
Automated Knowledge Discovery from Simulators

M.C. Burl∗, D. DeCoste∗, B.L. Enke+, D. Mazzoni∗, W.J. Merline+, L. Scharenbroich∗,†,
∗Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

+Southwest Research Institute, Boulder, CO
†University of California, Irvine, CA

Abstract

In this paper, we explore one aspect of knowledge discov-
ery from simulators, the landscape characterization prob-
lem, where the aim is to identify regions in the in-
put/parameter/model space that lead to a particular out-
put behavior. Large-scale numerical simulators are in
widespread use by scientists and engineers across a range
of government agencies, academia, and industry; in many
cases, simulators provide the only means to examine pro-
cesses that are infeasible or impossible to study otherwise.
However, the cost of simulation studies can be quite high,
both in terms of the time and computational resources re-
quired to conduct the trials and the manpower needed to
sift through the resulting output. Thus, there is strong mo-
tivation to develop automated methods that enable more
efficient knowledge extraction.

Unlike traditional data mining, knowledge discovery
from simulators is not limited to a static, pre-determined
dataset; instead, the simulator itself can be used as an
oracle to generate new data of our own choosing. We
exploit this opportunity by employing active learning and
support vector machines (SVMs) to choose which are the
most valuable simulation trials to run next. On two real-
world scientific simulators, one for asteroid collisions and one
for magnetospheric modeling, we demonstrate twofold and
sixfold reductions, respectively, in the number of simulator
trials required to achieve a particular level of fidelity in
landscape characterization as compared with a standard
grid-based sampling approach.

Keywords: simulator, knowledge discovery, landscape
characterization, active learning, asteroid collisions, SVM.

1 Introduction

Large-scale numerical simulators are in widespread use
for investigating a range of complex phenomena. Sci-
ence applications include studies of the Earth’s core
and mantle dynamics, climate prediction, atmospheric
and ocean dynamics, fluid flows in micro-gravity en-
vironments, dynamics of the interior of stars, inter-
action of the solar wind with the Earth, formation
of star-planet systems, and origins of life. Engi-
neering applications include studies of aerodynamics,
propulsion, multi-jointed actuated structures such as
biped and quadruped robots, system reliability, and nu-
clear/chemical/biological processes.

The high-performance computing (HPC) commu-
nity has expended considerable effort to produce big-

ger, faster, and more accurate simulations. However,
the complementary problem of deciding which simula-
tion trials to run and how to transform the output of
a set of trials (gigabytes and terabytes of data1) into
knowledge has received little attention (for one excep-
tion, see [8]).

Although some traditional data mining techniques
can be employed to analyze the output data, a unique
aspect of knowledge discovery from simulators is that
we are not limited to a static, pre-determined dataset;
instead, the simulator itself can be used as an oracle to
generate new data of our own choosing leading to rich
opportunities for active exploration and experimenta-
tion. In this paper, we focus on a particular knowledge
discovery problem, called landscape characterization [5],
where the aim is to try to determine which initial con-
ditions, parameters, or interaction equations (models),
lead to a given output behavior from a dynamical sys-
tem that is represented by a numerical simulator.

The approach we take relies on support vector ma-
chines (SVMs) [21, 7] and active learning techniques.
SVMs are a powerful, supervised classification technique
that have proven effective in a number of applications.
The maximum margin property of SVMs, which often
enables good generalization performance even with a
limited number of training examples, and the represen-
tation of the decision boundary through a set of “sup-
port vectors2” and corresponding weights make SVMs
particularly well-suited for the landscape characteri-
zation problem. Once the parameter landscape has
started to emerge from initial trials (i.e., some positive
and negative examples have been observed), we train
an SVM to represent the decision boundary between the
classes. Active learning can then be used to identify new
points that if labeled (by a run of the simulator) would

1Consider that a simple 3-D mesh model of a cubic meter

volume with 1mm spatial resolution will generate at least one GB
(gigabyte) of data for each measured attribute (e.g., temperature,

pressure) for each time step in a simulation.
2Support vectors are instances from the training set that are

generally near the decision boundary between classes.

maximize, in some sense, the amount of new information
obtained. By actively choosing the next point to run in
an intelligent fashion, we expect to obtain more infor-
mation than just running a randomly-selected point or
a point that was picked a priori without consideration
of the results in previous trials. Experimental evidence
on two large-scale scientific simulators supports this in-
tuition.

The organization of the paper is as follows. In Sec-
tion 2 we establish the basic framework for the land-
scape characterization problem. In Section 3 we de-
scribe the active learning techniques used in this work.
In Section 4 we provide insight into how the appropriate
SVM hyperparameters (kernel type, kernel-specific pa-
rameters, regularization parameter) can be determined
in the active learning framework. We also introduce
a novel twist to existing active learning paradigms by
combining the “wishes” of multiple SVMs, each with
different hyperparameters, into an appropriate choice
for the next point to run. In Section 5, we lay out the
evaluation methodology (how do we know whether ac-
tive learning has been successful, etc.). In Section 6
we briefly describe the two real-world scientific simula-
tors used in this work: (i) one models asteroid collisions
using a smooth particle hydrodynamic (SPH) model of
the energetic-collision physics involved in the impact,
followed by an efficient N-body gravitational code that
traces the dynamical evolution of the shattered asteroid
fragments after the collision, and (ii) the other models
the global dynamics of energetic plasma in the Earth’s
inner magnetosphere. Section 7 presents the experimen-
tal results. Section 8 outlines directions for future work
and Section 9 provides conclusions.

