
Fault Injection Campaign for a Fault Tolerant Duplex

Framework

Gian Franco Sacco1, Robert D. Ferraro1, Paul von Allmen1,
Dave A. Rennels1,2

1Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California 91109

2Computer Science Department, UCLA, Los Angeles, California 90095

October 12, 2006

Abstract

Fault tolerance is an efficient approach adopted to avoid or reduce the damage of
a system failure. In this work we present the results of a fault injection campaign we
conducted on the Duplex Framework (DF). The DF is a software developed by the
UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of
the same process on two different nodes of a commercial off-the-shelf (COTS) computer
cluster. A third process running on a different node, constantly monitors the results
computed by the two replicas, and eventually restarts the two replica processes if an
inconsistency in their computation is detected. This approach is very cost efficient
and can be adopted to control processes on spacecrafts where the fault rate produced
by cosmic rays is not very high. In order to test the reliability of the DF we wrote
a simple fault injector that injects faults in the virtual memory of one of the replica
process, causing the process to crash or produce erroneous outputs. For this purpose
we used two different applications, one that computes an encryption of a input file
using the RSA algorithm, and another that optimizes the trade-off between time spent
and the fuel consumption for a low-thrust orbit transfer, but with little modification of
the original code, any application written in C or Fortran, could be used. Preliminary
results show the potential of such approach in recovering from system failures.

1 Introduction

Dependability and safety are a source of great concern in today’s world, where many
real-time systems are mainly controlled by software with little or no human supervi-
sion. In systems such as a nuclear power facility, a missile, a satellite, an aircraft and
many others, dependability and safety are mandatory requirements. It is known that
no matter how cautious one is in designing, fabricating, assembling the components,
and writing the necessary software for a system, there is always the possibility that

1

a component may fail or a bug may go undetected and manifest itself in the opera-
tional phase causing a fault in the system. In order to reduce the probability of such
an occurrence, and to contain the damage that it could eventually cause, two main
approaches are normally adopted: fault prevention and fault tolerance.

Fault prevention normally consists of two stages: fault avoidance and fault re-
moval. Fault avoidance, as the name suggests, tries to avoid the presence of faults in
the system. At a hardware level this is achieved by using reliable, and often expensive,
components. Rad-hard components are frequently used in spacecraft, because they are
highly immune to upsets caused by cosmic rays. These types of components have much
lower performance than similar commercial parts,

Another precaution taken to avoid faults is to adopt very conservative methods in
designing and assembling the system, which might cause it to be inflexible and of a
limited capability. In spite of all the precautions being taken, a fault may still appear
at some point, due to an hardware failure or for an undetected bug in the software
code.

Fault removal consists in finding the error and then removing it. Obviously this
is not always successful. A spacecraft could be unreachable, or there may be no time
to fix the problem, for instance if a component fails during an emergency procedure.

Fault tolerance is another way of tackling the problem. The main idea behind
this approach is to accept the possibility that a system failure may occur even after
all attempts to avoid it, and then to use a procedure that allows an automatic system
recovery in an acceptable amount of time. One way of doing this is by duplicating the
system or critical parts of it.

With two copies of the same hardware and software, one can detect a hardware error
by comparing the results obtained by both - if the two results differ. However, with only
two software duplicates running it is only possible to detect the anomalous behavior,
without knowing which one has produced the wrong result. By regularly checkpointing
the system, i.e. saving its status, it is possible to restore the two processes from the
last checkpoint at which they both provided agreeing results if the error was transient
in nature. (Permanent faults cause continued disagreement, and must be resolved by
diagnostic tests). Using three, or in general N, copies of the same program (Triple or
N Modular Redundancy, TMR or NMR, respectively) to compute the same task, one
can assume that the probability of having two or more copies to fail and compute the
same erroneous results is very close to zero. By applying majority-voting, one can not
only detect possible mistakes in the computation, but also obtain the correct results.
In this case the program producing the wrong result can be restarted and updated
with the status of one of the programs that provided the right result. The main
advantage of this approach is the fact that it is possible to use commercial off-the-shelf
(COTS) components, greatly reducing the cost of the system. Moreover, since COTS
are normally more powerful and versatile that rad-hard components, the performance
of the system is highly improved.

