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M OBLE robots that are small and light enough to be 
carried in a backpack (i.e. "packbotsn) by an iodi- 

vidud have great potentid to enhance the d a y  and ef- 
fectiveness of urban reconnaissance and m u e  operations. 
The size and weight of a recent prototype of such a robot is 
bQ x 50 x l7cm and 20 kg. [l]Tmm ofthese robotscan 
be far more effective than individual robots for two reasons. 
First, a single robot cannot cany all of the sensor and effec- 
tor payloads required for many missions. Second. multiple 
robots wit1 often bt necessary to cover multiple points of 
observation. 

The need for multiple robotsraiscs the problem of how to 
navigate them from the departure point to theobjective with 
minimal burden on the human operator. O w o r  invoiva 
meat is necessary to hignate waypints and intermediate 
objectives for the first robot: however, it is desirable for the 
rest of the robot team to W m t i c a l l y  follow the path of 
the leader. without n e c d l y  maintaining viaud contact 
with each other. 

Prior work on robot lderffollower behavior has used a 
variety of approxhes, including visual mation tracking of 
the lead vehicle [2j and using INSIGPS systems to record 
the path of the leader, which is then traversed by the fol- 
lower using the same sensors 131. Methods depending 
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on visual contact do mt meet the needs of our applica- 
tion. Rim path following work based on INSlGPS has 
a11 been done on much larger vehiclts. Hence, one of the 
main chdlenges for packbts has been to identify a mn- 
sor suite that would miable path fallowing within the size, 
weight, power, and cost envclqx of our vehicles. Other 
chdfenges include coping with GPS dropouts in urban ar- 
eas and under tree canopies. coping with obstacles that fall 
within the positional uacwtainty of the path following sys- 
twn, and enabling path following through constrictions that 
require g~eater positional accuracy than is available from 
the WSIGPS sensors. An example of the latter is following 
a path that leads through a culvert. 

We are developing a lder/foIlowtt system that ad- - all of the above challcngm [4]. We have completed 
a path following system based on a Kalman filter which in- 
tegrates an IMU, differential GPS, c a r n p a s ~ n c l i n o m e ~  
and wheel e n a h  data. Qbstwcle avoidance is achieved 
with an arbiter-based architecture that combines steering 
votes from the path following behavior with steering votcs 
from a stereo vision-based oktacIe avoidance behavior. 

Section II describes the navigation sensors that we se- 
lected and inkgrated into the robot. Section HI &=rib 
the structure of our pose estimation Kalman filter. Section 
XV outlines the architecture of our lder/follower system 
and d m i b  our path following canml algorithm. Exper- 
imental results are shown in section V. We d i m s  the sig- 
nificance of the mulM. highlight open issues. and outtine 
the extensions we have in progress in section V1. 



The primary constraints for the navigation payload are 
accuracy, size, and power: the sensors must fit within the 
space and power budgets afforded by the chassis while de- 
livering the resolution to reliably determine the position of 
the robot. Since the packbot is an autonomous platform, all 
perception, computation, and power resources are carried 
on board. The packbot is built upon the Urban I1 platform 
(shown in Figure I )  developed by iRobot Corporation. The 
chassis is approximately 60cm long, 50cm wide and 17cm 
tall with roughly 13,000cm3 of contiguous payload space. 
A 20-cell NiCd battery pack provides a total energy storage 
of 120Wh. Power consumption with the robot motionless 
is approximately 75W, and the power required for driving 
varies with the terrain. The robot and all subsystems must 
be able to survive the shock of being thrown or dropped 
modest distances. 

Autonomous path following and generation requires that 
both the leader and the follower have tight control over their 
respective positional accuracy. The accuracy of the navi- 
gation sensors directly limits the robot's ability to follow a 
path precisely. The accuracy limit and resolution is dictated 
by the terrain and by the follower's level of autonomy. If it 
is desired to have a follower blindly weave through a series 
of tightly spaced obstacles, i.e. trees, then the accuracy of 
the estimated position needs to be high - roughly half the 
width of the robot. On the other hand, if it is desired to 
have a reactive follower weave through the same obstacles, 
the accuracy requirements can be relaxed. 

In order to meet the requirements of operating in such 
varied and unstructured environments, a combination of 
GPS and inertial sensors is used. 

A. GPS Receivers 

Several commercially available GPS receivers were con- 
sidered. For this application, both the differential and the 
real-time kinematic features are needed. 