2 Landscape Characterization

2.1 Dynamical Systems Formalism. We formal-
ize the concept of a simulator using language and no-
tation from dynamical systems and control theory. We
abstract a simulator as a discrete-time system in which
a vector of internal state variables x is updated at each
time step.

xk+1 = f(xk,uk,wk,θ)(2.1)

where f(·) is a potentially nonlinear, vector-valued func-
tion. The variable xk represents the internal state at
time step k, uk represents inputs to the system at time
k, wk is a random vector representing a disturbance (or
plant-noise) process, and θ represents any fixed param-
eters that affect the behavior of the system. Note that
the time variable k can be included in the state vector
to allow various behaviors that depend on the absolute
time. Also, the state can include binary- or discrete-
valued indicator variables that cause switching in the

system dynamics. For example, in modeling quadruped
walking, the system dynamics should switch depending
upon which feet are in contact with the ground at a
given moment. The parameter vector θ is assumed to
be fixed throughout a given run of the simulator (i.e.,
there are no dynamics within the parameters of θ). Note
that θ can be used to turn f into a class of functions,
by allowing some elements of f to be activated or deac-
tivated by specific parameters in θ.

For the simulators discussed in this paper, there are
no time-dependent inputs nor disturbances, so the state
evolution is governed by the simpler equation:

xk+1 = f(xk,θ)(2.2)

Recursively applying Equation 2.2 from time step k = 0
to time step k = T , we can write:

xT = ΦT (x0,θ)(2.3)

where ΦT is defined recursively in terms of f(·). We
can go a step further and suppose that the initial value
of the state, x0, is recorded in the parameter vector,
so the state at time T is totally determined by θ.
We will refer to the set of possible parameter vectors
as input space and designate this space Θ. Choosing
θ from Θ provides the input to the simulator and,
for a deterministic simulator, determines the output.
Note that input space may be a mixture of continuous-
valued (real numbers) and/or discrete-valued (integers)
parameters.

In control systems, it is common to introduce a
measurement process in addition to the state update
equation to specify what aspects of the system can
be directly measured (the measurements are a function
of the state vector and a random-valued measurement
noise process). While not usually necessary with a
simulator3, we will define a measurement process as
follows:

zk = h(xk,vk,θ)(2.4)

where z is the vector of observed values, h is a poten-
tially nonlinear, vector-valued function and vk is a ran-
dom vector representing the measurement noise process.

2.2 Objective. As we have seen, the output of a
deterministic simulator is totally governed by the input
parameters θ. Frequently, the scientist or engineer using
the simulator is interested to know which values of the

3We usually have full access to the state vector at every instant

of time, although there could be situations where the simulator

is a black box (or even a physical experiment) or the full state

vector is not recorded in the simulation output.

input parameters lead to a desired output result. To be
more concrete, in the asteroid collision simulations that
we will introduce in Section 6, the input parameters
include the size and composition of both asteroids,
as well as the velocity and angle of impact. The
scientist would like to understand what combinations
of input values lead to a situation in which fragments
of the two asteroids become gravitationally captured
in a binary pair. This amounts to determining what
region in Θ space leads to a specific output. If we
attach binary labels to each simulation run (indicating
whether desired output occurred), then we can state the
landscape characterization problem as follows:

Landscape Characterization: Determine the set of

points θ ∈ Θ, such that q(θ) = 1, where q is a binary-

valued function that specifies whether a simulation is

successful in producing the desired output or not

Since the underlying parameter space Θ can be
continuous-valued, the points in the solution region can-
not be simply enumerated. What we really want is to
produce a function, q̂ : Θ → {−1, 1} such that q̂ agrees
with q over most of the domain. In this sense, the land-
scape characterization problem is similar to the concept

learning framework [14] of machine learning. The main
difference is that in concept learning, we are given a
fixed set of examples (instances with labels) drawn i.i.d.
from an underlying distribution over instance space and
from these examples we should try to derive q̂(·). In the
landscape characterization problem, we are merely given
the simulator which can serve as an oracle to generate
examples. The selection of examples is not i.i.d., but
is conditionally-dependent on previously selected exam-
ples. Also, since running the simulator can be quite
expensive (in terms of time and computer resources),
we have the additional constraint that we want to make
as few calls to the simulator as possible.

2.3 SVM Framework. A landscape characteriza-
tion problem is considered to be “solved” when the
agreement between q̂(·) and q(·) is sufficient. We will use
the Support Vector Machine (SVM) framework [21, 7]
to represent the function q̂:

q̂(θ) =

ns
∑

i=1

βiK(θ, si)(2.5)

where θ is a point in input space, ns is the number of
support vectors, si is the i-th support vector, βi is a
scalar weight, and K(·, ·) is the kernel function.

As more data is acquired through ongoing runs of
the simulator, our estimate for q̂ will change (hope-
fully improve!); hence, we will add a superscript (n)

to q̂ to designate the estimated landscape function af-
ter the n-th example from the simulator has been ob-
served. Also, the SVM solution to a learning problem
is dependent on a number of associated hyperparame-
ters, such as the kernel type (polynomial, RBF, etc.),
kernel-specific variables (polynomial degree, RBF band-
width, etc.), and the choice of regularization constant
(C). Different choices of hyperparameters lead to dif-
ferent characteristics for the resulting decision surface,
e.g., “bumpy” or smooth. Hence, we consider multiple
hyperparameters in order to find a good match to the
true underlying function q(θ). At any stage, then, we
will have multiple estimates of the landscape function
where each estimate is based on a specific set of SVM

hyperparameters, λ. We will use q̂
(n)

λ
(·) to designate the

estimated landscape function after the n-th trial using
SVM hyperparameters λ. For notational convenience in
the next section, we will assume a single, fixed vector
of SVM hyperparameters, but will return to considering
multiple hyperparameters in Section 4.

