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ABSTRACT

Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be
used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with
atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full
amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into
species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry,
even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction
of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The
fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will
the net symmetry in the speckle pattern. Systematic numerical investigations are presented of the net symmetry of noise
variance as a function of adaptive correction, i.e., Strehl ratio S, and deformable mirror actuator density D/a, where a is
the deformable mirror actuator spacing referred to the pupil of diameter D, which controls the characteristic transverse
spatial frequency of the wavefront. The degree of speckle symmetry is found to be substantial even at cutrent relatively
modest ground-based corrections (S=0.6, D/a=16 in the near-infrared). With parameters representative of “extreme”
adaptive optics of the near future (S=0.99, D/a=100), the antisymmetric noise variance fraction is 0.99967 averaged over
two Airy rings in the inner halo, so simple image processing (symmetry filtering) can improve the net speckle-noise-
limited companion-detection SNR by a factor of about 28. Analogous processing can enhance SNR in coronagraphic
searches, where speckle patterns before processing are predominantly symmetric.
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1. INTRODUCTION: SPATIAL SYMMETRY IN HIGHLY CORRECTED IMAGES

Highly corrected adaptive images have halos of speckles (Fig. 1) whose fluctuations limit sensitive searches for faint
companions around other stars'. Speckles are particularly troublesome, generating image noise proportional to their
full intensity rather than the square root familiar with photon noise. Noise variance is®
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where the typical single-speckle intensity is F, the coherence time is 15, and the integration time is t. At high correction,
the short-exposure image intensity from a particular phase screen realization is approximately®

I(x,y) = ‘Aexp(iq))}2 = ,Z+ i&'z ~ ‘Ziz +2Re{ id 7;5} +F¢|2 . 2

The overbar denotes two-dimensional (spatial) Fourier transformation, the asterisk denotes complex conjugation, A is
the aperture function (here A=1 or 0 in this simple illustration treating phase speckles only), and ¢ is the remnant pupil-

plane phase aberration. The first term on the right side, | 4, is the point-spread function (PSF), an Airy pattern for a
circular aperture:
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Here D is the pupil diameter, A is the wavelength of observation, and 6 is the radial coordinate of the Airy pattern.

Figure 1 — Spatial symmetries of speckles in a highly corrected monochromatic
short-exposure image, numerically simulated, representative of the current ground-
based state of the art in adaptive imaging (S=0.60, D/a=16). The image spans a field
measuring 30 A/D x 30 AMD. (Left) Three-dimensional perspective with an
exaggerated vertical scale shows a diffraction-limited core surrounded by a speckle
halo ~)/a in diameter containing total fractional image power ~(1-S). (Right) The
same image plotted as a two-dimensional grayscale displays some antisymmetric
structure on the inner Airy rings, where the Airy amplitude factor 4 and so speckles
from the linear term of Equation (2) are brightest (cf. the innermost ring has a bright
and dark speckle pair to the left and right of center). In the outer halo, Airy rings are

fainter and not clearly seen, implying | 4|<| ¢4 |, which further implies that speckles

from the quadratic term of Equation (2) dominate those from the linear term and the
antisymmetry is washed out. Quantitative analysis shows (Fig. 4) the antisymmetric
speckle noise variance fraction in the inner Airy rings at this correction is ~0.7.

The expansion in Equation (2) describes the dominant (brightest) phase speckles; amplitude speckles may easily be
included by considering the generalization from A to A+8A in the algebraic expansion of Equation (2), where 6A
captures the effect of slight transmission defects in the optics. The two speckle terms in Equation (2) are respectively

linear and quadratic in “speckle amplitude” 5; they are also spatially antisymmetric and symmetric, respectively, as
may be derived in a straightforward way from the fact that real functions A, ¢ have hermitian Fourier transforms’.

Though other, fainter speckle terms are included in the numerical simulations to be presented in §3, the interplay
between the two terms in Equation (2) gives insight into the dependence of net speckle symmetry with correction and
with position in the halo. Those dependencies arise because typical peak intensities depend on correction through its

effect on a and, for the linear term, on position within the halo through the Airy amplitude 4. Airy amplitude is given
by the square root of Equation (3); the typical peak of speckle amplitude may be estimated as roughly*
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relative to the peak of | 4]. Equation (4) provides a basis for convenient analytic estimation of typical brightness of the
two key speckle species. The key parameters controlling speckle intensity are Strehl ratio S, deformable mirror actuator
density D/a, and, for the linear term, position within the speckle halo.

