
A Scalable Architecture of a Structured LDPC Decoder*

Jason Kwok-San Lee, Benjamin Lee, Jeremy Thorpe,

Kenneth Andrews, Sam Dolinar, Jon Hamkinst

{kwoklee, leeb, jeremy @caltech.edu {andrews, Sam, hamkins)@shannon.jpl.nasa.gov 1 Jet Prop ion Laboratory, California Institute of Technology

A b s t r a c t

We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes
are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph
for a (Z x n, Z x r) code. Using this architecture, we have implementated a decoder for a (4096,2048)
LDPC code on a Xilinx Virtex-I1 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed
iterations. The implemented message-passing alogrithm uses an optimized 3-bit non-uniform quantizer
that operates with 0.2dB implementation loss relative to a floating point decoder.

1 Introduction

Low-Density-Parity-Check (LDPC) codes[l] have recently received a lot of attention because of their excellent
error-correcting capability. LDPC codes have been shown to be able to perform close to the Shannon limit[2].
They also can achieve very high throughput because of the parallel nature of their decoding algorithms. In
the past decade or so, much of the research on LDPC codes has focused on the analysis and improvement of
codes under decoding algorithms with floating point precision. However, to make LDPC codes practical in
the real world, the design of an efficient hardware architecture is crucial.

2 Structured LDPC codes

Given unlimited hardware resources, a well-understood strategy is to allocate one processing element to each
check and variable node in the Tanner graph[3] of an LDPC code. However, for the sake of error-correcting
capability, it may be desirable to use a code with many more nodes than can be instantiated with limited
hardware resources. To this end, we have developed an architecture for decoding structured LDPC codes
in which computations are scheduled in space and time.

2.1 Protograph Construction

By "structured", it is meant that the code is constructed via a specific construction called a "protograph1'[4].
The protograph is typically a small (n, r) graph that is used as a template for a large (Z x n, Z x r) code
graph.

The code graph is constructed from the protograph by making Z copies of each variable and check node.
Each edge in the small protograph represents a set of edges in the larger code graph which connect Z copies
of a variable node with Z copies of a check node via an arbitrary permutation (see figure 1).

As a matter of terminology, although we use the protograph formalism in 141, other researchers have
referred to a "projected grapht'[5] or "base graphtt[6], which are mostly functionally equivalent.

~ --

'The work described was funded by the IND Technology Prograrn and performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contrnct with the National Aeronautics and Space Administration.

tCo~nrnuriications Systems & Research Sectio~i, Jet Propulsio~l Laboratory, California Institute of Technology, Pasadena,
CA.

n varieple nodes

r c h d ' nodes

Figure 1: Protograph architecture

2.2 Decoder Architecture

The basic computation performed in message-passing decoding is a message-update, in which a node com-
putes its set of outgoing messages from its set of incoming messages. In our hardware architecture, the
processing elements are variable node units and check node units, each of which computes its respective
message updates. These processing elements can be highly decentralized and distributed across the available
area. Our strategy is to instantiate hardware units for each of the n variable nodes and r check nodes in
the small LDPC protograph. All n variables node units or all r check node units decode synchronously
and in parallel. The Z copies of the identical small protograph share this hardware and are operated on
serially. The fundamental unit of time is called a "computation cycle", in which a processing element can
read the incoming messages from a memory and compute and store outgoing messages. Messages are stored
in memory modules, which each correspond to an edge in the small protograph. Each memory module
consists of two memory banks capable of storing Z messages and a permutation table. One memory bank
stores variable-to-check messages, and is writable by an associated variable node unit and readable by an
associated check node unit. The other memory bank stores the check-tevariable messages and is writable
by an associated check node unit and readable by an associated variable node unit. The permutation table
specifies a permutation .rr, : {1,2, ..., Z) -+ {1,2, ..., Z) such that if re (i) = j, then the ith variable node is
connected to the jth check node.

2.3 Computation Scheduling
The cornerstone of our hardware architecture is the scheduling of message-updates in space and time. One
iteration consists of a check node phase, followed by a variable node phase. In each phase, there are Z
computation cycles.