The NovAtel Millennium RT-2 was selected for the ini- 
tial system and has performed well. We found that heat 
generation and large turn-on transients {--5A) were a prob- 
lem with this receiver. To solve these problems, we plan to 
migrate to a card that uses less power. 

B. Inertial Navigation Sensors 

Different IMU packages have also been studied through- 
out this program. At the start of the work, no integrated sys- 
tem was available which would fit into the payload. There- 
fore a system was built from separate components. 

A TCM2-50 compasslinclinometers from Precision Nav- 
igation provides compass heading and absolute tilt and roll 
estimates. Three orthogonally mounted QRS I 1-200 rate 
gyros from Systron Donner and an EGCS3 three-axis ac- 
celerometer from Entran are used to measure angular rates 
and inertial forces. Careful consideration has to be given 

to the entire signal path from the sensor to the analog-. 
to-digital converter. Initially, excessive noise in the sig- 
nal caused the perceived drift rate to increase dramatically. 
Several steps were taken to reduce the noise including sep- 
arating and isolating power supplies solely for the gyros 
and accelerometers, isolating the power and signal traces 
on the sensor and control board, shielding the signal traces, 
and taking special care of the routing of the signal traces to 
avoid cross-talk between the axes. 

Since the beginning of the program, fully integrated 
MEMS inertial measurement units have become available. 
Their digital output eliminates the need for an analog-to- 
digital converter and increases noise immunity. These sen- 
sors are much smaller, requiring a half to a quarter of the 
volume of conventional integrated systems. Additionally, 
these units are being packaged with magnetometers so that 
a complete Attitude Heading Reference System (AHRS) 
solution is possible. 

Precise localization is one of the main requirements for 
the task of autonomous path following. The packbot mo- 
bile robot is equipped with differential GPS (DGPS) that 
provides position estimates with 2-20cm uncertainty un- 
der favorable conditions. These uncertainties can become 
much higher when operating near buildings or trees, which 
occlude satellite signals making GPS navigation unreliable. 
During GPS dropouts, the signals from the inertial sensors, 
compass/inclinometers, and motor encoders have to be ap- 
propriately combined so as to determine the location of the 
robot until the next GPS update. By integrating accurate 
estimates of its linear and rotational velocity the packbot 
could potentially track its pose for a long period of time. 
However the robot's skid steering has inherent slippage 
which makes the estimates based on the motor encoder sig- 
nals untrustworthy. particularly rotational velocities. 

Appropriate integration of the gyroscope signals (angu- 
lar rates) provides estimates of the roll, pitch and yaw an- 
gles that determine the attitude of the vehicle. A common 
difficulty found in a11 approaches that rely on gyros for atti- 
tude estimation is the low frequency noise component (also 
referred to as bias or drift) that violates the white noise as- 
sumption required for standard Kalman filtering. Inclusion 
of the gyro noise model in a Kalman filter by suitably aug- 
menting the state vector has the potential to provide esti- 
mates of the sensor bias when the observability require- 
ment is satisfied. The system becomes observable when ab- 
solute orientation measurements are available. In the case 
of the packbot, this information is provided by the com- 
pass/inclinometers module. The inclinometers measure the 
attitude of the robot with respect to the horizontal plane 
while the compass provides a measurement of the direction 
of the vehicle compared to the magnetic north. 



A. Noise Model for the Systron Donner Quartz Gyro 

I11 the information provided in [5] it is obvious that the 
Systron Donner gyro does not have a stable bias. From 
page 1-4: "Low Rate Application - These gyros showed 
reasonable performance for rate scale factor stability but 
would not be useful for applications where bias stability 
was of high importance to meet mission requirements. The 
bias changed sign@cantly as the input rate was changing 
rnaking predictable bias compensation very difficult". 

Long term bias stability data were gathered to create a 
stochastic model useful for attitude estimator performance 
prediction. This model assumes that the gyro noise is 
composed of 3 elements, namely: rate noise n,.(t) (addi- 
tive white noise), rate flicker noise n ( t )  (generated when 
white noise passes through a filter with transfer function 
I /&) and rate random walk n ,  ( t )  (generated when white 
noise passes through a filter with transfer function l/s). 
The Power Spectral Density (PSD) of the gyro noise was 
measured experimentally and the logarithmic plots of the 
PSD with respect to frequency were used to fit the de- 
scribed model. The intensities calculated (ignoring the 
flicker noise) were: r, = fi = 0.009 ( ' / s p c ) / &  and 
a, = a = 0.000501 2 (O /set) fi. 