In this work we are going to present the results of a fault injection campaign, where
we injected faults into an application running on our Duplex Framework (DF), in order
to test its performance and functionality and its ability to recover from a fault. The
DF is a software environment developed by the UCLA group [1, 2] with tools that
are designed to run single-process applications in duplex, i.e. to run two duplicates

2

of the same executable on two different nodes of a processor cluster. A third node
in the cluster provides access to shared file system and it provides a ”comparator
service” that compares the results outputed by the two replica processes and, if any
difference is detected, it calls for restarting the two jobs. The third node is intended to
emulate a spacecraft data storage device. It is not susceptible to transient errors since
a spacecraft data storage system is likely to use error detecting and correcting codes
and to be implemented with rad-hard controllers.

This system is implemented on a testbed that uses the UCLA-developed fault-
tolerant Cluster Manager Middleware (CMM) that schedules programs coordinates
and synchronizes the operations of the cluster [1, 2]. The CMM testbed has a core
functionality that is triplicated on three processing nodes and that can mantain the
cluster’s operation even if a node fails or crashes. It can relocate itself and restart any
application process on the remaining resources.

Section 2 describes the experimental setup and its components such as the DF and
the UCLA CMM. Section 3 describes the design of a simple fault injector program that
was developed to conduct the fault injection campaign. In Section 4 we describe the
applications used for the experiment and how we proceeded in performing it while in
Section 5 we present the results obtained from the campaign. Section 6 is dedicated to
some comments and conclusion we inferred from the experiment.

2 Experimental Setup and Components

The DF is a software that is able to run a single-process application in duplex. Theo-
retically it should be possible to take any code written in C or in FORTRAN and run
it on this framework, as long as the code is compiled with the scripts provided. The
main idea behind the DF is to have two duplicates of the same software running on
two different nodes of a COTS cluster, and then another process running on a third
one which plays the role of a smart spacecraft data storage system. It provides access
to shared bulk storage, supports user-based atomic checkpointing that is implemented
within the duplicated application process, and it provides a comparator function (which
is assumed to be fault free). The comparator function is in charge of comparing and
eventually detecting differences in the results computed by the duplicates. The com-
parator uses a File Server Library (FSL) which allows it to monitor all the data input
or output by the two replica processes anytime they perform a series of I/O operations.
This is achieved by renaming, at compile time, the symbols open, close, lseek, read(v),
write(v) and printf and the renamed symbols are then handled by the FSL. Every time
one of the above I/O operations is performed by the two replicas, the data is redirected
to the comparator. In order to save bandwidth one replica sends the actual message,
while the other sends a ”digest”, i.e. a shorter message containing the checksum of the
data being sent. The comparator computes the checksum on the message received from
one replica and compares it with the digest obtained from the other. If the two results
differ, the comparator assumes that one of the two replicas has provided a faulty result
and asks the CMM to restarts the replica processes. The comparator also uses timers
that are supposed to be reset by the replicas. These are used to detect if one of the two
duplicated processes unexpectedly crashed or was delayed an unacceptable length of

3

Figure 1: Modus Operandi of the DF.

time. If a replica fails to reset a timer within a designated interval, it assumes that the
process crashed and it alerts the CMM and requests that it restart the two processes.
Fig. 2 explains diagrammatically how the DF works.

2.1 The Cluster Management Middleware (CMM)

The DF lies above the CMM. The CMM is a middleware layer that supplies application
software with fault-tolerant control and fault management on a LINUX-based proces-
sor cluster. It was developed at UCLA with support from the JPL/NASA Remote
Exploration Experimentation (REE) project. The intent of REE was to use COTS
hardware and software to deploy scalable supercomputing technology in space, where
the error rate is much larger then on earth due to the presence of cosmic rays and high
energy protons.

The most common approach used to protect spacecraft computer from these errors
is to use rad-hard instrumentation. Rad-hard processors have much lower performance
than equivalent COTS parts. Thus the REE approach was to use a COTS-base fault-
tolerant cluster, which is able to detect and recover from faults without compromising

4

Figure 2: The structure of the CMM

the functionality of the system.
The CMM implements a fault-tolerant, triply modular redundant (TMR) Cluster

Manager (CM) running on three of the nodes and a set of agents (one for each node)
that allows the CM to control, monitor, and provide fault-tolerance support to the
applications running on the cluster (see Fig. 2).