In the check node phase, all check node modules read messages from the edge memory in ascending order,
update the messages, and write their results back to the edge memory in ascending order. This computation
across all r check node units occurs in parallel.

In the variable node phase, all variable node modules read messages from the edge memory in permuted
order, update the messages, and write back the edge memory in permuted order. The computation across
all n variable node units also occurs in parallel. The decoding stops a t the maximum iteration number, or
when a stopping rule is satisfied.

Although this work was underway before the Flarion decoder patent was published, we can now make
a useful comparison to that architecture. Flarion's design operates on all Z copies of the template LDPC
graph in parallel and processes the individual nodes serially. In this manner, memory and processing can be
centralized and a Single-Instruction-stream-MultipleData-stream (SIMD) instruction is used to access all Z

messages [5].
In contrast, our system has multiple decentralized processing elements with multiple separate memories

(see figure 2). All nodes in the template LDPC graph are operated on simultaneously in parallel and each
of the Z copies are processed serially (see figure 3).

Figure 2: Our FPGA decoder architecture

Our Computing Scheduling Flarbn's Computing Scheduling

Figure 3: Our Computation Schduling vs. Flarion's Computation Scheduling

2.4 Structured LDPC Implementation Methodology

1. Choose a small (n, r) protograph by some methods (e.g. [7]).

2. Replicate the protograph Z times and apply a "girth conditioning" algorithm such as Progressive-
Edge-Growth (PEG)[8] to permute the end points of each set of edges to obtain a large (Z x n, Z x r)
code graph that does not contain short cycles.

3. Generate a decoder design by applying the protograph and the chosen permutations to parameterized
Verilog HDL

4. Automatically synthesize, place and route design using Xilinx XST

Particular attention is given to the degree distribution of the small protograph chosen, as the larger code
graph will have the same degree distribution. For all our protographs implemented, regular (3,6) protograph
was used.

3 Quantized Belief Propagation Algorithm
We use the non-uniform quantization scheme proposed in [9], which applies to regular (3,6) LDPC codes.

Initially, variable nodes read the channel memory, compute initial variable-to-check messages v~,~(O),
and directly deposit into corresponding edge memory according to the permutation tables:

vi-j (0) = Qch (channeli) , i E {l..Zn)

where QCh (channeli) is the quantization rule for the channel.

At the tth iteration, the parity check phase occurs first. All r check node units read the variable-to-check
messages vi,j from edge memory connecting the ith variable node to the jth check node in the large code
graph, update the message by equation (2), then write the check-to-variable messages uj,, back to the edge
memory according to the permutation tables. r check node units are running in parallel, while Z copies of
messages are being updated serially.

uj-i (t) = ~ c (x 4c(uil-j(t - I))), j {l..zr}
i'

(2)

where i' ranges over all edges connected connected to the jth check node excluding i, Qc is the quantization
rule for the check-to-variable message uj,i, and 4, is the reconstruction function for the variable-to-check
message vi-9

Next, the variable phase occurs. n variable node units read the check-tevariable messages uj,, from
edge memory, update the message by equation (3), then write the variableto-check messages vi-j back to
edge memory according to the permutation tables.

where j' ranges over all edges connected connected to the ith variable node excluding j, Q, is the quantization
rule for the variable-to-check message vi-j, 4, is the reconstruction function for the check-to-variable message
uj-i, and 4ch is the reconstruction function for the channel message Qch (channeli).

At the final Kth iteration, hard decisions Xi are made in variable nodes following:

4 Performance

4.1 FPGA utilization
The performance of decoder can always be improved by increasing the block length. However, the block
length of the LDPC code is limited by the area constraints on the FPGA chip. The LDPC decoder consists
of processing units and edge memory. The area consumed by the processing units is proportional to the size
of (n, r) protograph, which is proportional to the throughput. The area consumed by the edge memory is
proportional to the size of (n x 2, r x 2) code graph, which is proportional to the error-correcting capability.
We implemented several size of LDPC codes, and measured the utilization of the decoder on a Xilinx Virtex-I1
2000 FPGA.

