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~ b s t r a c t  - Real-time position estimation for a descent 
lander is a critical technological need for many of 
NASA's planned in situ missions including landing on a 
number of bodies at locations of greatest scientific 
interest and sample return. In particular, it enables the 
capabiliq to land precisely and safely in a scientiJically 
promising but hazardous site and is a key technology to 
be demonstrated by NASA in the next decade. The key 
challenge of pinpoint landing (PPL) is how to localize 
the lander by recognizing the landmarks (craters) in the 
landing area and match them positively to a preexisting 
landmark database while the spacecra$ is descending. 
In this paper, a real-;ime landmark based position 
estimation technique for pinpoint landing is suggested. 
This system includes three crucial components: ( I )  real- 
time landmark detection, (2) real-time landmark 
matching and (3) state (both position and velocity) 
estimation. We discuss the peformance anaIysis of this 
system. Finally, we show that the suggested technology 
is able to deliver a spacccraj6 tc less thar. 100 m from a 
pre-selected landing site on Mars. 

Index Terms: Pinpoint landing, landmark detection, 
landmark matching, and position estimation. In situ 
missions 

I. INTRODUCTION 

Current descent and landing technology for planetary 
missions, such as landing on Mars, is characterized by at 
least a 30 x 100 km landing error ellipse, with no terrain 
recognition or hazard avoidance technology utilized to 
date. In the next decade, NASA will demonstrate a very 
ambitious capability - pinpoint landing to other 
planetary bodies. The primary objective of PPL is to 
deliver a spacecraft to a targeted landing site within less 
than 200 meters. In order to accomplish this, several new 
technologies will be developed in the next few years, 
including new optical guided navigation system for 
precision entry, optimized powered descent guidance 
system, advanced parachuting technology, a new 
propulsive traverse capability and a new real-time terrain 
recognition for spacecraft localization capability. 

Automated landing systems have been flown 
successfully by NASA Lunar and Mars exploration 
missions such as Surveyor, Apollo Lunar Module, 
Viking, Mars Pathfinder and Mars Exploration Rover 
(MER) missions. However, none of these missions 
except one had a capability for terrain-relative guidance, 
navigation and control (GNC). In MER, a s~mple 
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Descent Image Motion Estimation System (DIMES) was 
used m estimating horizontal velocity. DIMES consisted 
of a descent imager, a radar altimeter, an metial 
measurement unlt and an algorithm to provide a low 
cost, robust and computationally efficient solution to the 
horizontal velocity estimation problem, which is critical 
for the safety of the alr bags dunng the touch down [9]. 
DIMES is the first ever terrain-relative sensing and 
guidance system used by real mission. However, DIMES 
does not have either terrain recognition or hazard 
avo~dance capabilities. Therefore, it does not meet the 
requirements of a PPL mission. 

The real-time spacecraft localization scheme works as 
follows. First, a-targeted landing site on the targeted 
body is selected on the earth using orbital imagery, and 
the landmarks (e.g. craters) within the landing ellipse are 
mapped. During the landa descent, its initial position 
with respect to the landmarks as well as to the selected 
landing site is determined automatically az bi;oarcI. The 
lander is then guided to the landing site using continuous 
updates of lander position and velocity throughout the 
descent. Three fundamental requirements for this new 
technology are: 
1. The system must be able to recognize the terrain 

(landmarks) reliably and repeatedly in a highly 
variable environment. During the spacecraft 
descent, considerable environmental variations, 
such as lighting, atmospheric conditions, viewing 
angle, spacecraft altitude, etc., could affect the 
appearances of landmarks. The key to success relies 
on defining or choosing a class of landmarks which 
have good invariance properties under variable 
environmental conditions and a set of associated 
algorithms for handling this type of landmark 
robustly. 

2.  The system must accomplish the task unda extreme 
conditions imposed by the slow flight computer and 
terminal descent time constraints. The projected 
CPU clock speed of the flight computer for a PPL 
mission will be on the order of lOOMIPS, which is 
not ideal for processing large volumes of data. For 
example, a descent image is typically 1 MI3 in size. 
There is a roughly 60 second window of opportunity 
for spacecraft localization during the parachuting 
stage betw'een the heat shield jettison and powered 
descent. In order to obtain reliable spacecraft state 
information (position and velocity) several images 
as well as other onboard sensor data such as IMU 
and altimeter data have to be processed during this 
penod of time. In general, each cycle of spacecraft 



localization, which includes image acquisition, 
image processing and sensor data infusion, should 
be done in a few seconds. This is a very demanding 
task. 