3 Active Learning

Given the high cost of running the simulator, we want
to solve the landscape characterization problem as effi-
ciently as possible, i.e., with a minimal number of simu-
lator trials. Active learning is a process that determines
which new points in input space, if labeled, would be the
most informative for refining the boundaries of the solu-
tion region. If active learning consistently chooses good
points, then the most informative simulations given the
current state of knowledge will be run and the solution
region will be identified more quickly. If poor choices
of points to run are made, then there is a steep penalty
since days or weeks of simulator time may be used to
generate a result that is not particularly valuable.

3.1 Initialization. To get the active learning process
started, we first pick points randomly from input space
(according to a uniform distribution, unless the scien-
tists’ background knowledge of the problem can provide
more guidance). These points are run through the simu-
lator until we find at least one positive and one negative
example4. Once the initialization is set, SVM can learn
an initial decision boundary and let the active learning
process take over choosing which points should be run
next.

There are some opportunities to be more clever
with the initialization. Using the scientists’ background
knowledge to guide the process was mentioned above.
Putting “nulls” in areas immediately around negative

4In most cases, examples from the positive class tend to be

more rare than examples from the negative class.

examples might lead to a better initial exploration
of the space. As the trials progress, the nulls could
be contracted to permit sampling closer to known
negative examples. Another idea is to use bootstrapping
once a positive example is found to try to get a
few more positives before starting the active learning.
One bootstrapping approach would be to sample, say
according to a multivariate Gaussian density, in the
vicinity of a positive example. There is always a danger,
though, of focusing too much effort on one part of the
space. The active learning algorithms must carefully
balance exploration (semi-randomly searching around
the space) and exploitation (using the current state of
knowledge to conduct a tightly-focused search). One
idea for balancing these concerns would be to continue
random exploration of the input space until some pre-
determined number of positives was obtained. Thus, the
initialization would insure at least some fixed number of
positive seed points. However, in the few experiments
where we tried this approach, it did not necessarily lead
to quicker solutions.

Another tack for increasing the number of positive
seed points would be to exploit additional domain
knowledge in the form of invariances or monotonicity
constraints. For example, the scientist may know that
if an outcome is positive for a particular input energy
level, then it will be positive for all higher energy levels,
keeping the other parameters fixed. This information
would allow a single initial positive example to imply a
whole set of additional positive examples. (In fact, such
information could be exploited at any time during the
process by multiplying the effective number of examples
similar to the “hints” framework developed in [1]).

3.2 Basic Ideas. Active learning is not restricted to
any single inductive learning method, although much
of the recent work in this area has used the SVM
framework. Note that at any time in the process, the
SVM decision boundary is only based on the examples
seen so far and will not be perfect. Active learning
will use this imperfect boundary as an indication of
which cases are the contentious ones. Acquiring the
true label for these cases (i.e., by running them through
the simulator) provides valuable information for how the
boundary should be modified.

For notational purposes, we will let L(n) represent
the set of examples that at the conclusion of trial n have
been labeled. We will also think of a pool of unlabeled
examples U (n), which represents the set of unlabeled
examples remaining at the conclusion of trial n. For
the simulators problem, the input space of parameters
is often continuous-valued, so it is not possible to
enumerate all the unlabeled examples into such a set;

instead we will form U (n) by randomly sampling from
input space, choosing some target number of points N .
The goal then is to choose an instance θ(n+1) from U (n),
such that an SVM constructed from

L(n+1) = L(n) ∪ θ(n+1)(3.6)

will achieve the greatest increase in accuracy (bringing
q̂(·) into closer agreement with q(·)). Of course, we do
not know the true underlying function q(·), so the choice

of θ(n+1) must be based on heuristics.

3.3 Algorithms. A number of active learning heuris-
tics have been developed in the literature. We briefly
describe the main methods we considered.

• Random: This method selects θ ∈ U randomly. It
is equivalent to “passive” learning, since the choice
of next point does not depend on what is “known”
so far.

• Simple [20]: This method assumes that the un-
labeled item closest5 to the current SVM decision
boundary is likely to be the most helpful for updat-
ing the boundary. Simple ranks each example by
its distance from the hyperplane and then chooses
the minimum.

θ(n+1) = arg min
θ∈U(n)

∣

∣

∣
q̂
(n)

λ
(θ)

∣

∣

∣
(3.7)

• MaxMin Margin [20]: Rather than guessing
that the item closest to the decision boundary will
yield the most information, this method chooses
the unlabeled instance that guarantees the best
(maximum) SVM margin assuming the worst-case
about which label (+1 or -1) will be assigned to
that instance.

Let m be the size of the separation between the
positive and negative classes (the margin) for the
current SVM. Then, for each θ ∈ U (n), this method
trains two SVMs: one on L(n)∪{(θ,+1)} (yielding
m+) and one on L(n) ∪ {(θ,−1)} (yielding m−).
Finally, MaxMin selects θ such that min(m−,m+)
is maximized. When MaxMin is working well, it
tends to halve the “version space” of models that
are consistent with the data after the new labeled
example is obtained.

• Diverse [6]: This algorithm attempts to avoid
choosing too many similar queries by choosing ex-
amples that are as diverse as possible with respect

5If there is not a unique closest point, we can choose randomly

from the set of closest points.

to the version space. The diversity of L(n) ∪θ(n+1)

can be maximized by selecting θ(n+1) whose max-
imum normalized kernel distance to all of the
other labeled examples is minimized. The com-
plete method uses a weighted sum of diversity and
hyperplane distance, controlled by a parameter κ,
where κ = 0 is the equivalent of focusing solely on
diversity and κ = 1 is the same as Simple. We
determined that κ = 0.5 worked well for our exper-
iments.