The CMM is in charge of scheduling, allocating resources, coordination of system
level monitoring and fault recovering procedures and they all compute the same oper-
ations. The agents communicates with the managers reporting the status of the nodes
and allowing them to control the system. Indeed, through the managers, the agents
can receive the command to start, kill and schedule user application, and even to start
a new manager replica if one of the three fails. The manager group consists in a pri-
mary replica and two backup replicas. Each agents communicates with the managers
through the primary replica, which receives each message, numbers it, and then for-
wards it to the backups. This procedure guaranties that the messages received by the
manager group are always in sequence. On the other hand the managers send their own
messages directly to each agent allowing the agents to vote out a disagreeing manager.
All the communication among the managers and between the managers and the agents
is authenticated or signed [3]. If one agent receives conflicting messages, it immediately
reports the discrepancy to the manager group which starts a self-diagnostic procedure
where their internal status is compared. If a faulty replica is determined, the process
is terminated and a new replica restarted and updated with the status of one on the
functioning replicas.

2.2 Cluster Specifications

The cluster on which we conducted the fault injection campaign is composed of:

• six 450 MHz Pentium III with 512 MB of memory running a fully patched version

5

Figure 3: Cluster setup

of Linux Red Hat 9

• two G4 Power PC (PCC)

• a KVM switch

• a network switch Super Stack II Switch 3300.

Four of the six PCs (Payload Data Processing System) are used as compute nodes
where all the heavy computation is performed while the other two are used as control
system. They are used as interface between the operator and the CMM, allowing to
start the CMM, running processes on the DF and checking the system status. Having
two PCs as control system is something inherited form the design of the REE project,
but it can be restructured such that one is sufficient. The two G4 PCCs are used
as monitors. One displays the status of the cluster, such as the nodes on which the
managers or the different applications are running, and their process ID. The other
monitor displays the output that has been redirected by the File Server Library (see
section 2). The six PCs and the two PCCs are all connected through a network switch
in a logical star topology with one of the control system PC at the center (the physical
topology is still a star but with the switch at the center). Finally a KVM switch allows
to have one monitor and one keyboard to control all the six nodes (see Fig 2.2).

6

Figure 4: Typical result of a maps system call.

3 The Fault Injector

As mentioned in section 2, the DF is able to run a given application in duplex. In order
to test the ability of the framework to restart the replica processes in case one of the
two provides an erroneous result or if it unexpectedly terminates, we have developed
a simple fault injector with the purpose of generating faults in one of the two replicas.
The injector is run as a thread which is spawned from the main process in which we
desire to inject faults. The main steps performed by the injector are

• to obtain the segments of the virtual memory areas (VMA) of the running process
from the /proc/ < pid > /maps system call

• to generate a random memory location within the range of address previously
obtained

• to gain writable access to the desired memory location using the mprotect()
system call

• to change the content of the corresponding memory location.

In the first step the thread utilizes the PID to get information about the segment
structure of the VMA. Fig. 3 shows the typical results of such a system call. The
first two columns show the beginning and the ending address of a specific segment in
the virtual memory. The third column describes the permission of that area (r=read,
w=write, x=execute). The other columns are not important for our discussion. In
this case we showed the VMA for the ”cat” command. The /bin/cat command has
a text segment, where the executable is loaded, a data segment where the initialized
variables reside, a ”block started by symbol” (BSS) segment where the uninitialized
variables are. The cat commands uses some libraries, each one with its own set of
segments. Finally there is the stack segment of the process. The gap between the BSS
of /bin/cat/ and the text segment of the linked library (or between the BSS of the
library and the stack) allows the application to dynamically allocate memory on the
heap.