3. The system must be able to guide the spacecraft to 
land within 100 meters of the target under noisy 
conditions. Due to the limitations of both hardware 
and suftwarc, system noise can only be 
compensated to a limited extent. The primary noise 
sources are the landmark detection error, the base 
map error (both position and elevation), sensor 
noises (imager, IMU, altimeter), and image and 
IMU sensor misaligment. All of these influcncc the 
performance of the system. By considering these 
uncertainties, the system must be robust enough to 
provide valid spacecraft state, which mcets or 
exceeds the PPL requirement. 

The rest of this paper, we will present a system, which 
can meet these requirements. 

11. SYSTElLl DESCRIPTION 
Cratcrs are landforms commonly found on the surface 

of planets, satellites, asteroids, and other solar system 
bodies. A crater, in general, is a bowl shaped depression 
created by collision or volcanic activities. Because of 
their simple and unique geometry and relatively stable 
appearance under different viewing and lighting angles, 
craters are ideal landmarks for spacecraft locaiiration [ l -  
31. A large number of craters can be found on thc 
surface of Mars, which can generally be divided into 
three regons - heavily, moderately and lightly cratered 
areas [5,  101. A statistical study shows that there will be 
adequate craters in a landing ellipse to ensure positive 
spacecraft localization. 

We suggest cratrrs as landmark for thc system, 
which ineludcs four components: real-time crater 
detcction, crater matching, space craft position 
estimation, and velocity estimation. 

Real-Time Crater Detection 
A real-time crater detection algorithm has been 

developed based on a previous version of the crater 
detection algorithm for autonomous spacecraft 
navigation [2]. The crater detcction algorithm takcs five 
steps to do the detection: 
1. Edge Detection: This step detects edges in an image 

and places them in a databasc. 
2. Rim Edge Grouping: This stcp groups together 

edges that belong to the samo crater. The 
information used for this process includes edge 
shape (convex), the image intensity profile inside a 
crater, edge gmdients. I f  a pair of cdges (lit and 
shaded side of crater) is found, they will be used to 
fit an ellipse. 

3. Ell~pse Fitting: This step tits an ellipse to each 
group of crater edges by an iterative algorithm - thc 

reweighting least squares method, which could 
robustly remove any outliers in the input points. 

4. Precision Fitting: This step adjusts the detected 
crater's geometry directly in the image domain to 
reduce errors introduced in edge detection and 
ellipse fitting. A multidimensional iterative 
nonlinear minimization algorithm based on 
conjugate gradients is used to lock an ellipse 
precisely onto the rim of a crater. 

5 .  Crater Confidence Evaluation: This step evaluates 
every detected crater and assigns a confidence value 
to it. 

After extcnsive optimization, this algorithm is able to 
meets the PPL time and performance requirement for the 
first time. The improvement of this algorithm is due to 
the following changes 

I. Reorganization to allow maximum usage of pointer 
operations. 

2. Con.:zsion and analysis of image features in  vector - 
data format. 

3. Use of a hash table vector databasc for fast data 
retrieval. 

4. Extensive use of lookup tables for repetitive 
computations. 

The current algorithm is able to detect craters from a 
5 i2  x 512 image in less than 0.8 second on a 333 MiPS 
Ultra SUN station, which meets the Mars PPL 
requiremcnt. 

F~gure I An example ot the cr.itcr detection result from 
MER-A descent Imagery 7bc detected craters are 
shaded for easy display purpose 

Extensive experimental studies show that the detection 
rate is better than 94% and the false alarm rate is less 
than 7%. The position error is less than 0.3 pixel and the 
geometrical error is less than 0.5 pixel. 