3.4 Meta-strategies. Above the level of individual
active learning algorithms, we can consider “meta-
strategies” that use one or more of these individual
algorithms to achieve better performance. Because the
active learning algorithms rely on heuristics, it is not
always best to accept the top-rated query returned
by a particular active learning algorithm. Baram and
colleagues [2, 3] focus on choosing among different active
learning algorithms automatically. We use a meta-
strategy in which the query to the simulator is chosen
probabilistically based on the utilities in such a way
that points with higher utilities have a better chance of
being selected. In the experiments, we used a truncated
Gaussian distribution to assign selection probabilities:

P (θ) ∝ exp

[

−
(u(θ) − 1)

2

2σ2

]

(3.8)

where u(·) is the utility assigned by active learning
normalized to the range [0, 1]. A value of σ around
1/3 insures that a query with utility 1.0 is roughly 100
times more likely to be selected than a query with utility
0. Probabilistic active learning turns out to be more
effective than simply selecting the top-ranked query
every time, since the probabilistic behavior provides
a trade-off between exploration and exploitation. In
our experiments, we used a fixed value of σ, but
incorporating a “cooling schedule” could prove more
effective (i.e., using a larger σ value in early trials to
insure more exploration, and using a smaller σ value in
later trials to insure more exploitation).

4 Choosing SVM Hyperparameters

The SVM learning framework requires a set of hyper-
parameters, λ, including the kernel type (e.g., polyno-
mial or RBF), kernel-specific parameters (e.g., degree
for polynomial kernels, bandwidth for RBF kernels),
and the regularization constant (C). One approach is
to simply make a single choice of hyperparameters up
front, λ = λ0, and stick with it throughout all the ac-
tive learning trials. Unfortunately, this method relies
on prior experience or luck to get a good result.

4.1 Accuracy Estimation. A more robust alterna-
tive to making an up-front choice of hyperparameters
is to consider a finite pool, Λ, of potential choices and
try to get an accuracy estimate for each element in the
pool.

Instantaneous x-val. This approach is the usual
method used with SVMs; however, the situation is more
difficult here, since the pool of labeled examples will not
be large. After the n-th trial of the simulator, we have
only n labeled points: (θ(i), q(θ(i))), for i = 1, . . . , n.
This small set of points can be used to conduct leave-
one-out cross-validations using each of the potential hy-
perparameter choices. From the cross-validations, we

obtain an estimate ρ̂
(n)

λ
of the true accuracy of q̂

(n)

λ
for

each λ ∈ Λ.

Bayesian approach. This approach is similar to in-

stantaneous x-val, except that the instantaneous accu-
racy estimates are combined with a prior probability dis-
tribution to produce a posterior distribution over the ac-
curacy. We take the initial prior distribution (before any
trials have been conducted) to be a Beta-distribution:

p0(ρ; α, β) = β(ρ; α, β)

∝ ρα−1(1 − ρ)β−1(4.9)

where ρ is the accuracy. The prior can be interpreted as
the equivalent of α−1 successes (correct classifications)
in α + β − 2 Bernoulli trials. The Beta-distribution has
the conjugacy property so that the posterior distribu-
tion, which takes into account the new results and the
prior, will remain a Beta-distribution. In fact, if the
new instantaneous x-val results yield k correct classifi-
cations and n− k incorrect classifications, the posterior
distribution is β(k + α, n − k + β).

The mode of the Beta posterior is given by:

ρ∗ =
k + α − 1

n + α + β − 2
(4.10)

which serves as a point estimate (MAP) for the accuracy
of the SVM trained with a particular choice of hyper-
parameters.

4.2 Choosing the Next Point. We now have two
methods for estimating the accuracy of an SVM trained
using a specific set of hyperparameters. The active
learning framework could simply use the SVM that has
the highest estimated accuracy (by one of the methods)
to decide which input space point should be labeled
next. While this winner-take-all approach to choosing
the next point may work fine, we may be able to do
better by taking the “wishes” of multiple SVMs (each

trained with a different choice of hyperparameters) into
account when choosing the next point to label, similar
in spirit to [13].

θ∗ = arg max
θ∈U

∑

λ∈Λ

wλ · uλ(θ)

(4.11)

where uλ(θ) is the utility assigned to the point θ by
the active learning algorithm using q̂λ(·) as a classifier
and wλ is a weight assigned to the classifier, based
on some assessment of the classifier’s accuracy. In
the experiments conducted in Section 7.3, we used a
measure based on the Beta posterior at the n-th step,

p
(n)

λ
(ρ). Each weight wλ is computed as follows:

wλ =
1

Z
·

∏

ˆλ∈Λ,
ˆλ6=λ

E
(n)
ˆλ

[Pr
(n)

λ
(ρ)](4.12)

where Z is a normalization constant, E
(n)
ˆλ

[f(·)] is the ex-

pectation of a function relative to the posterior distribu-

tion of the classifier parameterized by λ̂, and Pr
(n)

λ
(ρ) is

the cumulative probability distribution of the posterior
parameterized by λ. Each weight, wλ, is proportional
to the probability that a given classifier is the most ac-
curate relative to the others.

A different approach could follow the lines of [9]
to take into account the full posterior distribution to
sequentially build hypotheses and confidences regarding
which hyperparameters dominate.