Once the memory structure has been determined, we randomly generate an address
that falls in one of the previous segments. Since not all segments have write permission,
we need to modify the privilege access to the area of memory of interest. For this
purpose we use the system call mprotect (int mprotect(void * address, size t length,

7

int permission)), which allows to change the permission of an area starting from a
specified address and ending at address plus length (length has to be a multiple of the
VMA page size). Once we gain writable access, we change the value at that address
(as a matter of fact we write an integer value at that address, modifying the next four
bites on our 32 bit system), and then we restore the original permission.

Most of the injected faults have no effect, because the modified location is unused or
will be written over before the next use. These are called ”ineffective” faults. Typically,
the ”effective” faults caused by the injector, are seen to be

• segmentation fault, if we write in a location out of bounds,

• illegal instruction, if the modified area belongs to the code segment and it is
executed,

• modification of data, if a data segment location has been modified.

The first two types of faults cause the program to crash, while the third one might
either cause the program to crash or to produce erroneous results.

The fault injector performs injections at a constant rate, but one injection does not
necessarily generate a fault. Since the injection rate is constant and the location is
randomly picked, one expects the probability distribution of faults in time to follow a
Poisson distribution of type

P (t) = Ae−λt (1)

where λ is the probability per unit time. We performed a simple test to show that
indeed our injector follows such a distribution. We injected in a test application at a
constant rate of 5 msec and then we counted how many faults occurred in each time
interval of 4.5 seconds. The result shown in Fig. 5 is for a total of more than 14000
faults. The green curve is the result of a best fit, where the points are fitted to the
distribution in Eq. 1. As one can see that the distribution is Poisson-like.

4 Application Descriptions and Debugging the Ex-
periment

The purpose of our work is to test the DF and check its ability to recover from erroneous
results. As described previously (see section 2) the DF runs a single-process application
on two nodes of a cluster and a comparator application on a third node that is in charge
of comparing the results of some I/O operations performed by the two replica processes.
In any difference in the results, independently computed by the two replicas, is detected,
then the comparator asks the group manager to restart the two processes. In order to
test the DF we used two different applications, one provided by the same group (the
UCLA group) that developed the framework (that we will call duplex test app from
now on), and one provided by two of the authors in Ref. [4] (ga qlaw from now on).
We first ran the test applications on the DF without performing any injection and
recording the result at the end (the final encrypted file, for the duplex test app or the
fuel consumption and the time spent, for the ga qlaw). We considered this result as
the exact outcome of the computation. We then ran two separate versions of a given
test application on the DF. On one of the replicas we ran a modified version of the

8

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25 30 35 40 45 50 55

E
rr

or
s

Time

Injection Distribution

Data
Fit

Figure 5: Error probability distribution generated by the injector.

code in which we added the fault injector thread, while on the remaining one we ran
the untouched version. We then recorded the final result and compared it with the
exact one previously computed.

4.1 The duplex text app.

The duplex test app is a program that encrypts an input message using the RSA
algorithm for a given number of times and writes the final result into a file. This
application allows also to do ”checkpointing”, i.e. to save the status of some variables
needed for the computation of the next encryption. Checkpoints allow to use the
rollback procedure, i.e. if the program is restarted due to a crash or an inconsistency
detected in the computation, it is not necessary to recompute everything from scratch.
Instead one could use the previously saved variables and start the computation using
the results from the last checkpoint. The rollback procedure is not implemented in the
DF, but needs to be implemented in the user application. The UCLA group provides
a library with a set of calls that can be helpful to implement such a procedure.

The replica processes compute the encryption of the input file, and write the partial
result regularly into a temporary file. The data are then redirected and compared by
the comparator, which will eventually restart the process if a mismatch in the digest
is found.

9

4.2 The ga qlaw.

The second application we used to test the DF is a code written to optimize the
trade-off between fuel consumption and time spent for a low-thrust orbit transfer. The
optimization is reached by using a multi-objective genetic algorithm. Without going
into the details on how the software operates, the objective is reached by computing
different iterations, called generations, and trying to improve the quality of the solution
at each step.

In order to add the rollback feature to the program, it is necessary to slightly modify
the code. At each generation the variables necessary to compute the next iteration are
saved as a checkpoint. To provide atomicity, these output files are double-buffered,
i.e. they are saved alternatively into two different files. A status variable, saved into
a different file, determines in which file the last checkpoint was saved correctly and
therefore from which file the rollback needs to be done, providing a ”commit” action.
Partial results computed at each generation are written into a file and sent to the
comparator, that will take the appropriate actions depending on the result of the
comparison.