Based on this model [6] the angular velocity w i5 related 
to the gyro output w, according to the equation: 

E[n,.(t)] = 0 (1) 

E[~z,.(t)ni. (t')] = NTd'(t - t i )  

where b is the drift-rate bias and n,. is the drift-rate noise as- 
sumed to be a Gaussian white-noise process. The drift-rate 
bias is not a static quantity but is driven by a second Gaus- 
sian white-noise process, the gyro drift-rate ramp noise: 

These two noise processes are assumed to be uncorrelated 
(E[n,(t)17~.(%')] = 0). 

R. TCM2-50 Cornpass/inclinotneters Characterization 

The TCM2 compass is comprised of 3 orthogonal mag- 
netometers that measure the local intensity of the magnetic 
field of the earth. This information combined with the incli- 
nometers' tilt angles - determined by the effect of the local 
vector of gravity on the contained viscous fluid - provides 
an absolute measurement of the attitude of the vehicle at 
a rate of 16Hz. The expected accuracy is h 1 .So for head- 
ing and f 0.4' for tilt. These measurements are processed 
by the Kalman filter in order to estimate the gyroscopes' bi- 
ases and reduce their influence on the orientation estimates. 

Since the compass is affected by local magnetic fields 

Fig. 2. Effect of track movemellton compass heading 

present on the robot, it has to be calibrated in order to com- 
pensate for static fields. However, such procedure cannot 
deal with the dynamic fields produced by the metallic belts 
inside the tracks of the robot. Experimental testing of the 
compass while manually rotating the tracks has shown vari- 
ances of over 130' (Figure 2). Now, nylon belted tracks are 
used whenever possible in order to avoid this problem. 

C. Kalrnan$lter based attitude esti~nation 

C. 1 Dynamic Model Replacement 

In our implementation of a Kalman filter observer which, 
estimates the orientation of the robot. we employed sensor 
modeling instead of dynamic modeling. The main reasons 
for this are: (i) dynamic modeling would have to be redone 
every time there is a modification to the robot, (ii) dynamic 
model based observers require a large number of states that 
increases the computational needs without producing supe- 
rior results 171.' 

C.2 Attitude kinematics and error state equations 

The three-parameter EuIer angle representation has been 
used in most applications of the Kalman filter in robot lo- 
calization [8], 191. However the kinematic equations for 
Euler angles involve non-linear and computationally ex- 
pensive trigonometric functions. The computational cost 
using quaternions is less than using Euler angles. It is also 
more compact because only four parameters, rather than 
nine, are needed. Furthermore in the Euler angle represen- 
tation the angles become undefined for some rotations (the 
gimbal lock situation) which causes problems in Kalman 
filtering applications. Amongst all the representations for 
finite rotations, only those of four parameters behave well 

'The interested reader is referred to [I41 or [ I  31 f c r a  (letailed discussion 
on the subiect of sensor vs. dynamic modeling. 



for arbitrary rotations [ I  01. 
The physical counterparts of quaternions are the rota- 

tional axis j7. and the rotational angle D that are used in the 
Euler theorem regarding finite rotations. Taking the vector 
part of a quaternion and norn~alizing it, we can find the ro- 
tational axis right away, and from the last parameter we can 
obtain the angle of rotation [ I  11. Following the notation in 
[I21 a unit quaternion is defined as: 

T with the constraint q T q  = 1, li = [n,n,7~,] is the unit 
vector of the axis of rotation and D is the angle of rotation. 

The rate of change of the quaternion with respect to time 
is given by: 

+ 

where 5 = 6' is the rotational velocity vector. At this point 
we present an approximate body-referenced representation 
of the error state vector. The error state includes the bias 
error and the quaternion error. The bias error is defined as 
the difference between the true and estimated bias. 