5 Evaluation Methodology

5.1 Synthetic Data. As an initial testbed for evalu-
ating the active learning algorithms, we used synthetic
data. To create synthetic datasets, we simply define
a function q(θ) : Θ → {−1,+1}, which serves as the
oracle in place of the simulator. Because q can be eval-
uated quickly, the active learning algorithms can be eas-
ily tested and verified. More importantly, knowing what
the underlying solution region really is, enables the per-
formance of the active learning algorithm to be quanti-
fied, i.e., we can measure the agreement between q̂(n)(·)
and q(·) as a function of n by discretizing Θ with an
extremely fine grid. With the actual simulators, we usu-
ally do not have this luxury because it can take days or
weeks to determine a single true value from q(·).

5.2 Grid Sampling. While the synthetic experi-
ments are valuable, the real test is in the loop with
a complex simulator. Because the underlying q(·) func-
tion is not known under such circumstances, we are lim-
ited to evaluating q(·) on as fine a grid (discretization of

Θ) as possible given the simulator speed. We consider
the landscape characterization problem to be solved if
q̂(n)(·) agrees with q(·) on a sufficient fraction of the
grid points (> 90% in our experiments, but the results
do not change much if a more stringent standard is ap-
plied; see for example Figure 3 in Section 7.2). We also
use plots of the accuracy of q̂(n)(·) as a function of n to
characterize learning speed.

5.3 Is Speedup the Whole Story? Suppose that
obtaining a solution by direct evaluation of each point
on the ground-truth grid takes ng trials. Further,
suppose that obtaining a solution that sufficiently agrees
with the ground-truth solution via active learning takes
na trials. Is the speedup

ng

na

the whole story?
While speedup is certainly an important metric, it

does not capture the fact that the active learning ap-
proach likely achieves superior sub-grid accuracy (over
say a nearest neighbor interpolation of the coarse grid).
The reason is that active learning tends to concentrate
its queries near the boundary of the solution region. Un-
fortunately, it is often computationally prohibitive to
perform a complete set of runs at finer discretizations.
A workaround that is informative, but not as compre-
hensive, is to determine on the finer grid any locations of
disagreement between the q̂(·) function estimated by ac-
tive learning and the value obtained from nearest neigh-
bor interpolation from the coarse grid. Points of dis-
agreement could then be tested via the simulator to see
which algorithm is right more often on points of con-
tention (or a random subset of those points).

6 Scientific Applications

6.1 Asteroid Collisions. Asteroid collision simula-
tions are a typical example of a complex numerical sim-
ulation. Collisions between objects are one of the prime
geologic processes that have affected the surface of plan-
ets and asteroids over the age of the solar system. A
simulator gives scientists the opportunity to study colli-
sions on a scale that is not possible in Earth-based lab-
oratories. Generally, only smaller-scale collisions can
be recreated in labs, but from those, computer codes
have been developed to simulate the physics of larger
collisions and the subsequent gravitational evolution of
collisional products.

One of the consequences of such collisions is the pro-
duction of a gravitationally-bound binary, either a pair
of objects of similar size (a double asteroid) or of dissim-
ilar size (resulting in a small orbiting satellite, or moon
around the original target of the impact). From so-
phisticated ground-based telescopes using adaptive op-
tics, from radar observations, from asteroid lightcurve
analysis, and from spacecraft imaging, scientists have

determined that such binaries do exist [12]. Simula-
tions can help scientists understand how and under
what conditions the observed binary systems were pro-
duced [10]. In addition, the simulations provide feed-
back about what types of masses and orbits might be
expected. This aids in the allocation of scarce resources
used to search for such pairs.

Our impact simulations take advantage of a state-
of-the-art numerical model that combines results from a
smooth-particle hydrodynamics (SPH) code [4], which
accurately models the pressures, temperatures, and
energies of asteroid-asteroid impacts, and an N-body
code [11], which can efficiently track the subsequent tra-
jectories of tens-of-thousands of individual post-collision
fragments. Significant input parameters are the size
and composition of the target and impactor, the im-
pact angle and velocity, spin states, and the degree of
fractures in the target body. Several characteristics
of the problem are kept constant, such as the diame-
ter of the target, composition, and density of the bod-
ies. Once the relevant portions of the impact phase
are complete (crater formation/ejecta flow fields estab-
lished with no further fragmentation/damage), the out-
comes of the SPH models are handed off as the initial
conditions for N-body gravitational simulations, which
follow the trajectories of the ejecta fragments for suffi-
cient time (4 simulated days) to search for the formation
of bound satellite systems. Each simulation trial takes
over 10 days to run on a 1GHz CPU. Figure 1 shows
the basic asteroid collision simulator.

The result of the asteroid impact simulations is a
lengthy list of individual particles, each with various
properties like mass, velocity, orbital parameters, etc.
Post-processing can be used to calculate many useful
output metrics such as ratios of masses and sizes be-
tween the most massive bound particles, average eccen-
tricities of orbits, size-frequency distributions of ejecta
fragments, and number of gravitationally bound sys-
tems. Only a small fraction of the input parameter
space results in a satellite being formed.

6.2 Magnetospheric Modeling. Simulations of
the Earth’s magnetosphere improve scientific under-
standing, but also play an important role in the pre-
diction of “space weather” and avoidance of its conse-
quences, which can include telecommunications inter-
ruptions, power grid problems (rapidly changing mag-
netic fields during magnetospheric storms induce cur-
rents in the cables of the power grid), loss of spaceborne
assets, and hazards to astronauts.