Crater Matchins 
In order to determine the position of the spacecraft 

with respect to the central body, geometrical recognition 
techniques that perform matching between the craters 
extracted from an image and a crater database containing 
the 3D locations of the craters are used. Each crater is 
h.eated as an attributed point corrcsponding to the center 
of the crater. where the attributes are the radius and 



orientation of the crater. The efficiency of the basic 
methodology is improved by two mcans. First, thc 
crater attributes are used to remove matches that are 
incompatible. Second, an initial estimate of the 
spacecraft position is used to filter matches that are not 
feasible. The information from other sensors such as the 
altitude from the altimeter and attitude from the IMU 
can help to reduce the search scopc cven further. Conic 
invariants providc another useful criterion [4]. A pair of 
coplanar conics c, and c, has two invariants 

Since under a linear transformation x = TX, c, and ci go 
to C, = Fc,T, and C? = pc.T, wc havc 

The same derivation holds for I,,,. 

A Mars Orbiter Camera (MOC) image ship, which is 
2048 by 8366 in size with approximate 1.41 metcr pixcl 
resolution, was used as the base map. A total of 1,777 
craters were detected from it. The crater matching 
algorithm has successfully matched the craters from Fig. 
1 to this map. Fig. 2 shows the results in a subset of the 
MOC image. 

Figurc 2: ~\n c\nmplc 01 '  thc crater mntching result 
between MER descent Image (top) and ClOC image. The 
color rim indicates the correspondencesl 

Robust Position Estimation 
From a suitable number of matched landmarks for 

which we have prior geomehic data, we accurately 
estimate thc position and oricnpation of the spacccraft 
with respect to the surface of the planetary body. In the 
case of craters, the relevant structures are crater 

cenkoids, which are estimated carefully to account for 
.."---",.&:..- "CC "& 
pC1"pCL""C "1"L"LII"II ' I I ~ C L S .  

Given a collection of points in 3D and their 2D 
prolections, we recover camera pose as follows. The 3D 
points are orignally presented with respect to some 
reference coordinate frame, t).pically dependent on the 
landing ellipse and independent of the location of the 
camera. The first step in recovering camera pose is to 
determine the coordinates of these points in a coordinate 
frame centered on the camera. From prior calibration of 
the camera, we know the exact 2D coordinates of a pixel 
on the image plane (CCD or CMOS device). If (r,r,y) are 
thc 2D coordinates of an image point p arising from a 
3D point P, then P can bc expresses in the coordinate 
frame of the camera as (dr, A,v, A) for some suitable 
scale factor A. Note that the distances between 3D points 
arc indcpcndcnt of coordinate system. Hence, for a 
collection of image points {pi) and associated 3D points 
{P,) ,  we know {rl,j=IP,-P,/). This can be expressed as 

resulting in a set of quadratic equations in the unknown 
{A,}. We use an efficient and robust linear algorithm to 
solve for the A,[6]. Once these quantities are k n o ~ n ,  the 
3D coordinates of all points are h o w n  in both the 
coordinate frame of the camera and the reference frame. 
Recovery of the camera pose is then equivalent to 
finding the Euclidean transformation, which maps one of 
these point clouds onto the other. This absolute 
orientation problem has several h o w n  linear solutions 
[6]. For small numbers of points, the proposed method is 
fast and robust. It requires no initialization bccausc thcrc 
is no iterative component. Consequently, there is no 
convergence or local minima issues. Given an initial 
guess, we use a fast iterative method [8] to refine the 
result. Finally, we use a robust estimation approach to 
decreasc scnsitivity to outliers. We perfom position 
estimation over a statistically mcaningful number of 
trials using a subset of the data. The Least Median 
Squares of repro~ect~on errors is used as the evaluation 
criterion. We also use early termination if the maximum 
error is small enough. 

111. PERFORMANCE ANALYSIS 
The ultimate objective of a pinpoint landing is to 

deliver a spacecraft within 100 meters from the targeted 
site. However, the uncertainties of hardware, software 
and landing site topography can have influences on the 
system performance. The primary noise sources are the 
landmark detection error, the base map error (both 
position and elevation), sensor noises (imager, [MU, 
altimeter), and image and IMU sensor misalignment. 
Although these uncertainties cannot be eliminated, we 
hope that their influence will be within the landing error 
envelope. In addition, the terrain recognition, the crater 
matching, must be unambiguous. In this scction, we will 
study the influence of a few malor uncertainties. 