Equation (4) estimates typical peak speckle intensities to within a factor ~2 by equally dividing the speckle power, (1-S),
among N=0.342(D/a)* speckles®. Speckles from the linear term 2 Re{iz* 7¢—} are “pinned” to (localized on) PSF rings’
through the factor A4 ; quadratic speckles lajz roam freely. The linear term is of lower order in 5, so dominates the
image when correction is so high (S—1, D/a large) that ¢ is smaller in amplitude than 4; the latter amplifies 3 to

produce linear-term speckles. In this situation (cf. the outer parts of Fig. 2), quadratic speckles lalz are faint enough to

sink beneath local Airy rings of | 4[>, so Airy nulls are no longer washed out. The now-distinct rings show an
antisymmetric pattern of brighter and dimmer knots due to linear-term speckles.

Figure 2 — Emergence of antisymmetric speckles with increasing correction. The
image spans 30 A/D x 30 A/D, and is computed for a very high correction S=0.99,
D/a=32. As is clear in this Figure and can be verified from Equations (3) and (4), the
typical peak speckle amplitude 4 for such high correction is smaller than the Airy
amplitude 4 even out to the 14 or 15 Airy rings shown here. So antisymmetric

speckles “pinned”, or localized, on Airy rings dominate; examples on the 10" and
12™ rings are circled.



At high correction, because the linear term dominates, the spatially antisymmetric speckle noise variance fraction
approaches unity. Simple image processing can be used to suppress speckle noise of either chosen symmetry.
Symmetric/antisymmetric noise is removed>>'® by subtracting/adding to an image a copy of itself rotated 180°. Half the
signal is also lost, because any off-axis companion consists of equal-amplitude symmetric and antisymmetric
components (Fig. 3), so net imaging signal-to-noise ratio (SNR) improves only if one symmetry type produces at least
0.75 of the noise variance. Symmetrization (but not antisymmetrization) introduces a 180° position-angle ambiguity, of
little scientific consequence. This speckle noise reduction works for any wavelength, and for speckles caused by
amplitude variations 04 over the pupil rather than by phase variations ¢ (for small d4, 264 is the fractional intensity

variation; brightest “amplitude” speckle terms are the spatially-symmetric 2Re{ A *52} and |54 >, whose behavior is
similar to that detailed here for phase speckles).
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Figure 3 — Decomposition of an off-axis companion into symmetric and

antisymmetric image components. The primary star is at the origin, and defines the
imaging phase center (“X). With respect to that position, an off-axis point source is
mathematically equivalent to the sum of spatially symmetric and antisymmetric
components of equal strength, as illustrated here. For simple imaging at high
correction, the brightest speckles are antisymmetric, so filtering to select the
symmetric image component will remove a disproportionately large fraction of the
speckle noise. For coronagraphy, where antisymmetric speckles are suppressed,
image antisymmetrization is generally desirable instead (§4).

The estimates given here for speckle intensity and noise, based on inserting Equation (4) for the speckle amplitude into
the speckle terms of Equation (2), are larger than past estimates that have traditionally ignored the cross-term describing
linear speckles. While that term contributes zero total image power'!, being spatially antisymmetric, it can have large
local fluctuations that dominate speckle noise. (Negative linear-term intensities partially erode Airy rings to which they

are pinned, keeping total intensity non-negative.) When |Zi>| 5 |, as must occur at sufficiently high correction, the

relatively large Airy amplitude substantially amplifies linear-term speckle intensity and noise above quadratic; this
behavior can be seen by inspection in Fig. 2. In the following sections the amount of this excess of speckle noise will be
quantified, and a simple means of removing it with image processing based on speckle symmetries will be presented.