Space physicists use a variety of magnetohydrody-
namic and kinetic models to help understand the global
dynamics of energetic plasma in the inner magneto-

sphere as a function of geomagnetic activity. The goal
is accurate forward prediction driven by observational
in-situ data. The plasma population is related to the
energetic neutral atom (ENA) flux, which is observable
through remote-sensing techniques, for example, using
satellites such as IMAGE and POLAR. Since energetic
neutrals are a “by-product” of the presence of plasma in
space, the actual plasma distribution has to be inferred
either through forward modeling or through mathemat-
ical inversion techniques. In its simplest form, the for-
ward modeling simulator describes the plasma popula-
tion via a 10-parameter model developed in a series of
papers by Roelof et al [16, 17, 18]. (It also supports
a more complex 35-parameter model.) Minimization
techniques are used to reduce the difference between
spacecraft-measured ENA images and simulated images
generated from the Roelof model. The process takes
about four hours of real-time on a single-CPU 1 Ghz
Intel-based processor.

7 Experimental Results

7.1 Asteroid Collision Experiments. Planetary
science domain experts determined the number and
ranges of input parameters that would be of greatest
initial benefit. In particular, a 3-dimensional Θ space
was chosen consisting of the following variables and
ranges: impact velocity (3-7km/s), angle (10-80 degrees
with respect to target-surface normal), and mass ratio
(1 to 10000). Other potential input parameters, like the
diameter of the target, composition, and bulk density,
were held constant. A simulation was given a high
grade if the impact was non-catastrophic (more than
50% of the target remained intact after the event) and
resulted in an adequately-sized satellite orbiting the
largest remnant. Runs where the grade exceeded a
threshold (related to observability from Earth) were
considered to be successes.

To establish ground truth for the domain, we first
determined a reasonable grid resolution covering the
ranges of the input parameters. These grid runs are
not a normal part of the active learning approach, but
are needed here to enable evaluation of performance.
The simulator runtime is highly dependent upon the
number of particles in the simulation. The best mix of
science output and real-world applicability involved the
use of 105 particles, which translates into an average
simulation runtime of about 10 days on a single 1GHz
processor. Finally, we chose a (5×5×6) grid (150 runs)
over input space and conducted the grid runs, which
took many months to complete on a 32-node cluster.
Of the 150 points in the uniform grid, 25 points led to
the formation of a binary pair.

Next, we applied the active learning approach using

Figure 1: The asteroid collision simulator uses a smooth particle hydrodynamic code to model the pressure,
temperature, and energies during the initial collision and an efficient N-body code to track the resulting collision
fragments for four simulated days. Scientists are interested in two mechanisms that may lead to captured binary
pairs: SMATS and EEBs. For SMATS, a collisional fragment is captured in orbit around the remnant of the
original target body. For EEBs, a pair of ejected fragments form a gravitationally-bound system. Figure courtesy
of Dan Durda [10].

the probabilistic version of Simple, which assigns higher
utility to unlabeled points that are close to the current
SVM decision boundary. In all, 137 queries to the
simulator were made by active learning. Of these, 38
resulted in the formation of binaries. Figure 2a shows
the 38 success points found by active learning. Figure 2b
shows the approximate surface bounding the region of
parameter space that produces successful results. The
points shown as spheres include the 38 successes found
by active learning as well as the 25 successes found in the
grid-based trials. The yellow sheet enclosing the points
is an iso-confidence surface from the learned SVM.

The active learning runs were stopped after 137
iterations because the predictions of the current SVM
and the grid-based ground truth had reached a high
level of agreement. However, the end users were visually
satisfied with the convergence of results after only 75
active learning runs. Therefore, compared to the grid
approach, active learning required half as many runs to
achieve end-user satisfaction.

From Figure 2, it is clear that the solution space is of
sufficiently complex shape that a finer grid would have
been useful to more accurately assess the performance.
Unfortunately, we did not have sufficient computer time
to run say a (9 × 9 × 11) grid (891 runs). As a
compromise, we did run additional tests on a subgrid
with the area of greatest interest.

One of the grid-cubes was split into much smaller
cubes, in particular it was split into (4× 4× 4) subgrid.
The results over this finer resolution grid showed that
there was a quite-clear boundary plane intersecting our
initial grid-cube. Also, the fine grid results suggested
that a (17 × 17 × 21) grid would have been desirable
for evaluating the results, but this leads to an infeasible
6069 runs of the simulator.

7.2 Magnetospheric Modeling Experiments.

The input space of the magnetospheric modeling simu-
lator was also 3-dimensional. As in the asteroid collision
experiments, we first ran a grid of 729 points (9×9×9),
which were regularly-spread over the input space, to es-
tablish ground truth. The magnetospheric simulator of-
fered few options for reducing the runtime — each run
required about 4 hours on a single 1GHz Beowulf cluster
node.

The output of the magnetospheric simulator earned
a high grade if the weighted difference of each pixel
value between a generated image and observation was
low and the final image pixel distribution was smooth.
Results were normalized against a range of expected
values (derived from some earlier grid runs), and runs
that yielded values below a threshold of 0.5 or 0.6 were
deemed successful. (Note that the threshold affects how

small and irregularly shaped the region of success will
be).

We used three different input data sets to effectively
create three different inversion problems. For the E2b
magnetospheric inversions, the active learning tools
resolved the boundaries of the primary solution region
very well. Only a few points (5%) out of the 729 labeled
through grid runs were misdiagnosed by the SVM that
was learned after 145 calls to the simulator. In fact, as
shown in Figure 3a, the SVM that was learned after just
24 calls to the simulator achieved 90% agreement with
the ground truth (grid) results. For the E2 dataset, the
active learning results were a bit weaker. As shown in
Figure 3b, it took nearly 41 calls to the simulator to
find the first success point and approximately 250 calls
to reach the 90% agreement level, potentially because
the solution region had a more complex “stringy” shape.

