,r,/) is the radar weighting 
fimction for a given resolution volu~ne centered at rl/, qR@,v) is the reflectivity of a precipitation target at positjonp and 
velocity v relative tops [in this paper we adopt the convention of negative Doppler velocities for targets approaching the 
radar, so that v=-ilfl:! where f is the Doppler fiequency], and and v' is the Doppler velocity shift due to satellite motion 
which can be written for NDPR as': 

v l =  -q,,(r.i,) (3 )  

where i, is the versor corresponding to the flight direction and and q,, is the Doppler shift rate due to the motion of the 
satellite 

qxv = v s  /(r.iz)~v, ih ,  (4) 

where i, is the versor corresponding to the satellite's nadir and h, is the spacecraft altjtude. 



The radar volurne of resolution is defined by the radar weighting function W(r,rl/) which can be separated into two 
components by using a spherical coordinate system to represent r: 

where C is the radar constant, C;, is the antenna gain pattern, G, is the range weighting function, and L is the 
two-way atmospheric attenuation. In general, the volurne of resolution of a Precipitation Radar is large enough to aIlow 
one to adopt a statistical representation of the distribution of scatterers inside it, the discrete distribution qR(P,v) can be 
therefore represented by a continuous probability function. 

I I R  b.v]= mh [ D ( P , V ) ] N [ D ( P , V ) I ~ @  T(P ,v )  
dv 

(6 )  

where ob and N are the particle backscattering cross-section and the specific number concentration for a generic 
hydrometeor kind, respectively, and D@,v) is the hydrometeor diameter expressed as function of its vertical velocity, 
that is, D@,v) is the inverse function of 

v(p,~)=Eu~i~i+v,(~,~)Kr.j~)+ z l r ( ~ ) ( r . j x ) + u ? . ( ~ ) ( r . i v )  (7)  
where u@) is the background wind in the three directions j, , j,, [horzontal] and j, [vertical, positive downward]. v,(p,D) 
is the terminal velocity vs. particle diameter relation, the dependency on position is included only to account for the 
dependence of the tenninal velocity on the air density, and therefore altitude. The small-scale turbulence of the air is 
accounted for through the Gaussian spread hnction T. 

2. DOPPLER SPECTRUM WIDTH 
A first assessment of the characteristics of the Doppler velocity spectruin described by (2) is generally obtained by 

assuming a uniformly filled volume of resolution2.'. In other words, it is assumed that N(p,D) = N(D) within the volume 
of resolution. Any one of the commonly adopted analytical forms for N(D) and v,(D) can be considered here - see 
Meneghini and ~ o z u ~  for exainples. The three wind components are assumed to vary with constant wind shear factors 
within the volume of resolution. Also, the antenna pattern within the mainlobe is approximated with a Gaussian. Under 
these assumptions, the Doppler spectrum is approximated by a Gaussian and four independent, contributions to the 
Doppler spectrum width w are examined: 

2 7 2 2 2  w =w,+w,+w,+w, (8) 

1) w~ is the velocity spread due to different tenninal velocities. It is determined by N(D), v,(D) and, to a lesser extent, . . 

by oj,(D) which, in turn,depends on the choice of radar operating wavelength. Its value is typically around 1 rn s-'. 
The Doppler spectrum associated with the terminal fall velocities is often approximated with a Gaussian, although 
it is actually slightly skewed, and its mean velocity is typically in the 1 to 7 ids range. 

2) w7 is the velocity spread due to turbulence. Values for w~ of I and 4 d s  are associated with standard and extreme 
turbulence, respectively. Such broadening is well approximated by a zero-mean Gaussian spectnnn. 