4.3 Debugging

The addition of the injector thread into the main application in which we wanted to
inject random faults, posed some problem to the correct operation of the DF. We
performed two sets of runs of the duplex test app for debugging purpose. The first set
consisted in 21 runs each of which computed 500 encryptions, while the injection rate
was 2 Hz. Only 12 out of 21 runs completed successfully, in the sense that the final
result was equal to the one obtained when the application was run without injections.
Of the 9 unsuccessful runs, in 4 cases a fault that occurred before the first checkpoint
would cause the application to restart, but not from the first encryption, as it would
be expected. We manage to avoid this kind of problem (let us call it first type of issue
from now on) by starting the injections after the first checkpoint. In the second set
of runs, where this precaution was taken, this inconvenient was not present anymore.
It seemed that the problem was due to a bug in the rollback procedure implemented
in the duplex test app and not an issue related to the DF itself, in fact this kind of
issue was not present in the ga qlaw application runs, in which we implemented our
own checkpoint and rollback algorithm.
In the other 4 unsuccessful runs, the application would compute all the 500 encryptions
and write the final result to a file. At this point there would be a sequence of restarts
and crashes that would eventually end. The process would then rewrite the final result
into a file, that turned out to be incorrect (second type of issue from now on). In the
last failed run the comparator, that was assumed to be fault free, unexpectedly died
(third type of issue).
We performed a second set of 17 runs (1000 encryptions and 1 Hz injection rate) in
which the injections started after the first checkpoint. Ten runs were successful, while
of the 9 unsuccessful runs, 4 were of the second type and 3 of the third type and none
of the first type.
The second type of issue turned out to be also related to the implementation of the
checkpointing. If an effective fault occurred after writing the final result, but before

10

finalizing the process, the program would restart from the last checkpoint performed
instead of simply finalizing end ending. The rollback did not have a status variable
indicating the end of the process, but only the last successful checkpoint computed.
We modified slightly the code adding such status variable that is set once the process
has finished the computation. In case of a restart after writing the final result, the
program would first check this status variable and if set, it would end the process
without modifying the result previously computed.

At the time when the experiment was performed we were not able to identify the
exact cause of the problem. To avoid the issue we decided to interrupt the injections
before the last encryption and then voluntarily kill the process. The comparator would
then restart the replica processes, but the injector thread was not spawned.

As we will see in Section 5 after taking these two precautions, i.e. starting the
injections after the first checkpoint and interrupting them before the last one, in the
third set of runs neither first nor second type of issue were present. The reason of the
third type of issue remains unclear.

Also the ga qlaw application presented some issue during the MPI finalization of
the process. In some instances, after the application reached the end and the result
was written, an MPI error would occur. The injected replica would finish while the
non injected replica and the comparator kept running. The final result written by
the injected replica was correct. Although we could not pinpoint the origin of the
problem, we succeeded in eliminating the issue by stopping the injection before the
last generation was computed. The fact that the final result was correctly computed
showed that the DF worked as expected as far as detecting inconsistency is concerned.

5 Injection Campaign Results

After the debugging procedure, we performed a set of 30 runs of the duplex test app
computing 300 encryptions at 2 Hz injection rate. There was only one unsuccessful
run in which the application crashed.

We then ran the ga qlaw application for a small number of generations (the run
times were of the order of few tens of minutes). The first set consisted in a total of
50 runs computing 40 generations at an injection rate of 1 Hz, while in the second set
we performed 30 runs computing 15 generations at an injection rate of 0.5 Hz. In the
first set the fuel consumption and the time spent were computed once per generation,
while in the second set were computed six time.
To test the functionality of the DF over a longer run time, we also performed a set
of 10 runs of the ga qlaw application in which the approximate run time was between
15 and 16 hours. The total number of generations was 350 and the time between
two injections varied from 7.5 to 30 seconds at step of 2.5 seconds (the injection rate
varied from 0.033 to 0.133 Hz). In Figs. 6, 7 and 8 we show the plots of the number of
injections, number of restarts (each restart correspond to a fault that caused an error)
and the effectiveness (defined as the ratio of the number of restarts and the number
of injections divided by a hundred) as a function of the injection rate (expressed in
faults/min), for the long runs. We also plotted in Fig. 9 the runs distribution as a
function of the effectiveness, which shows that in average we had one effective fault