7.3 Hyperparameter Experiments. Figure 4a
shows the result of an experiment on choosing the SVM
hyperparameters for the asteroid collision simulator.
The curves prefixed by rbf and poly in the legend show

the true accuracy6 ρ
(n)

λ
versus n for a particular choice

of hyperparameters (used throughout all the trials). If
you were fortunate and guessed “poly 9 1” or “poly 13
1” at the start (the latter means using a polynomial
kernel with degree 13 and constant 1), then you would
get the best performance. However, if you picked “poly
17 1”, “poly 5 1”, or “poly 2 1”, you would get poor
performance, with no increase in the (low) predictive
accuracy even after 75 simulator trials. The curve la-
beled multi-kernel instantaneous x-val uses the instan-
taneous x-val method to estimate the accuracies of the
SVMs based on various hyperparameter combinations
and then combines the wishes of these SVMs to select
the next point to label as described in Section 4. The
curve labeled multi-kernel historical x-val is similar, but
uses the Bayesian approach to estimate the accuracies.

It is clear that making a good choice for the
hyperparameters affects the accuracy and learning rate.
Choosing a kernel up front can yield results that are
very good or very bad; unfortunately, there is not an
easy way to know in advance what you will get. The
cross-validation approaches, while not quite as strong
as picking the best hyperparameters by luck, both yield
solid results. The Bayesian approach (historical x-val)
appears to work a bit better than the instantaneous
x-val approach (not only is the accuracy better, but

6Normally, the true accuracy could not be computed during the

course of an experiment, but here, we went back and computed

it in post-processing using the ground truth labels that were

acquired via the experiment.

Figure 2: (a) For the asteroid collision application, active learning found 38 success points (shown here as spheres)
out of 137 simulations. Based on these 38 points, active learning is able to learn an SVM that accurately predicts
the labels at the 150 grid points. (b) Approximate surface bounding the region of parameter space that produces
successful results. The points shown as spheres include the 38 successes found by active learning plus the 25
successes found by the grid-based approach. The yellow sheet enclosing the points is an iso-confidence surface
from the learned SVM.

50 100 150

0.2

0.4

0.6

0.8

1.0

50 150 200 250100

0.2

0.4

0.6

0.8

1.0

Figure 3: (a) Smoothed percentage of correct predictions by active learning for the E2b magnetospheric
simulations. (b) Result for E2 magnetospheric simulations.

the variance is smaller, which is not apparent from the
graph).

Figure 4b shows the corresponding results for the
magnetospheric modeling simulator (E2 data). Qualita-
tively these results are similar to those from the aseroid
simulator: using the multi-kernel approach with cross-
validation for kernel selection is not as good as being
psychic and choosing the best kernel up front, however
it is definitely better than choosing a poor kernel.

8 Future Work

8.1 Label Cost. Current active learning algorithms
often assume that the cost of acquiring a label is
constant and independent of the instance to be labeled.
For simulations, the label cost tends not only to be
high, but highly variable depending upon the instance
to be labeled. It would be valuable to develop a proxy
for the cost associated with each label by constructing
a function that can estimate the cost given the costs
of nearby labels. The active learning process could
then consider the estimated cost as an internal bias
when selecting new points to query, choosing lower
cost over higher cost, all other selection criteria being
equal. Hence, the goal for selecting new parameter
combinations is no longer just to maximize information
about the SVM decision surface, but to perform this
maximization at minimum cost.

Likewise, current active leanring algorithms assume
that all points in the parameter landscape are equally
probable. Depending upon what a simulation is mod-
eling, this flat probability surface is rarely true. In the
real world, some input parameters or combinations are
far more likely to occur than others. For example, for as-
teroid impact simulations, the probability distribution
of the “impact angle” parameter peaks at 45 degrees
and drops to nearly 0 at 0 and 90 degrees. The set
of impacts near 45 degrees are more common and po-
tentially more valuable to study. The active learning
process should also consider the prior probability of a
point in the landscape as an internal bias when deciding
which points to label next.

8.2 When to Stop Active Learning? Another
important consideration, for an end-user, is knowing
when to stop the Active Learning iterations. Without
a grid of runs to assess the results, how does the
user know when the landscape has been adequately
characterized? We do not have a principled answer
to this question, although seemingly we would want to
check the predictive power on future samples from the
input space that were not used in forming the SVM
(generalization error).

8.3 Introspection and Early Stopping of Simu-

lations A simulator is inherently different than an or-
acle in that the internal state of the simulator is usually
directly accessible. Rather than paying the full cost for
running a trial to completion, it may be possible for
the simulator to use introspection, looking at its inter-
nal state, to decide to prematurely terminate (or check-
point) simulations that appear to be less interesting in
favor of simulations that appear more promising.

Of course, an algorithm that looks at early, incom-
plete simulation results might sometimes make an in-
correct guess, for example by guessing that an asteroid
collision simulation will not result in a binary pair, when
in fact one will eventually occur. Therefore, the overall
strategy must allow for a balance between the nominal
behavior (run all simulations to completion) and the
more aggressive behavior (stop some simualtions early
if the results don’t look like they will be interesting). We
could also view the simulator as offering a probabilistic
label with an associated confidence.