Crater Constellation Uniqueness Analysis 
To be used for .inamsgiious 

srilv~r cbrrilidrrun, thc 
constellation of landmarks must be uniquc in tcrms of 
size and location in the landing ellipse. We have 
conducted two studies in this area. The first study used 
an Odyssey THEMlS image, which contains 917 
detected craters (Fig. 3). A set of neighboring craters 
forms a crater constellation and we compare it with other 
constellations in terms of thcir sire and relativc 
configuration (to within I pixel). 

Figure 3: Odyssey THEMIS i m q e  (Ict?). I1ctec:cd 
craters (center). Crater density map (right) 

The probability of ambiguous configuration in this 
dataset is shown in Table 1. This indicates that given thc 
size and position of craters, the probability of ambigaous 
configurations is very small (< 0.0001::) when the 
number of craters in a constellat~on is greater than 5 .  

Table 1: Probability of ambiguous config~~ration from a 
real crater database 

Cmters 

1.3 x 10' 5.8 x 10~-  
1.8 x 10 5.7 x 1 0 ~  
2.2 x 10 1 . 0 1  10~' 

Thc second study is a statistical analysis of the 
likelihood of confusion given a modcl for cratcr 
distribution.[lO] T h ~ s  again takes lnto account the crater 
sizes and relative distances. We present a sketch of the 
derivation and the results. The probability of having two 
pairs of craters at the same relative distance d in a disk 
(region of attention) of radius R can be computed as: 

We omit the dcrivation of this and somc other quantities 
for space considerations. 

Assuming a tolerance @ for distances to be considered 
"equal." thc probability of having any two pairs of 
craters at the same relative distance in the disk is given 
by integrating P,  over all admissible distances to get a 
probability P:. Supposc there arc N total cratcrs in thc 
disk and we use m for position estimation, leaving n=iV- 

m remaining. The probability of having another m 
craters with the same geometric configuration can be 
computed as 

Givcn a modcl for crater distribution from [lo], we find 
by integrating over all craters from size dm,, to dm, that 
the total number of cratcrs in our disk is: 

where A is the area of the disk and K and a determine 
crater size distribution. This also gives a probability 
density q~(d,,,,,d,,,J = N/A for craters within the given 
sizc. Thc probability of having two craters with the same 
size (up to a tolerance 4 can by computcd by i n t c ~ a t i n g  
q>(d,d+ 83' over all admissible d. Let this quantity be 
P3. Then the probability of m craters out of a candidate 
population of n C;ving the samc size as o;r in selected 
craters is 

PSjZ< = ( 1 - ( 1 - ~ 3 ) ~ ) ~  
Finally, the probability of an ambiguous constellation 

is the product of the size probability and the geometric 
probability 

Pt,, = f'siie~geom 

For a heavily cratered region. we get (K,a) = (0.3_ 1.8) 
from [ lo] .  With disk diameter = 8 km, S, = 6, = 30 m, 
<i m,2.c = 4 km and dm,, = 100 m, we obtain the results in 
Table 2. These match the results in Table 1 up to order 
of magnitude, which is as much as we can expect for this 
relatively vague notion of "heavy" cratering.. 

Table 2: Probability of ambiguous configuration from 
crater distribution models. 
Number oicrvtrrs Lightly cratered Heavily cratered 

5.2 x 10- 
2.9 x 10~'  8.4 x 10. 
1.4 x 10- 3.4 n 1 0 ~ '  

Position Estimation Analysis 
From a suitable number of matched landmarks for 

which we have prior geometric data, we accurately 
estimate the position and orientation of the spacecraft 
with respect to the surface of the planetary body. We 
identify 3D to 2D point correspondences between our 
database and descent or orbital imagery. In the case of 
craters, the relevant structures are crater centroids, which 
is estimated carefully to account for perspective 
distortion effects. We study this accuracy of this 
approach via a detailcd simulation. We set insertion 
altitude, orientation, imager resolution and FOV as 
dcsired. The onboard camera then takes a virtual 
snapshot of the visible portion of the 3D terrain. The 2D 
image coordinates of the crater centroids are distorted 



noise with a truncated Gaussian distribution with 
predefined standard deviation and truncation point. If 
there are not enough craters (a tunable n with 
a minimum value of 4) for position estimation, we mark 
the insertion point as a failure. Otherwise, we randomly 
select n of the visible craters for position estimation. 
Assuming matches between the 2D and 3D datasets, we 
use our position estimation algorithm to estimate 
spacecraft position and orientation and compare to the 
preset ground truth. For simulation purposes, we corrupt 
image data with 1 pixel noise. In Fig. 4 we show the 
result for position estimation for our core algorithm and 
for the statistically robust version. In each case, we 
assume 12 point matches and a 1 pixel random image 
noise with a variable percentage of outliers. The camera 
is assumed to be at 8 km above the surface. 