The quaternion error here is not the arithmetic difference 
between the true and estimated (as it is for the bias error) 
but it is expressed as the quaternion which must be com- 
posed with the estimated quaternion in order to obtain the 
true quaternion. That is: 

The advantage of this representation is that since the in- 
cremental quaternion corresponds very closely to a small 
rotation, the fourth component will be close to unity and 
thus the attitude information of interest is contained in the 
three vector component Gq'where 

where Dt,,, is the true rate of change of the attitude and - 
Oi is the estimated rate from the measurements provided by 
the gyros, it can be shown [I31 that 

Using the infinitesimal angle assumption in Equation (3), 
n'gcan be written as 

and thus Equation (10) can be rewritten as 

Differentiating Equation (5) and making the same assump- 
tions for the true and estimated bias as in the previous sec- 
tion (Equations (2) and (3)) ,  the bias error dynamic equa- 
tion can be expressed as 

Combining Equations (1 2) and (1 3) we can describe the 
error state equation as 

-13x3 09x3 ] [ ! F  ] 
+ [ 03x3 I : 3x3  7 7 ~  

or in a more compact form 

This last equation describes the system model em- 
ployed in the current Kalman filter implementation [13]. 
This estimator combines the gyroscopes angular rates 
with the absolute orientation measurements from the com- 
pass/inclinometers in order to estimate both the attitude 
of the vehicle and the gyro biases. As shown in [14]. 
this estimator acts as a high pass filter on the gyro sig- 
nals by filtering out the low frequency noise component 
(bias) while weighing more their contribution during high 
frequency motion when the compass/inclinometers are sus- 
ceptible to disturbances. If absolute orientation measure- 
ments are available continuously, the filter is capable of 
continuously tracking the gyro biases. In our case the robot 
uses the compass only when stopped, therefore the filter 

6112 [ d f ]  (7) updates its estimate of the bias (Figure 3) only intermit- 
tently based on its effect on the attitude estimates during 

Starting from equations: the previous interval of motion. The resulting attitude es- 
timates (Figure 4) are then combined with the translational 

d - 1 - ,, Y t m e  = i f l ( ~ t ~ ~ ~ e ) ~ t r z ~ e  (8) velocity measurements from the motor encoders to provide 
position estimates in between GPS updates.' 

and We are in the process of enhancing the current Kalman filter imple- 
inentation so as to fuse data from the accelero~neters and the GPS anti 

(9) pl-ovide improved position estimates. 



Fig. 3. Bias Estimation (sin~nlation results): The flat parts o f  the esti- 
mate depict the constant bias assun~ption in the integrator. The sharp step 
changes occur wdhen absolute orientatioli measurement,s becolne available 
(every 1 OOsec). 

IV. SYSTEM ARCHITECTURE A N D  LEADER FOLLOWER 
CONTROL 

A. System Architecture 

The system architecture used to control the packbot is 
designed to allow multiple behaviors to command the robot 
simultaneously. The driving commands from these behav- 
iors are arbitrated upon, and from them a final command 
is composed. This allows several behaviors using multiple 
sensors and imagers to work together effectively to carry 
out the commanded mission goals (see 'Figure 5). The 
navigation sensors are managed by device drivers which 
pass data through a software message queue to a single 
software task which carries out the necessary calculations. 
This task runs the Kalman filter and position estimation al- 
gorithms after each piece of sensor data comes in. It then 
updates the current state of the robot in a shared memory 
space where other tasks can access it. Currently the GPS 
is used to determine the robot's position both for recording 
and following paths. However when the robot is indoors, 
or when it drives into CPS-dropout areas, the position es- 
timation is calculated with a simple interpolation using the 
Kalman-filtered heading and a raw odometry estimate from 
the wheel encoders. 

The path recording and path following code, as well as 
other software tasks, can access the latest robot position 
and orientation estimates at variable rates and make de- 
cisions accordingly. A software task monitors the robot's 
current position and records a 3-D point after a certain con- 
stant offset has been passed thereby forming the robot's 
trail from successive points. The robot's trail is accessed, 
downloaded, and then edited using the Operator Control 
Unit, a GUI running on a laptop that is used to control and 
test the packbot. The modified or whole trail is sent to an- 
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Fig. 4. Attitude Estimation (simulation results): The solid line represencz 
the actual orienntion (yaw) o f  rhe robot, the dotted line shows the dead- 
reckoned yaw estimates obtained by simply integrating the gyro signals. 
and the dashed line corresponds to the Kalman filter estimates when com- 
pass measurements are provided to the filter intermittentIy (t=J00. ZOO 
sec). Even though all the compass measurements during this interval ale 
displayed here, only two o f  them were processed for the orientation up- 
dates of the filter. 

Fig. 5 .  Systein Architecture. 

other robot or back to the same packbot, which accepts the 
trail and passes it to the path following module. 