3 )  WK is the broadening due to wind shear. Its contribution has been widely studied and a comprehensive discussion of 
the effect of wind shear for an NDPR with circularly syinetric antenna pattern can be found in 5, whence the 
following expression is obtained: 

where 
2 

w,& = (ax0 / h s  + K ~ )  

where u, = u,,, + jKv (the subscripts i=x,v,z and j=x,y,z indicate the direction of the wind component and the wind 



shear component direction, respectively), c is the speed of light and z,,,,, is the radar pulse duration. The parameter 
a depends on the approximation used for the antenna pattern (e.g., a ~ 2 . 6  for the aperture type approximation used 
in5, while a = 4ln(2) z 2.77 for a Gaussian approxiination as in3). Note that (9) includes also the broadening effect 
of the average wind components across the beam (i.e., uXo and u,,), this is due to the fact that the associated radial 
velocity varies with the angle respect to the radar pointing direction. In general, it is found that K ranges between 
0.001 s-' to 0.01 s-'. 

4) ws is the broadening due to the platfonn motion. Its effect can be immediately understood through the forlnalism 
used for calculating the wind shear by noting that the apparent average wind velocity should be used in (10) (i.e., 
uxo should be replaced by - v,) and therefore: 

In general, all these causes of broadening must be accounted for. However, the following considerations help to 
simplify the problem: 
1) Given a v, of 7 km/s or higher, typical for a LEO satellite, the term ws prevails over wK, and WK;,? and, in particular, 

for low to medium wind shear (i.e.,K<O.OOS s-l) the latter two are negligible with respect to ws for any choice of 
antenna beamwidth Ow. 

2) Assuming that the wind shear is equally shared among the orthogonal components, the contribution of W K ~  is 
negligible with respect to w ~ ,  and wK,, for small Furthermore, w~,, is always negligible with respect to w,. 

3) Speceborne atmospheric radars are typically required to have a range resolution of 500 m or less. Therefore the 
contribution of w ~ ,  is not negligible with respect to wK, and w,, only for very small antenna footprints (i.e., for 

hs comparable to 0.35 c T,,,,, a o " ~  500m. 
In general, we have that contribution of wind shear can be neglected, and the Doppler width is determined mainly by 

the term ws for >> ( ~ ~ 2  IV,)~. That is, for > 0.15" one has that w G ws independently of the amount of 
turbulence and spread of terminal velocities. For smaller beamwidths, instead, the contribution of the terms depending 
on the characteristics of the rainfall field cannot be neglected, and, in general, a non constant w results from NDPR 
observations. 

A measure of the correlation of two consecutive pulses under the assumption of Gaussian Doppler spectrum is given 
by the normalized spectral width w, = w / Zv,,. By noting that ~1 y L/LL,, where Lo is the antenna diameter and y is 
typically -1.25, it follows that the contributions of w, and w~ to the normalized spectral width w~ do not depend 
significantly on the choice of radar wavelength ;1 but only on the antenna size. On the other hand the contribution of w~ 
and w7 (which do not depend on tend to broaden the spectrum when smaller 1 are used. 

In general, broader normalized spectra, correspond to weaker correlation between two consecutive pulses. The range 
of wN that can be achieved with NDPR is determined mainly by the limitations on the maximuin antenna size and by the 
range-ambiguity constraints imposed on the PW. 

However, the PRF upper bound is determined by the thickness of the atmosphere layer to be monitored. For 
precipitation measurements at a scanning angle /3 we have: 

1 
-= 

2 M  1 
Ts >--- 

PRF C cos(P) 

where H is the extent of range interval with non-zero backscatter [in general it is assumed to be 20 km or less for 
spaceborne radar measuring precipitation , accounting also for the presence of the mirror image return]. Therefore, PRF 
up to 8000Hz could be assumed for for scanning strategies with small P. However lower PRF must often be adopted 
because of the practical problems arising from the long and non-constant slant range of a spaceborne down-looking 
radar and/or kom the choice of using long radar pulses to apply pulse-compression techniques. 