Position error vs outllers (13 points, 1 pixel noise) 60[m 

Figure 4: Position estimation error as a function of 
outliers in matched craters 

Spacecraft Velocity Estimation Analysis 
Prior to integration of a full Kalman filter solution for 

velocity estimation, we evaluate a simple estimation 
scheme based on integrated IMU acceleration data and 
position estimates provided by our algorithms above. 
Our analysis gives an upper bound for expected velocity 
error. 

Without acceleration data, two camera frames provides 
an estimate of average velocity only. However, if 
acceleration is present, we can compute an instantaneous 
velocity, depending on IMU sampling an accuracy by 
simple integration. Ifthe frames are taken at times to and 
9 with recovered positions P(t0) and P ( 9  we compute 
Y(i) from the acceleration a(t) as folIows: 

If more than two frames are available, we take dl pairs 
and compute a weighted sum. We have determined 
empirically that weighting linearly by time Interval 
between frames and inversely by d~stance from the 
ground plane at time of frame capture works well. In 
Fig. 5., we plot the veIocity error for a hial trajectory 

with varying frame numbers and fkame intervals. With 
the current simulation framework in piace, we wiii be 
able to do much more sophisticated analysis of velocity 
estimation using varying trajectories and error models 
for IMU and image noise and crater matching. 

RMS emr~n nugnmednlmg u r n n r  -ndds;nr.t(ata km) 
a65 B 2 

TmBlnumbrrollmnel 

a 4 J 

10 15 Ze 26 
ssmna3 PehKFn tmma 

. . . - . .- 

Figure. 5:  Velocity estimation error us~ng varying frame 
numbers and intervals. 

With the simple scenario tested, we obtain velocity 
estimztes 2t !east gn arder of magnitude better thaa these 
currently available in mission scenarios. 

Landing Error Analysis 
We consider only the landlng error arising from our 

position estimation system. We do not attempt to 
duplicate the sophisticated guidance algorithms to be , 
used during a powered descent. Instead we report 
landing error arising from vis~on based position 
estimates as the sum of the position estimate at start of 
powered descent and the drift due to instantaneous 
velocity est~mation error. Thus, if LE = landing error, PE 
= position estimat~on error at powered descent, YE = 

velocity error at powered descent, and t = time 
remaining to the ground, we have 

In Fig. 6 we show the landing error for the case of the 
MSL-like trajectory discussed above for various starting 
points for powered descent. Observe, that for this case of 
perfect acceleration, we are well within the requirements 
for p i p o n t  landing with Integrated IMU data. 

. , ,RMS LydInQ e ~ m f m t h , l n t ~ m ~ d ~ l ~ ~  , , , 8 

3€ 

Startotdeed reckoning (Alt ~n meters) 

Figure 6: Landing error for MSL-like trajectory 
assuming IMU integrated (green) 

If the base map errors (both position and elevation) are 
also considered, the landing error increases as expected. 



Fig. 7 and 8 show the landing error vs map error. We see 
A L P &  +L a: - -- - :- --.- 71 .-.'A u r a L  111s lmulitg G I ~ O I  L> wt;rl wl~hin  the reqilfienlents of 
pinpoint landing if the map and elevation error are less 
than 5 meters. 

RMS Landmg emor at 1 km wfih Integrated velocrnes 
17 I 

Figu~e 7: RMS landing error vs: map error when the 
spacecraft starts dead reckoning at X km. 

0 -  
mot  map error m X.Y.2 

Figure 8: RMS landing error vs. map error when the 
spacecraft starts dead reckoning at 3 km. 

IV. CONCLUSIONS 
In this paper, a landmark (crater) based position 

estimation system is suggested. The performance 
analysis shows that this system is abIe to guild a 
spacecraft to land on Mars within 100 meter from the 
targeted landing site under normal noise conditions. 
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