B. Path follo~ling control algorithm 

Path following steering control is based on a carrot- 
following approach. A set of subgoals is transmitted to the 
follower vehicle. The follower vehicle uses the last two 
subgoals to extend the path sequence backwards, as shown 
in Figure 6. The follower vehicle then uses this extended 
path segment to locate a carrot position that lies a looka- 
head distance L away from the vehicle center. The carrot 
position is updated every cycle by the path following algo- 
rithm. At any given instant, the follower assigns the largest 
weight to the arc that passes closest to the carrot. 

The carrot is located by finding the intersection of a cir- 
cle (centered at the vehicle center with radius L) and the 
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Fig. 6 .  Cmot Following Approach 

extended path segment. If there are two intersections, the 
one beyond the lateral position is chosen. If there is no in- 
tersection, the lateral position is chosen as the carrot. The 
steering curvature that will move the vehicle center directly 
over the carrot position is chosen as the commanded curva- 
ture. 

C. Pure Pursuit Controller 

The authors have experimented with two controllers 
that produce command curvatures: pure pursuit and 
proportional-integral-derivative (PID) control. Pure pur- 
suit has been widely used as a steering controller for au- 
tonomous vehicles [15], [I 61. Amidi and Thorpe [ I  71 com- 
pared pure pursuit with a quintic polynomial fit method and 
a classic control theory approach. Ollero and Heredia [I 81 
analyzed the stability of the pure pursuit algorithm for path 
following at constant speed (3,6, and 9 d s )  for straight and 
constant curvature path sections, estimating the time lag 
for computing, communications, and actuator delay. Kelly 
1161 has described an adaptive pure pursuit controller, al- 
lowing the look-ahead gain to increase as a function of the 
lateral path error. Rankin [19] has evaluated a pure pursuit 
controller, a PI controller, and a weighted pure pursuit/PI 
controller. 

The controlling equation for pure pursuit is shown in 
Equation (16). kpUrE P U , . S U ~ ~  is the command curvature and 
ycnrvot is the y coordinate of the carrot position as mea- 
sured in the vehicle coordinate system. Pure pursuit is a 
proportional controller, where, y,,,,,t represents the cur- 
rent error and (2/L" represents the proportional gain. The 
lookahead distance L should be appropriate for the mission 
speed. 

D. PID Controller 

The second method of steering control that was im- 
plemented is a proportional-integral-derivative (PID) con- 

troller, as applied to the error in the vehicle's heading. The 
idealized equation of a PID controller is shown in Equation 
(17). PID control contains a term that is proportional to the 
error, one that is proportional to the integral of the error, 
and one that is proportional to the derivative of the error 
[201. 

The integral term acts as a spring (in a spring-mass-damper 
system) in that it eliminates steady state error. The deriva- 
tive term acts as a damper. The parameters that are charac- 
teristic to the system are the proportional gain G, the inte- 
gral time TI ,  the derivative time To, and the sampling time 
T. For small sample times T, the idealized equation can be 
written as a nonrecursive difference equation, as shown in 
Equation (1 8). 

The heading error en is calculated by finding the orienta- 
tion of the vector from the vehicle's control point to the tar- 
get position with respect to the axis in the direction of the 
vehicle's current heading. A positive error results in a left 
turn and a negative error results in a right turn. Equation 
(18) can be rewritten as the difference equation 

where, 

q2=G [TI - = -  7 
The PID controller works to force the heading error to zero 
so that the vehicle is always pointed towards the current 
carrot position. The parameters gp, y l ,  and g~ are respec- 
tively proportional, integral and derivative gains. When 
g ~ ,  = 0, the PID controller is reduced to a proportional- 
integral (PI) controller. 

E. Combined Pure Pursuit/PID Control 

Both the pure pursuit and PID methods of steering con- 
trol have advantages and disadvantages. The pure pursuit 
controller is easy to tune and performs well when the fol- 
lower vehicle is started on or near the extended path seg- 
ment. If the lateral path error is large, however, this method 



can become unstable. Stability can be improved by 'using 
an adaptive pure pursuit controller. With the adaptive ver- 
sion, the look-ahead distance is a function of the lateral 
path error. The adaptive controller, however, can cause a 
significant portion of the path segment (traversed by the 
leader vehicle) to be ignored by the follower vehicle. 