2. NUMERICAL STUDY OF SPECKLE NOISE VARIANCE SYMMETRY FRACTION

The net symmetry content of the speckle halo is now explored numerically as a function of adaptive correction; this
naturally controls the degree of speckle noise reduction achievable through symmetry-based image processing
techniques. At each (S, D/a), 128 short-exposure images are generated by applying the full Fourier optical expression'?,

| Aexp(ig)  to random residual pupil-plane phase screens, ¢ . (Equations (2) and (4) are not used in the calculations,

but guide the interpretation.) The telescope pupil A is round, unobscured, and 128 pixels in diameter within a
1024x1024 grid space, so the image-plane pixels that result measure ~1/8(A/D) on a side. From the 128 images, speckle
noise is estimated at each pixel within the halo. To obtain representative values, the antisymmetric and symmetric
components of speckle noise are separately averaged over all pixels lying within each of five spatial zones covering

different radial regions of the halo, smoothing an expected radial dependence inherited from A in the linear term

2Re{i A Tﬁ} . This dependence was already visible in Fig. 1 for correction roughly equal to the best yet achieved with

ground-based adaptive optics. The five spatial zones are contiguous annuli lying between radial boundaries 1.22, 3.24,
5.24, 7.24, 9.25, and 11.25 A/D; each encompasses two Airy rings. Results will be examined in detail for the innermost
radial zone between 1.22 A/D and 3.24 M/D, i.e., between the 1% and 3™ Airy nulls.

Calculations will be presented in terms of monochromatic short exposures because these are the most primitive
quantities from which realistic observations are built up. Speckle noise will generally be reduced in observations
spanning broader spectral bandwidth; in these cases, speckle patterns form radial streaks, and the intensity on a single
pixel in the image is akin to averaging over a radial range in a monochromatic speckle pattern. Speckle noise will also
be smoothed in an obvious way by the area averaging performed by a detector spanning many of our numerical pixels.
The effects of finite integration time may be computed with Equation (1). A ground-based instrument sees a fresh phase
screen due to the turbulent atmosphere on a timescale substantially shorter than one second; but for a space-based
observatory, the timescale for evolution of the phase screen may be rather long. Symmetry properties of the different
speckle types are retained by coadditions of multiple short exposures.

Phase screens are computed in terms of independent local cells, rather than global modes. This seems physically most
appropriate to space-based instruments, while capturing the essentials of ground-based systems as well. Each D/a-sized
cell of the pupil/aperture plane is assigned a phase value that is randomly chosen according to a Gaussian probability
distribution of zero mean and with one-sigma value related to the Strehl ratio by V(1-S). (In practice, for many values of
D/a a roughly equivalent computation is carried out in which primitive cells of the numerical grid are assigned random
values, and the grid is then convolved to a spatial resolution ~D/a and rescaled to match the appropriate Strehl.) No
connection is made in this procedure with the Kolmogorov statistics of the atmosphere. However, the key spatial scale
of a ground-based adaptive optics system may be identified by setting D/a = D/r,, where 1, is the transverse coherence
scale (Fried parameter).

3. RESULTS: SYMMETRY CONTENT VS. CORRECTION FOR SIMPLE IMAGING

Fixing D/a=16, representative of current high-order adaptive optics', Strehl values ranging from 0.1 to 0.999 are
modelled. Speckle noise is averaged over image pixels lying within each of the five radial halo zones mentioned in the
previous section. Fig. 4 gives the results for the innermost zone. The general behavior may be understood with the

intensity estimates of Equations (2), (3), and (4). At high correction (S—1, D/a large), 5 becomes small, so terms with

fewer powers of 5dominate. This favors the antisymmetric linear term 2Re{iz —475} anywhere in the focal plane
except precisely on Airy nulls (A =0), though it dominates first in the inner halo where A is relatively large. Thus at
highest correction the noise variance approaches antisymmetry, particularly in the inner halo (Fig. 4). At intermediate
Strehl, in the mid and outer halo, | ¢ | exceeds | 4| so that quadratic-term speckles | ¢ |* are brightest and speckle noise

variance is moderately symmetric. Symmetry imbalances exceed the break-even threshold, 0.75, on inner Airy rings for
S$=0.7, D/a=16 (Fig. 4), so the seemingly random speckle halos of the best current adaptively-corrected images contain
substantial spatial symmetry.
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Figure 4 — Dependence of the spatially antisymmetric speckle noise variance fraction
(solid curve) on Strehl ratio, S, for D/a=16. Departure from 0.5 signals exotic
speckle effects (high symmetry or antisymmetry, the latter also implying speckle
pinning). Data points are averages of monochromatic small-pixel values over the
inner two Airy rings of the halo, between nulls at 1.22 /D and 3.24 /D. Plotted
points are for S= 0.1, 0.5, 0.6, 0.75, 0.9, 0.95, 0.99, 0.999. At low S, speckle patterns
lack distinct spatial symmetry, and the antisymmetric noise variance fraction is

approximately 0.5. At highest S, the linear term 2 Re{i A ?gﬁ} always dominates,

boosting antisymmetric speckle intensity and noise. Noise variance fractions can be
even more dramatic for small, narrowband pixels on Airy nulls, where the linear
term vanishes; large, broadband pixels preferentially suppress the antisymmetric
component as contributions from the signed linear term partially cancel.