9 Conclusion

Knowledge discovery from simulators is a rich, emerging
application area. Some aspects of this problem, such as
post-analysis of output data, can be largely addressed
with existing data mining techniques; however, other
aspects, such as the landscape characterization problem,
require entirely new apporaches. In this paper, we
utilized several variants of active learning to reduce
the number of simulation trials required to identify
regions of input space that yield desired output space
behaviors. In experiments with actual, large-scale
scientific simulators, our experience to date shows that
the active learning approach can increase the efficiency
of landscape characterization over a standard gridding
approach by 2x to 6x. In addition, the active learning
approach more accurately captures the boundaries of
the region of interest than a grid-based approach.

Acknowledgement

This work was carried out in part at the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Ad-
ministration with funding provided by the Intelligent
Systems and Applied Information Systems Research
Programs. The authors wish to thank Dan Durda, Bill
Bottke, and Joerg-Micha Jahn of SwRI for providing
expertise and assistance with the two science simula-
tors, as well as Rebecca Castaño of JPL for keeping the
project moving forward under unusual circumstances.

References

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50 60 70

A
c
c
u
ra

c
y

Round

Multi-kernel historical x-val
Multi-kernel instantaneous x-val

Random historical x-val
Random instantaneous x-val

rbf 10
rbf 100

poly 2 1
poly 5 1
poly 9 1

poly 13 1
poly 17 1

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50 60 70

A
c
c
u
ra

c
y

Round

Multi-kernel historical x-val
Multi-kernel instantaneous x-val

Random historical x-val
Random instantaneous x-val

rbf 10
rbf 100

poly 2 1
poly 5 1
poly 9 1

poly 13 1

Figure 4: (a) Results of the hyperparameter selection experiments for the asteroid collision application. (b)
Corresponding results for the magnetospheric modeling application.

[1] Y. Abu-Mostafa, “Machines that Learn from Hints”,
Scientific American, 272(4):64-69, (Apr. 1995).

[2] Y. Baram, R. El-Yaniv, K. Luz, “Online choice of
active learning algorithms”, In Proc. Twentieth Int.
Conf. on Machine Learning (ICML03), pp. 19-26,
(2003).

[3] Y. Baram, R. El-Yaniv, K. Luz, “Online Choice of Ac-
tive Learning Algorithms”, Journal of Machine Learn-
ing Research, 5:225-291, (Mar. 204).

[4] Benz, Asphaug, (1995).
[5] J.A. Boyan and A.W. Moore, “Learning Evaluation

Functions for Global Optimization and Boolean Sat-
isfiability”, In Proc. of the Fifteenth National Conf. on
Artificial Intelligence (AAAI), (1998).

[6] K. Brinker, “Incorporating Diversity in Active Learn-
ing with Support Vector Machines”, In Int. Conf. on
Machine Learning, (ICML03), pp. 59–66, (2003).

[7] C.J.C. Burges, “A Tutorial on Support Vector Ma-
chines for Pattern Recognition”, Knowledge Discovery
and Data Mining, 2(2), (1998).

[8] Cheung S.-C. and C. Kamath, ”Initial experiences
with retrieving similar objects in simulation data,” In
Proceedings of the Sixth Workshop on Mining Scientific
and Engineering Datasets, in conjunction with the
Third SIAM conference on Data Mining, pp. 11-18,
(May 3, 2003).

[9] S. Chien, J.M. Gratch, and M.C. Burl, “On the Effi-
cient Allocation of Resources for Hypothesis Evalua-
tion: A Statistical Approach” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17 (7): pp.
652–665, (Jul 1995).

[10] D.D. Durda, W.F. Bottke Jr., B.L. Enke, W.J. Mer-
line, E. Asphaug, D.C. Richardson, Z.M. Leinhardt,
”The formation of asteroid satellites in large impacts:
Results from numerical simulations”, Icarus, 167, pp.

382-396; Erratum in Icarus 170, pp. 243-257, (2004).
[11] Leinhardt, (2000).
[12] W.J. Merline, S.J. Weidenschilling, D.D. Durda, J.L.

Margot, P. Pravec, A.D. Storrs, “Asteroids Do Have
Satellites”, In Asteroids III, eds. W.F. Bottke, A.
Cellino, P. Paolicchi, and R.P. Binzel, Univ. of Arizona
Press, pp. 289-312 (2002).

[13] I. Muslea, (2002).
[14] T. Mitchell, Machine Learning, (1997).
[15] David Nesvorny, Brian L. Enke, William F. Bottke,

Daniel D. Durda, Erik Asphaug, Derek C. Richard-
son, ”Karin Cluster Formation via Asteroid Impact”,
Icarus, (pending)

[16] Roelof, E.C., “Energetic Neutral Atom Image of a
Storm-time Ring Current”, Geophys. Res. Lett., 14,
652, 1987.

[17] Roelof, E.C., Mauk, B.H., Meier, R.R., and Hul-
bert, E.O., “Instrument Requirements for Imaging the
Magnetosphere in Extreme Ultra-Violoe and Energetic
Neutral Atoms Derived from Computer-simulated Im-
ages”, Proc. SPIE 1744, 19, 1992.

[18] Roelof, E.C., Mauk, B.H., Meier, R.R., Moore, K.R.,
and Wolf, R.A., “Simulations of EUV and ENA Mag-
netospheric Images Based on the Rice Convection
Model”, Proc SPIE 2008, 1993.

[19] N. Roy, A. McCallum, “Toward Optimal Active Learn-
ing through Sampling Estimation of Error Reduction”
In Proc. 18th Int. Conf. on Machine Learning, (2001).

[20] S. Tong, D. Koller, “Support Vector Machine Active
Learning with Applications to Text Classification”,
Journal of Machine Learning Research, vol. 2, pp. 45-
66, (2001).

[21] V.N. Vapnik, The Nature of Statistical Learning The-
ory, Springer, New York, (1995).

