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Portable Power

Examples:

50-100W 500W

Desirable Characteristics:

Long operating times ( always “ON")

«Zero Recharge time ( always “Ready”)

Lightweight (high energy density, >120 Wh/kQ)

«“Zero Worry” logistics ( battery replacement, inventory, recharging
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Technology Solution

 Li-lon rechargeable battery : 150 Wh/kg ™

00000

High Energy Fuels: ;
« Methanol, 6000 Wh/kg
* Hydrogen, 32000 Wh/kg

Fuel Cell Technology: ot i

« High-efficiency direct conversion of chemical
energy to electrical energy in fuel cells

— Not limited by Carnot efficiency
* Products are non-polluting; CO, and water



m e

Portable Hydrogen Systems

Gaseous Hydrogen Storage ( 2%) 1998

FUEL CELL

Ballard 50 W
Sodium Borohydride Storage ( 2-3%) 2005 |

¥ 200 Whikg

P

Sodium »| Decomposing [__, —>| FUEL CELL
Borohydride Reactor T | 300 Wh/kg
AIR ; |
Indirect Methanol Based (5-6%) 2006 Protonex 50 W
MIXER > VAPORIZER [ REFORMER‘|' Cor\?\tilleRTT? FUEL CELL : 330 Wh/kg

|

AR Ultracell 25W



Direct Methanol Fuel Cell @

Direct Methanol Fuel Cell
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- Electrode (Anode) + Electrode (Cathode)
* High Energy Liquid Fuel

*Simple System

*Starts up instantly

PROTON EXCHANGE MEMBRANE (PEM)

Cell Reaction
CH;OH +3/2 0, —» CO, + 2H,0
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Direct Methanol Fuel Cell
System Concept
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Overview of DMFC R&D at JPL @

90 91 92 93 94 95 96 97 98 99 00 01 02 03

Liquid Feed DMFC 75mW/cm? 30mW/cm?
) A A . 0
With Polymer Electrolyte 0 psig, low flow 25°C
220 mW/crn2 60°C )
@90°C | Free Convection
Catalysts, MEA and A A

Performance Improvements

Large
Membranes with reduced crossover A Membr

(in collaboration with USC) PSSA-PVDF
IPN membrane

1-1000 W Stack Demonstrations
Novel Stack concepts

A

e !a -lu.s |

A A

System Design and Demonstrations
of overall system concept, stack designs
New materials



300-Watt Portable Fuel Cell for Army Applications

Stack

Gas Expander 80 Cell DMFC
( = ' -

' Exhaust Blower

Circ. Pump |

Fuel Tank

Startup Heater
: Startup Battery

High Specific Energy Solution >600 Wh/kg for DoD
Scalable from 50 Watts — 1kW
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DMFC units from Smart Fuel Cell Inc, Germany

Use: for charging Pb-Acid Batteries

Tl L LT T

Dimensions: 13 x15 x 26 cm

Mass: 8 kg
Nominal Power Output: 50 Watts

Specific energy based on methanol fuel: 960 Wh/kg



SRl
DMFC Status and Prospects

Characteristic Status Target Benefit
Performance Light-weight

Power Density 20 W/kg, 100 W/kg Compact, high-

Efficiency 15-20% 30-35% energy density

Meeting lifetime

Durability 100-500 hours 5000 hours requirements
Increased
Cost $15000/kW $1000/kW market potential

Reduction in life
cycle costs



Challenges ~

Processes in a Direct Methanol
» Electrocatalytic oxidation Fuel Cell

Kinetics |
* Polymer Electrolyte
Membrane

* Lightweight System Porous
Design Structure

* Durability =[]
o methanol out St i in Air blower
» Cost reduction " e

? \L Diffusion

electro-reduction

Methanol 7

Catalyst layer Electrolyte membrane

pump air out

air/water
retumn




JPL Rapid Screening of Well-Controlled @
Catalyst Compositions

Multi-Electrode Array Screening

Potentiostatic: Cells held at 0.45 V vs.RHE after 300 seconds
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« Smooth profile relating performance to

methan0| | o composition
Multiple cycles collected until equilibrium _ Indicative of solid solution
reached ’

— No oxides or phase separation to provide
“spikes”

- Significant performance differential at
elevated temperature

All current densities normalized to
electrode area




JRL @
Screening of Ni-Zr-Pt-Ru alloys

Potentiostatic Data:
0.45 vs. NHE after 300 seconds
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Ni(31)Zr(13)Pt(33)Ru(23) is similar in activity to the best Pt-Ru catalyst
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Issues with New Membranes

« Compromise of proton conductivity to
lower methanol permeability

* Poor mechanical properties in dry state

* Poor membrane-electrode interface
properties

* Modest reduction In crossover rate
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Membranes With Reduced Methanol Crossover
PSSA-PVDF Membrane

"(\“ B /

CH.OH +3/20
CH,OH 3 2 \
’ — CO, +2H,0 \
Challenges: sy
Compromise of proton conductivity to £ ///‘//r———m\\ \i\Mm
lower methanol permeabilit .
p y % 20.0 / = TD 5 \\\
*Poor mechanical properties in dry / i — D\
State 100 / A PSSA-PVDF 00-27C
5.0 / ; ’\I;’;ii::-rxDF 00-40 —
Poor membrane-electrode interface M m w7 s e s s

Current Density (mA/cm?)

properties
*Reduces Methanol crossover by 75%
*Inexpensive Membrane Material
*Demonstrated in 80 cm? stack

*Modest reduction in crossover rate
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Bipolar Designs

Donaldson Air filter

JPL 80-cell
300 Watt

Ambient Pressure 1.4 kW (01)

1.4 kW by Giner Inc.
for JPL.

Stack power density is
55- 80 W/kg for operation
at 55°-60°C

Stacks

Porous Anode

Catalyst layer

Monopolar Designs

Methanol feed channels

T T T

>>>>>>>>>>>>
LN LA

Proton Conducting Electrolyte
Cathode Catalyst layer

H <+— Porous Backing layer

Air flow channels

Monopolar Stack

Lightweight stack operating on natural
convection at 50 W/kg at 30°C, 120W/kg at
60°C

Stack power density can be
enhanced to
120-150 W/kg
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Battery Voltage (V)
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Hybrid DMFC System

JPL-SFC Hybrid DMFC System

100

Load Power (W)

Watts/kg can be significantly
improved by hybridizing with
batteries




Small Compact Systems

e

*Controlled delivery of concentrated Methanol

Relying on Back Diffusion to Supply Water e Menjre G
\
*Forced Convection at Low Back Pressure i o
H* Elentrg;lizmctin

*Higher Power Density of Stack ( Anode AT o son
catalysts) ) P e

CH3OH D 2 ’ i H ? H
*‘Membranes with low methanol crossover for o ", DL N
catalyst loading reduction P 1

Integration with High Power Batteries for
Load Management



Durability

* Improve inherent instability of catalysts
(DuPont MEA, ~2000 hours)

* Prevent loss of hydrophobicity of the
cathode

* Accumulation of impurities in the liquid
stream

* Reliability of components (pumps, valves)



dRL Stack and System Parameters for Various Applications %
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25 Watt, 1 kg Portable Power Pack

100 W, 6kg Soldier Power Source
100 mW/ 509 battery charger 100 W, 10 kg Power Source
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