Very high correction (§=0.95, D/a=16) has recently been achieved by projecting the Palomar adaptive optics system
onto an unobscured 1.5-meter subaperture of the 5 meter Hale telescope'®. (This configuration optimizes performance of
an FQPM coronagraph.) Under these conditions, the numerical simulations of Fig. 4 indicate that the antisymmetric
noise variance fraction averaged over the innermost two Airy rings of the speckle halo is about 0.95. Blocking this
dominant symmetry component would reduce speckle noise by a factor of 4.5, resulting in an overall SNR improvement
of 2.2 when the reduction of companion signal by image symmetrization is taken into account. If Strehl were further
improved to $=0.99, the data of Fig. 4 indicate the antisymmetric noise variance fraction would increase to 0.987, giving
a SNR improvement factor of 4.4. The results of Fig. 4 agree with estimates from Equations (1)-(4) and past modelling
of symmetric noise reduction™'’, but not, as discussed near the end of §1, with past speckle noise estimates that

generally neglected the diffraction cross-term, 2Re{i A E}, representing antisymmetric, linear-term speckles. The

estimates of Equations (1)-(4) can be used to calculate the expected antisymmetric noise variance fraction, as a check on
the values found numerically. The symmetric and antisymmetric image components are approximated by the dominant
terms in each case, the quadratic and linear terms in Equation (2), and the noise variances are proportional to the square
of the image components as given in Equation (1). The antisymmetric noise variance fraction is then



2 2 -l 2 2 2

_ O anti =11 O symm ~1_0' symm F* symm ~1 1 1-S{a 5

f= 2 2 = = = — 0 = . (5)
G anti + O symm O anti F* i 2<|A| >0342 D

For the correction values considered immediately above, $=0.99 and D/a=16, on the inner two Airy rings (radial zone 1
as defined in Fig. 4, where the average PSF value <| 4> is 0.0045), these approximations predict an antisymmetric
noise variance fraction of ~0.987, in close agreement with the value found from the numerical results just discussed.
The dependences displayed analytically in Equation (5) allow extrapolation to even more extreme adaptive parameters,
where the antisymmetric noise fraction is larger still. For example, if the actuator density were scaled to D/a=100 at
S=0.99, these simple estimates would predict an antisymmetric noise variance fraction of ~0.99967, presenting a
potential improvement in speckle-noise-limited companion-detection SNR of almost a factor of 28.

A number of points concerning these results should be kept in mind. First, the speckle noise that is eliminated by the
proposed image processing is in excess of traditional speckle noise estimates based on the total speckle power in an
image, (1-S). So ultimate speckle-noise-limited sensitivity is being improved to these classical expectations but not
beyond. Second, averaging speckles over broad wavelength bands or over large detector pixels can have different
effects on the two speckle symmetry classes, and would probably tend to reduce antisymmetric speckle noise
preferentially. Third, for relatively faint stars and short integration times, shot noise on the Airy pattern can dominate
speckle noise, reducing the practical effectiveness of the sensitivity gains described here. For some experimental
situations, however, rather large reductions in speckle noise are possible through image symmetrization.

4. SPECKLE SYMMETRY IN CORONAGRAPHS

The most promising approaches to searching for faint companions use coronagraphs to suppress the light from the bright
central star. A speckle algebraic formalism closely analogous to that presented earlier for simple adaptive images
applies to this case. If the coronagraph is space-based, speckles will arise in aberrations in beamtrain optics and evolve
much more slowly than the speckles caused by atmospheric turbulence seen at ground-based observatories. In any
coronagraph, the focal plane image is"
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where pupil-plane (Lyot) and focal-plane spatial masks are represented by multiplicative complex two-dimensional
functions p and f, respectively. The focal-plane mask may be an opaque spot, as with the classical Lyot coronagraph, or
an arrangement of phase-shifting quadrants, as in the FQPM (four-quadrant phase mask) coronagraph. By design,
coronagraphs suppress light from the on-axis star. The first term on the right side of Equation (6), normally an Airy
pattern, is suppressed by a large factor that is a function of spatial position in the focal plane. This may conveniently be
expressed in a phenomenological way by writing