11

Application Fault Total # # Successful # Unsuccessful
Name Injection of Runs Runs Runs

Rate (Hz)
duplex test app I 2 21 12 9
duplex test app II 1 17 10 7
duplex test app III 2 33 32 1

ga qlaw I 1 50 50 0
ga qlaw II 0.5 30 30 0

Table 1: Summary of the results of the short time runs.

Application Average # Average # Average # Average
Name Errors Errors per Run Injections Effectiveness

per Run per Hour
duplex test app I 33.3 64.1 3698 0.89
duplex test app II 19.3 32.8 2123 0.91
duplex test app III 10.6 61.2 1239 0.85

ga qlaw I 9.74 36.4 921 1.01
ga qlaw II 8.13 24.3 587 1.35

Table 2: Summary of the results of the short time runs.

every one hundred injections.
We summarize the results of the entire campaign in Tabs. 1, 2 and 3 including

the successful runs performed during the debugging phase. All the averages computed
refer only to the successful runs. In Tabs. 1 and 2 we report the results for the three
duplex test app runs and the two short runs of the ga qlaw application. The different
columns in Tab. 1 are, respectively, the application name, the fault injection rate, the
total number of runs, the number of successful runs and the number of unsuccessful
runs, while in Tab. 2 the columns are application name, the average number of errors
per run, the average number of errors per run per hour, the average number of injections
per run and the average effectiveness per run. In Tab. 3 we report the results for the
long runs of the ga qlaw application. The first columns is the injection rate, the second
the outcome of the run (Successful/Unsuccessful), then the number of errors for that
run and finally the number of errors per hour for that specific run. Must be noted,
that in all runs that reached the completion of the task, despite the number of errors
injected and the number of restarts, the final result was always correct. The only
unsuccessful run was due to an unexpected crash of the comparator application.

Based on the numbers in Tabs. 1 2 and 3 we can compute a lower limit on p,
the probability of failure of the DF. Given that for a total of N = 2075 errors, all of
them were detected and the DF never failed, we have p < 1/N ± 1/

√
N , yielding a

reliability lower bound for the DF R = 1−p < 1/N±1/
√

N = 0.99952±0.02195. This
is obviously a very conservative number, which could be improved by running more

12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 3 4 5 6 7 8

In
je

ct
io

ns

Faults/min

Total Injections

Figure 6: Total injections for long run as a function of the injection rate.

tests.

6 Comments and Conclusions

6.1 Comments

As mentioned before, in some occasion the DF or the CMM presented some unexpected
behavior that needs more investigation that we summarize as follow:

• In few occasions the comparator, that was assumed to be fault free and therefore
no injections were made in the corresponding application, crashed. The injected
replica eventually died because of a fault, while the other replica kept running.

• In several occasions, if a fault would occur in the duplex test app before the first
checkpoint, the replica processes would not be restarted from the beginning, but
from an arbitrary checkpoint, providing at the end an erroneous result. The
problem was not due to the DF, but to the rollback algorithm implemented in
the test application.

• In few instances in the duplex test app, after the two replicas had reached the
total number of encryptions and exited, the comparator would restart the pro-
cesses several times before exiting the application. The result output in this case
was wrong. Also in this case the reason of the malfunction was ascribable to a
problem in the rollback procedure.

13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 3 4 5 6 7 8

R
es

ta
rts

Faults/min

Total Restarts

Figure 7: Total restarts for long run as a function of the injection rate.

• Occasionally, in the ga qlaw application, after the last generation was computed,
a MPI error would occur. In this case the injected replica would exit giving the
correct result, while the comparator and the fault free replica would still run.
This problem was solved by stopping the injection before the last generation was
computed.

• In the CMM, after hours of running, the manager applications would unexpect-
edly die.