Indeed, condition (6) poses a serious obstacle for obtaining low w ~ .  In fact, while an antenna of IOln could provide 
spectra with w,,, simiIar to that of airborne radars [i.e., W ,  < 0.11, obvious economical and technological requireinents 
lead to the choice of smaller antennas, whenever possible. On the other hand, a 2 m antenna such as that of the TRMM 
Precipitation Radar (PR) or the one planned for the dual frequency precipitation radar of the GPM mission, even if PRF 
= 8000 kHz is considered, would generate spectra with w~ > 0.3, unsuitable for accurate estimates of any spectral 
moment of precipitation (other than the zero-order moment, that is, the power). Therefore, antenna diameters between 3 
and 6 meters are considered as the region where to look for the optimal trade-off, for the purpose of radar system and 



~nission design. The corresponding range of M,,,, is between 0.1 and 0.3. Table 1 su~nmarizes the nsx resulting 'om 
different choices of operating wavelength, PRF and antenna size, as well as three different turbulence regimes. 

The feasibility of measurements of mean Doppler velocity from Gaussian spectra is generally checked through the 
condition' M ' , ~  < 112~.  However, as discussed later, such threshold is relevant mainly to a specific group of spectral 
moments estimators(SME), the Pulse Pair processing, while it is not as significant when Fourier Analysis is adopted. 
For this reason, also system configurations leading to usn > 112n are considered in this study and their perfonnance in 
measuring the mean Doppler velocity are assessed. Unifonn sampling is considered throughout the paper: while the use 
of polarization or frequency diversity methods would increase the available number of samples, and approaches like 
staggered PRF would extend the unambiguous ranges (i.e., relieving from the limitation imposed by Eq. 6). they do 
require additional technological considerations for a spacebome application and are not addressed here. 

2.1 Non Uniform Beam Filling conditions (NUBF) 

It has been shown that spacecraft  notion is the most relevant contribution to the spectral broadening for a wide range 
of system configurations. Indeed, such broadening can reduce the performance of spectral moment estimators, but it 
does not alter the fact that the first order moment of the spectrum corresponds to the mean Doppler velocity of the 
target. 

On the other hand, when the rainfall field is not homogeneous, the spectral contributions from different portions of 
the radar volume of resolution are weighed unevenly. In tenns of (2), one has that q,,(p,~.i does depend o n p .  Therefore, 
the power spectrum is not given by the convolution of two approximately Gaussian functions [i.e., q,4(p.v) and Wlpi] as 
it was in the case of a homogeneous rainfield within the radar volume of resolution. Instead, a relation between the 
shape of the Doppler spectrum and the along-track profile of radar reflectivity for each range cell was found'. 

It follows that, in NUBF conditions. the first moment of the Doppler spectrum does not correspond to the rainfall 
mean Doppler velocity. Instead, it includes an offset determined by the along-track position of the 'center of mass' of 
the along-track reflectivity protile Z,fx) weighed by the antenna pattern. Such offset adversely affects mean Doppler 
velocity estimates, and it cannot be overcome through the standard SME algorithms. A Combined Time-Frequency 
(CFT) signal processing technique has been proposed to overcome the NUBF-induced offset6. The technique relies on 
the availability of Doppler spectra measured on volu~nes of resolution partially overlapped in the along-track direction 
in order to reconstruct the 'history' of the Doppler signature of each group of scatterers with equal relative velocity as 
the antenna footprint moves across them in the along-track direction. It was shown that the shape of such history 
(hereinafter referred to as a spectral track) is detennined mainly by the shape of the antenna mainlobe pattern, which 



can be generally approximated by a Gaussian. Therefore, the results obtained for ho~nogeneous conditions can be 
extended to the W B F  case by accounting for the different observation mode and signal processing approach as follows: 
the spectral track within the unambiguous Doppler range -v,,, to +v,, requires TT seconds to complete, where: 