The PID method is stable (when adequately tuned) over 
the range of heading errors. This includes the scenario 
where there is a large lateral path error. This controller 
does, however, cause an inherent lateral path error when 
traveling around curves. In an attempt to combine the de- 
sirable features of both the standard pure pursuit and PID 
controllers into a single controller, the output of each con- 
troIler is averaged, as shown in Equation (20). The arc 
that is closest to this curvature is then assigned the largest 
weight. 

A. Indoor Tesrirzg 

The path following algorithm is currently being run at 
a rate of 10 Hz which is the same rate at which the po- 
sition estimate is updated using either odometry or GPS 
data. Due to the reporting speed of the inertial navigation 
sensors, the Kalman filter updates the heading at over 256 
Hz. During all tests the robot traversed the paths at a speed 
of 50cmIsec. To provide enough detail to describe the path 
without accumulating an unnecessary number of points, an 
interval of approximately 20 cm between points was used 
to record the robot's trail. 

Initially, several indoor runs were used to test the fol- 
lower algorithm and tune its parameters. Figure 7 shows 
a path recorded by the packbot and the three separate path 
following runs carried out by the same robot using the dif- 
ferent control methods (pure pursuit, PID, and the combi- 
nation of the two). In the indoor tests no GPS data could 
be received so all position estimates used the Kalman filter 
heading and odometry from the wheel encoders. This also 
means that only relative robot coordinates were known so 
even though the start and finish of the runs are at the same 
points in the graph, in actuality the robot was possibly start- 
ing in very different locations. 

The pure pursuit method tended to oscillate over the 
path being followed more than the PID but it also managed 
to stay closer to the path in general. The PID control kept 
the robot's heading going in a parallel direction with the 
path but maintained a slight offset for longer period of time 
than the pure pursuit control. Currently work is being done 
to tune the PID controller to better suit the packbot system. 
The average of the controller error was used as a numerical 
measure of the performance of each algorithm across var- 
ious runs. The simple combination of the two controllers 
consistently reported the lowest controller-error averages. 
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Fig. 7. Indoor Tes tings. 

B. Outdoor Results 

In outdoor runs the packbot again was used to trace a 
path and then was given its own trail to follow. During 
these tests the Kalman filter provided the  robot'^ heading 
and the GPS gave position data. While in motion the com- 
passlinclinometers noise is higher and thus the Kalman fil- 
ter relies more on the gyro package for heading approxima- 
tion. 

In Figure 9 a GPS dropout is indicated. When driving 
under the obstacle, a small SUV, all GPS data was cut off 
and the robot position estimator had to rely on the Kalman 
filter heading and wheel odornetry exclusively. Using this 
method the recorded trail was interpolated through the GPS 
dropout smoothly and the packbot was able to follow the 
path up to, under, and past the obstacle without any no- 
ticeable problems. The GPS data converged approximately 
10-14 secs after leaving the dropout area at which point the 
position estimator switched back to using it to report the 
packbot's location. 

VI. SUMMARY AND EXTENSIONS 

In summary, we have integrated three-axis gyros and 
accelerometers, a compasslinclinometer package, track 
odometry, differential GPS, and an indirect, error-state 
Kalman filter into a sensor system for small robot position 
estimation. We summarized problems that arose with these 
sensors and the solutions we found. Our sensor survey in- 
cluded integrated IMUs that will soon be on the market. 
These are smaller than the combination of sensors used 
here and have advertised performance specifications that 
are at least as good as the sensors we use now; these IMUs 
are attractive for future systems. 

In the leader/follower behavior, we implemented three 
versions of the path following controller: pure pursuit, PI, 



Fig. 8. Outdoor following. 
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Fig. 9. Outdoor following with GPS dropoul. 

and an average of the two. Indoor and outdoor experiments 
over up to roughly 40 meters showed good performance for 
all three controllers, with maximum path deviations on the 
order of 50 cm. This included segments where the path 
went under vehicles that caused GPSs dropouts. The aver- 
aging controller showed better error performance than ei- 
ther pure pursuit or PI alone. 

In future robot systems and experiments, position esti- 
mation performance may be worse than reported here due 
to larger areas of GPS dropout or the use of smaller, lower 
cost GPS units with poorer precision. We are currently ex- 
tending our system to include path smoothing to address 
GPS dropouts and to include special-purpose landmark 
recognition for path following through constricted areas of 
known types, eg culverts and doorways. We are also pur- 
suing more general outdoor mapping and landmark recog- 
nition algorithms to further reduce the reliance on GPS. 
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