Except in few cases where the comparator unexpectedly terminated, most of the anoma-
lous events we just described, specifically the ones that took place during the run of the
duplex test app, were ascribable to a problem in the implementation of the rollback
procedure and not due to the DF itself.

The problem in the ga qlaw application showed that the DF worked correctly pro-
viding the expected result, but the CMM failed in finalizing the processes.

In the few cases in which the comparator died unexpectedly we were not able able
to track the origin of the issue. The last two issues require more studying to pinpoint
the origin of the problem.

An important point is how difficult is and how much modification an application
would require in order to be run on the DF. We took other two simple C language
written applications and compiled on the DF. The number of modifications in the
Makefile and the code itself were quite limited, and did not present a particular issue.
The main modifications required are due to the fact that all the inputs can not be
done from a terminal, but need to be read from an input file. Moreover, the use of

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 3 4 5 6 7 8

E
ffe

ct
iv

e
[%

]

Faults/min

Effectiveness

Figure 8: Effectiveness for long run.

random number generator could be a source of problem. If for instance the time is
used to seed it, if the two replicas are not synchronized (which is quite like to be
the case) the sequence of numbers generated will be different and consequently the
results produced by the two replicas may differ, causing the comparator to restart the
processes each time. Both applications ran correctly. We also manually killed one of
the replica processes during the computation. In all cases the comparator, by means
of timer, detected that one of the processes terminated and requested the CMM to
restart the application.

6.2 Conclusion

We run a fault tolerant campaign in order to test the DF. The main goal of the
campaign was to show the potential of the approach adopted by the DF to guaranty
reliability in the execution of a process. We have shown the ability of the DF to restart
a process when a crash occurred or an inconsistent computation was performed. An
important result is that during the entire campaign we never witnesses a case in which
the two replicas finished the computation, but they provided disagreeing results. From
the data collected during the experiment we provided a very conservative estimate for
the reliability of the DF (R = 0.99952 ± 0.02195) that could be easily improved by
running more tests.

We have however noticed some unexpected behaviors such as the crash of the com-
parator, or problems experienced during the finalization of the the processes. All these

15

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5

N
um

be
r o

f R
un

s

Effectiveness [%]

Average = 1.040
Standard Deviation = 0.374

Figure 9: Runs distribution as a function of effectiveness

issues require more testing, upgrading and debugging, but overall the DF behaved as
designed.

We believe that the main advantage of the philosophy adopted to implement the
DF is the possibility of using COTS components in building the computing nodes of
the cluster where to run it. Such approach could, for instance, highly reduce the cost
of the onboard instrumentation on a spacecraft and greatly enhance the performance
of the system. Rad-hard components have the disadvantage of not being particularly
powerful and moreover, the rate at which these components are improved is very small
compared to equivalent commercial components. One could use a rad-hard processor
to perform vital tasks onboard, such as schedule events and monitor the system, but
delegate the heavy computational part to the COTS nodes. This open a all new
scenario on the type of computation that can be performed onboard, such as realtime
image processing or even being able to conduct simple experiment on material samples
extracted from the soil of a planet.

More effort has to be put in promoting and testing this fault tolerant approach
in developing software in order to improve its reliability and make it ready for flight
missions.

16

References

[1] M. Li et al, Proceedings of International Conference on Parallel and Distributed
Computing and Systems, Anaheim, CA, pp. 480-485, August 2001.

[2] D Goldberg et al, Computer Science Department Technical Report CSD-010040,
University of Los Angeles, CA.

[3] L. Lamport et al, ACM Transactions on Programming Languages and Systems,
4(3), pp. 382-401 (July 1982).

[4] S. Lee et al, AAS 05-392 Paper, AAS/AIAA Astrodynamics Specialist Conference,
Lake Tahoe, August 8-11, 2005.

17

Inj. Rate. (Hz) Result (S/U) Num. Err. Num. Err. /h
0.033 S 18 1.2
0.036 S 16 1.1
0.040 S 22 1.5
0.044 S 34 2.2
0.050 S 23 1.5
0.057 S 39 2.5
0.067 S 40 2.6
0.080 S 43 2.8
0.100 S 78 4.8
0.133 S 85 5.3

Table 3: Summary of the results of the long time runs for the ga qlaw application.

18