PRF a h, 
TT = 

2 v.: 
during such time one can acquire up to N = Ty/ (MPW) spectra of M points each. In CFT each spectral track is 

extracted from the time sequence of spectra with a resolution equal to the lower between the Doppler resolution and the 
time resolution (i.e., the number of points per spectra1 track is MT = minfM,N)) and the time-spacing between two 
consecutive spectral tracks is Tm = (MT/PRF). Once the desired minimum detectable size Ax of raincell is defined, 
NT = dx/(Tio v$ spectral tracks are averaged in time to improve accuracy. It foIlows that in fvst approximation, CFT 
pedormances are not sensitive to the choice of M as long as all spectra are available (i.e., if a constant pointing direction 
is used for the radar beam). The resulting equivalent number of samples Mcm is given by: 

When cross-track scanning is considered as a valuable option for the observational strategy one should account for 
the 'loss7 of the beams by assuming MJCFT= M'cFT/fi where Nc is the number of cross track beams per scan. However, 
this should be only the fxst step in the assessment of performance change: in fact, CFT performances will degrade 
rapidly as soon as the same-beam revisit interval rises past either a half radar footprint or the horizontal size of the 
observed raincell. Also, CFT performances will degrade for a choice of small M folIowing the increase of DFT-related 
artifacts due to the finite spectral resolution and aliasing. 

3. ESTIMATION OF MEAN DOPPLER VELOCITY 
In this section the performance of three groups of SME. Pulse Pair processing (PP), Spectral Analysis (DFT) and 

CFT are analyzed with regards to their use on NDPR. In general, four parameters inust be accounted for when assessing 
the performances of a SME in providing mean DoppIer velocity estimates 1; of a Gaussian Doppler spectrum: 
1) the normalized spectrum width w~ has been discussed in previous Section. As long as no significant portion of the 

Doppler spectrum is aliased [i.e., falls outside of the Nyquist limit v,,,] larger w~ yield larger a variance on mean 
Doppler estimates but do not introduce a bias. 

2) the (true) normalized mean Doppler velocity v~ plays an important role when it causes a significant portion of the 
spectrum to fall beyond the Nyquist limit v,,,, [e.g., when v,,-vN/ < w#]  In this case, not only Iarger variances are 
expected but also a bias (towards zero Doppler) is introduced in G .  

3) The Signal to Noise Ratio (SNR). In general, white noise reduces pulse correlation hence increasing var($) and 
biasing the estimates towards zero Doppler. 

4) The number of pulses M. In general, var($) cc M". Therefore large M are often sought to increase Doppler 
estimation accuracy. On the other hand, bias(+) is not affected by the choice ofM. 

3.1 Standard Spectral Moments Estimators 
The PP estimator calculates the first two moments of the Doppler spectrum fiom estimates of the autocovariance 

knction at time lag T,. It is the most colnputationally efficient estimator available, and it performs almost optimally for 
narrow, sylnmetric spectra. For this reasons it is the most widely used estimator in ground-based and airborne weather 
radars, and it has been applied to several configurations incIuding contiguous vs. independent pairs, alternate- 
polarization pairs, etc. The use of this estimator in NDPR, however, is adversely affected by its sensitivity to spectral 
width [i.e., exponentiaI dependence on wN]. 
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The DFT estimator calculate s the spectral lnoinents directly form an estimate of the Doppler spectrum (here referred 
to as pe6odograin). The availability of hardware iinplementations of the Fast Fourier Transform make it extremely 
attractive for a spaceborne Doppler Precipitation rada. In fact, DFT performs better than PP in the 0.15-0.25 range of 
WN. Furthermore, it allows more in depth analysis of the characteristics of the Doppler spectrum. This feature is 
extremely useful when the spectrum is not Gaussian (for example in NUBF conditions spectral processing is required in 
order to implement the CFT). 

The defining equation of a generic DFT estimator is: 

where Sp and SN are the signaI and noise power, respectively, the hat indicates an estimate, P, is m-th line of the 
power spectrum as calculated through DFT of M complex voltage samples (periodogram), , and m,,' is the number of a 
specific fi-equency bin in which the initial estimate a ofthe mean spectral frequency is made (i.e., nzo' = a M/PRF). 