W
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where R is a (possibly large) positive number that varies with position in the focal plane. (This picture is a great
simplification, as Airy rings are generally both suppressed and shifted in position by a coronagraph, but it provides a
useful framework for gross estimation of speckle magnitudes.) Coronagraph contrast of 107 at 4.5MD has been
reported'S, roughly equivalent to R=7800.



Generally, the intensities of quadratic-term speckles (described by the 3™ term on the right side of Equation 6) are little
changed by passage through a coronagraph: their peaks are only slightly reduced as their light is distributed over a
diffraction-limited diameter that is slightly broadened by the reduced pupil diameter of the Lyot stop. On the other hand,
linear-term speckles (recognizable as the 2™ term on the right side of Equation 6) are substantially reduced in intensity
by the coronagraphic suppression of light from the on-axis star. Crudely speaking, from Equations (6) and (7), linear-
term speckle intensity is reduced'>"” by a factor VR, which describes the reduction of Airy amplitude. Speckle noise is
still proportional to typical speckle intensity, as described by Equation (1).

Linear-term speckles are entirely neglected if suppression R is assumed infinite'®'?; but in real coronagraphs they would
still dominate at correction sufficiently high that |¢ > <| A * /R. This is a much more stringent condition requiring much

higher correction than the analogous condition for adaptively corrected simple imaging, |;|2 < |4 So at any but the

highest correction, or in the limit of high coronagraph suppression, speckle patterns in the coronagraph. case are
predominantly symmetric because linear-term speckles are suppressed. Simple image processing based on speckle
symmetry is again effective in reducing speckle noise, but it will involve image antisymmetrization rather than
symmetrization. When quadratic-term speckles are rejected by this processing, the speckle intensity floor or contrast
will be defined by the intensity of the linear term. As before, half the signal in any companion image is lost, but speckle
noise is reduced much more.

The calculations represented by Fig. 4 are easily converted to find the fraction of speckle noise variance in a
coronagraph, for various S, D/a, that is spatially symmetric. The antisymmetric portion must be divided by R to
represent coronagraphic suppression of linear-term speckles:
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This expression reduces to (1-f) as it should when R=1 (the simple imaging case); it reaches £=0.987 when =0.99 and
R=7800. That is, the coronagraph has converted a large antisymmetric speckle variance fraction f into a large symmetric
speckle variance fraction f* by suppressing linear-term speckles.

An additional benefit of image processing to antisymmetrize coronagraph images is the rejection of speckle noise from

amplitude speckles 2Re{ 4~ 4 } and | 54 [°, both of which are spatially symmetric. Amplitude speckles are generated by
intensity variations across the pupil; unlike phase speckles, they cannot easily be corrected over a broad spectral band
by the “speckle nulling” technique that uses targeted commands on the deformable mirror to achieve spectacular
suppression of phase speckles”’. The very simple image processing described here is equally effective on amplitude
speckles because they have the same spatial symmetry as the dominant quadratic-term phase speckles.

S. CONCLUSIONS

The symmetry properties of speckles at high adaptive correction have been reviewed, and the degree of symmetry as a
function of image correction has been presented. Symmetry content of the speckle halo is found to be considerable at
degrees of adaptive correction that will be accessible in “extreme” adaptive optics of the near future. Under these
conditions, a substantial reduction of speckle noise can be achieved by simple post-processing of images to reject the
spatially antisymmetric component. Though generally reducing the image signature from a companion by a factor of 2,
this simple technique also reduces speckle noise by a much larger factor, as indicated by numerical simulations and
simple speckle intensity estimates. For example, as shown in §3, correction conditions of S=0.99 and D/a=100 will
allow improvement of the net companion-detection SNR by a factor of 28. Analogous techniques are effective with
coronagraphs, where symmetric rather than antisymmetric speckles dominate. Though this approach is still subject to
shot noise on Airy rings and the pre-suppression speckles, the sensitivity gain it offers is extremely simple to implement.
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