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A b s t r a c t  

We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes 
are designed using a small (n,r) protograph that is replicated Z times to  produce a decoding graph 
for a (Z x n, Z x r) code. Using this architecture, we have implementated a decoder for a (4096,2048) 
LDPC code on a Xilinx Virtex-I1 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed 
iterations. The implemented message-passing alogrithm uses an optimized 3-bit non-uniform quantizer 
that operates with 0.2dB implementation loss relative to  a floating point decoder. 

1 Introduction 

Low-Density-Parity-Check (LDPC) codes[l] have recently received a lot of attention because of their excellent 
error-correcting capability. LDPC codes have been shown to be able to perform close to the Shannon limit[2]. 
They also can achieve very high throughput because of the parallel nature of their decoding algorithms. In 
the past decade or so, much of the research on LDPC codes has focused on the analysis and improvement of 
codes under decoding algorithms with floating point precision. However, to make LDPC codes practical in 
the real world, the design of an efficient hardware architecture is crucial. 

2 Structured LDPC codes 

Given unlimited hardware resources, a well-understood strategy is to allocate one processing element to each 
check and variable node in the Tanner graph[3] of an LDPC code. However, for the sake of error-correcting 
capability, it may be desirable to use a code with many more nodes than can be instantiated with limited 
hardware resources. To this end, we have developed an architecture for decoding structured LDPC codes 
in which computations are scheduled in space and time. 

2.1 Protograph Construction 

By "structured", it is meant that the code is constructed via a specific construction called a "protograph1'[4]. 
The protograph is typically a small (n, r )  graph that is used as a template for a large ( Z  x n, Z x r )  code 
graph. 

The code graph is constructed from the protograph by making Z copies of each variable and check node. 
Each edge in the small protograph represents a set of edges in the larger code graph which connect Z copies 
of a variable node with Z copies of a check node via an arbitrary permutation (see figure 1). 

As a matter of terminology, although we use the protograph formalism in 141, other researchers have 
referred to a "projected grapht'[5] or "base graphtt[6], which are mostly functionally equivalent. 
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Figure 1: Protograph architecture 

2.2 Decoder Architecture 

The basic computation performed in message-passing decoding is a message-update, in which a node com- 
putes its set of outgoing messages from its set of incoming messages. In our hardware architecture, the 
processing elements are variable node units and check node units, each of which computes its respective 
message updates. These processing elements can be highly decentralized and distributed across the available 
area. Our strategy is to instantiate hardware units for each of the n variable nodes and r check nodes in 
the small LDPC protograph. All n variables node units or all r check node units decode synchronously 
and in parallel. The Z copies of the identical small protograph share this hardware and are operated on 
serially. The fundamental unit of time is called a "computation cycle", in which a processing element can 
read the incoming messages from a memory and compute and store outgoing messages. Messages are stored 
in memory modules, which each correspond to an edge in the small protograph. Each memory module 
consists of two memory banks capable of storing Z messages and a permutation table. One memory bank 
stores variable-to-check messages, and is writable by an associated variable node unit and readable by an 
associated check node unit. The other memory bank stores the check-tevariable messages and is writable 
by an associated check node unit and readable by an associated variable node unit. The permutation table 
specifies a permutation .rr, : {1,2, ..., Z)  -+ {1,2, ..., Z )  such that if re (i) = j, then the ith variable node is 
connected to the jth check node. 

2.3 Computation Scheduling 
The cornerstone of our hardware architecture is the scheduling of message-updates in space and time. One 
iteration consists of a check node phase, followed by a variable node phase. In each phase, there are Z 
computation cycles. 

In the check node phase, all check node modules read messages from the edge memory in ascending order, 
update the messages, and write their results back to the edge memory in ascending order. This computation 
across all r check node units occurs in parallel. 

In the variable node phase, all variable node modules read messages from the edge memory in permuted 
order, update the messages, and write back the edge memory in permuted order. The computation across 
all n variable node units also occurs in parallel. The decoding stops a t  the maximum iteration number, or 
when a stopping rule is satisfied. 

Although this work was underway before the Flarion decoder patent was published, we can now make 
a useful comparison to that architecture. Flarion's design operates on all Z copies of the template LDPC 
graph in parallel and processes the individual nodes serially. In this manner, memory and processing can be 
centralized and a Single-Instruction-stream-MultipleData-stream (SIMD) instruction is used to access all Z 



messages [5]. 
In contrast, our system has multiple decentralized processing elements with multiple separate memories 

(see figure 2). All nodes in the template LDPC graph are operated on simultaneously in parallel and each 
of the Z copies are processed serially (see figure 3). 

Figure 2: Our FPGA decoder architecture 
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Figure 3: Our Computation Schduling vs. Flarion's Computation Scheduling 

2.4 Structured LDPC Implementation Methodology 

1. Choose a small (n, r )  protograph by some methods (e.g. [7]). 

2. Replicate the protograph Z times and apply a "girth conditioning" algorithm such as Progressive- 
Edge-Growth (PEG)[8] to permute the end points of each set of edges to obtain a large ( Z  x n, Z x r )  
code graph that does not contain short cycles. 