The four algorjthms are different in their ways of handling of noise and strategy for obtaining the initial guess a. The 
f ~ s t  algorithm, referred to as DFT-2, assumes mo' = 0. It does not remove any white noise contribution (i.e., = 0 in 
(1 5) ) ,  which makes it a biased estimator at low SNR's. The second algorithm, referred to as DFT-ZN, also assumes mo' 
= 0 but it removes the nomjnal (estimated) noise power in order to eliminate the bias due to white noise. However, at 
low SNR's the standard deviation of (15) for DFT-ZN is significantly higher than that for DFT-z7. 

The third algorithm, referred to as DFT-M, was suggested in 2. It assumes mD' to be equal to the number of the 
frequency bin which has the largest power (i.e., ), and it does not remove any white noise contribution. For narrow 
spectra (e.g.,wN < 0.1) and large M (e.g., M>1000), this algorithm provides unbiased estimates of the fust spectral 
moment with the corresponding standard deviations comparable to those obtained by DFT-Z. However, this algorithm is 
more sensitive to wN than DFT-Z and DFT-ZN '. 

The fourth algorithm, referred to as 'two-step' DFT algorithm (DFT-2), was introduced1 to provide better 
performances for spaceborne applications. In the first step of this algorithm, (15) is applied with mo' = 0 and the noise is 
set to the nominal value to obtain a fust velocity estimate. The noise density estimate is then updated by setting it equal 
to the minimum of the smoothed periodogram. In the second step, a refined velocity estimate is obtained through (15) 
with a equal to the previous estimate and with the updated noise estimate. This second step can be repeated until the 
change in mean Doppler estimate falls below a specified threshold. In general, this algorithm is capable of providing 
unbiased estimates with standard deviations comparable to DFT-Z. For inean vertical velocities close to the Nyquist 
limit, it shows a ~nultimodal distribution of the mean velocity estimate, with the secondary modes appearing at the 
aliased images (i2vnl) of the true mean Doppler velocity and at the mid-position corresponding to a low portion of the 
spectrum (Av,,). However, these secondary modes are easily removed by checking if the estimate belongs to the Nyquist 
range or if it is in a region of low spectra1 density. 

Perturbation analysis was used to derive var(<) for PP and DFT estimators under the hypothesis of narrow spectrum7. 
That approach has been extended8 for NDPR to apply to spectra with w~ < 0.3. The analytical results were in excellent 
agreement with the results of Monte Carlo simulations performed on periodograms simulated as described in 9. Figure 1 
shows the results of the simulations for the PP algorithm for contiguous pairs and for 4 versions of the DFT estimator. 
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CONCLUSIONS 

The results shown in this paper provide a first assessment of the perfonnances expected by a specific configuration of 
Doppler Precipitation Radar. As an example we can detennine the perfonnances for a Nadir Pointing Ku-band radar on a 
LEO platfonn, with L,, = 5 m, PRF=6KHz and using CFT to compensate for NUBF effects: from Table I we obtain M.K = 
0.17 for a moderate turbulence regime. Since DFT-I is used in CFT, Figure I shows that for SNR > 10 dB no significant 
bias in the estimator is expected in the range f26.5 1n1s and the predicted standard deviation is -l3.5/h!~,.-, mls. 
Requiring a minitnuln raincell size of Ax-0.5 km, one obtains a final estimate of the standard deviation (after CFT 
processing) in mean Doppler velocity estimates of -0.65 mls. Results of simulations6 through a 3D 
spaceborne Doppler radar simulator applied to high resolution datasets (such as that shown in Figure 2 for the discussed 
configuration) generally confirm this lnethod of assessing performances. However, one should always account for the 
approxi~nations adopted to obtain such a general lnethod and carefully verify that all intennediate hypothesis are met. 
Overall, several configurations of the radar system are capable of providing mean Doppler velocity ~neasure~nents with 
an accuracy of I ~ n l s  or better. 
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