The measured delay consists of communication overhead and decoder latency, in which decoder latency is
proportional to the number of iterations. The decoder latency is 3.18 ns/bit/iteration. The communication
overhead is 97.1 ns/bit in our tests. Communication overhead includes the buffer delay outside decoder
module, and the time delay writing to and reading from the FPGA board.

4.2 Speed/Throughput
We measured the real decoding throughput by the FPGA decoder of a (128 x 32,128 x 16) LDPC code at
fixed iteration numbers without stopping rules.

4.3 Error Correcting Capability

20

$8

1 -

14

1::;
8
::
2 -

0

We implemented several codes of different block lengths, and ran performance tests to compare their perfor-
mance differences. The largest block length code we can implement to fit into a Xilinx Virtex-I12000 FPGA
chip is a (32,16) x 128 copies = (4096,2048) code. The results demonstrate that doubling the block length
can improve the performance by about 0.5 dB.

The performance of 3-bit non-uniform quantization is another interesting topic to investigate. Compared
to the full floating point simulation done in software, hardware 3-bit non-uniform quantization is only off
about 0.2 dB, with drastically smaller hardware implement requirements. The speed advantage of the FPGA

A R31 ol h- a- nmberd bntm

-

n

-

Tnmww- ,----
a - ' \

\: . .. -
*

+
i l

50 1m I 5 0 200 250
h r d ltenUC.7 1 250 1 1.26 1 1.12 Throughput vs. iteration #

Performance curves a t varying block size Full floating point vs. 3-bit non-uniform quantization

over software simulation allows the detection of errors down to lo-' BER. The error floor at lo-' BER is
resulted from the quantization error.

~ n W n n a n a t r * o n u l) * p t & & U s
1 o0

10'

----A -.,
102 *\ -. ,

5 Conclusion

10-

104

a
I 10-

We have presented a scalable decoding architecture for a certain class of structured LDPC codes protograph,
and demonstrated a FPGA implementation of a (4096, 2048) regular (3, 6) structured LDPC code. Partially
parallel structure allows high throughput, while the serial processing of multiple copies of the protograph
allows a large block length in implementation to improve the performance. Our use of three-bit non-uniform
quantization allows near floating point performance in the waterfall region. As demonstrated by this work,
an FPGA iniplementation of LDPC codes can have excellent performance, high throughput, low hardware
complexity and easy reconfigurability; FPGA implementation of LDPC codes are expected to be employed
for many applications in next-generation communication systems.

i 10' . \

r
3M-Uon
md.*wd am,

References

[I] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge,MA, 1963.

10.

10'

10.

[2] S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, "On the design of low-density parity-check
codes within 0.0045 dB of the Shannon limit," IEEE Comm. Letters, vo1.5, pp.5860, Feb. 2001.

\
" ,"

- I

ii X " I

10' '!
\

[3] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inform. Theory, vol. 27,
pp. 533-547, Sept. 1981.

[4] J. Thorpe "Low-Density Parity-Check (LDPC) Codes Constructed from Protographs", IPN Progress
Reports 42-154, April-June 2003

10-

[5] T. Richardson, "Methods and Apparatus for Decoding LDPC Codes," United States Patent No.: US
6,633,856 B2, Oct. 14, 2003.

Mu quarhralon E R
7

--% - * %

[6] H. Zhong and T. Zhong, "Design of VLSI Implementation-Oriented LDPC Codes," IEEE Semiannual
Vehicular Technology Conference (VTC), Oct. 2003

1 0 ' ~
1 1 2 1 4 1 0 1 0 2 2 2 2 4 2 0 2 0 3 1 5 2 2 5 3 35

Ebmo (dB) Ebmo (dB1

[7] J . Thorpe, K. Andrews, S. Dolinar, "Methodologies for Designing LDPC Codes Using Protographs,"
submitted to 2004 IEEE International Symposium on Information Theory.

[8] X. Hu, E. Eleftheriou, and D. Arnold, "Progressive edge-growth Tanner graphs," Global Telecommuni-
cations Conference, 2001. GLOBECOM '01. IEEE , Volume: 2 , 2529 Nov. 2001

[9] J. Thorpe "Low-Complexity Approximations to Belief Propagation for LDPC Codes", Unpublished