3. Generate a decoder design by applying the protograph and the chosen permutations to parameterized 
Verilog HDL 



4. Automatically synthesize, place and route design using Xilinx XST 

Particular attention is given to the degree distribution of the small protograph chosen, as the larger code 
graph will have the same degree distribution. For all our protographs implemented, regular (3,6) protograph 
was used. 

3 Quantized Belief Propagation Algorithm 
We use the non-uniform quantization scheme proposed in [9], which applies to regular (3,6) LDPC codes. 

Initially, variable nodes read the channel memory, compute initial variable-to-check messages v~,~(O), 
and directly deposit into corresponding edge memory according to the permutation tables: 

vi-j (0) = Qch (channeli) , i E {l..Zn) 

where QCh (channeli) is the quantization rule for the channel. 

At the tth iteration, the parity check phase occurs first. All r check node units read the variable-to-check 
messages vi,j from edge memory connecting the ith variable node to the jth check node in the large code 
graph, update the message by equation (2), then write the check-to-variable messages uj,, back to the edge 
memory according to the permutation tables. r check node units are running in parallel, while Z copies of 
messages are being updated serially. 

uj-i (t) = ~ c ( x  4c(uil-j(t - I))), j {l..zr} 
i' 

(2) 

where i' ranges over all edges connected connected to the jth check node excluding i, Qc is the quantization 
rule for the check-to-variable message uj,i, and 4, is the reconstruction function for the variable-to-check 
message vi-9 

Next, the variable phase occurs. n variable node units read the check-tevariable messages uj,, from 
edge memory, update the message by equation (3), then write the variableto-check messages vi-j back to 
edge memory according to the permutation tables. 

where j' ranges over all edges connected connected to the ith variable node excluding j, Q, is the quantization 
rule for the variable-to-check message vi-j, 4, is the reconstruction function for the check-to-variable message 
uj-i, and 4ch is the reconstruction function for the channel message Qch (channeli). 

At the final Kth iteration, hard decisions Xi are made in variable nodes following: 



4 Performance 

4.1 FPGA utilization 
The performance of decoder can always be improved by increasing the block length. However, the block 
length of the LDPC code is limited by the area constraints on the FPGA chip. The LDPC decoder consists 
of processing units and edge memory. The area consumed by the processing units is proportional to the size 
of (n, r )  protograph, which is proportional to the throughput. The area consumed by the edge memory is 
proportional to the size of (n x 2, r  x 2) code graph, which is proportional to the error-correcting capability. 
We implemented several size of LDPC codes, and measured the utilization of the decoder on a Xilinx Virtex-I1 
2000 FPGA. 

The measured delay consists of communication overhead and decoder latency, in which decoder latency is 
proportional to the number of iterations. The decoder latency is 3.18 ns/bit/iteration. The communication 
overhead is 97.1 ns/bit in our tests. Communication overhead includes the buffer delay outside decoder 
module, and the time delay writing to and reading from the FPGA board. 

4.2 Speed/Throughput 
We measured the real decoding throughput by the FPGA decoder of a (128 x 32,128 x 16) LDPC code at 
fixed iteration numbers without stopping rules. 

4.3 Error Correcting Capability 
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We implemented several codes of different block lengths, and ran performance tests to compare their perfor- 
mance differences. The largest block length code we can implement to fit into a Xilinx Virtex-I12000 FPGA 
chip is a (32,16) x 128 copies = (4096,2048) code. The results demonstrate that doubling the block length 
can improve the performance by about 0.5 dB. 

The performance of 3-bit non-uniform quantization is another interesting topic to investigate. Compared 
to the full floating point simulation done in software, hardware 3-bit non-uniform quantization is only off 
about 0.2 dB, with drastically smaller hardware implement requirements. The speed advantage of the FPGA 
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Performance curves a t  varying block size Full floating point vs. 3-bit non-uniform quantization 

over software simulation allows the detection of errors down to lo-' BER. The error floor at lo-' BER is 
resulted from the quantization error. 

~ n W n n a n a t r * o n u l ) * p t & & U s  
1 o0 

10' 

----A -., 
102 *\ -. , 

5 Conclusion 
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We have presented a scalable decoding architecture for a certain class of structured LDPC codes protograph, 
and demonstrated a FPGA implementation of a (4096, 2048) regular (3, 6) structured LDPC code. Partially 
parallel structure allows high throughput, while the serial processing of multiple copies of the protograph 
allows a large block length in implementation to improve the performance. Our use of three-bit non-uniform 
quantization allows near floating point performance in the waterfall region. As demonstrated by this work, 
an FPGA iniplementation of LDPC codes can have excellent performance, high throughput, low hardware 
complexity and easy reconfigurability; FPGA implementation of LDPC codes are expected to be employed 
for many applications in next-generation communication systems. 
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