
Value, Cost, and Sharing: Open Issues in
Constrained Clustering

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology,
Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena CA 91109, USA,

kiri.wagstaff@jpl.nasa.gov

Abstract. Clustering is an important tool for data mining, since it can
identify major patterns or trends without any supervision (labeled data).
Over the past five years, semi-supervised (constrained) clustering meth-
ods have become very popular. These methods began with incorporating
pairwise constraints and have developed into more general methods that
can learn appropriate distance metrics. However, several important open
questions have arisen about which constraints are most useful, how they
can be actively acquired, and when and how they should be propagated
to neighboring points. This position paper describes these open questions
and suggests future directions for constrained clustering research.

1 Introduction

Clustering methods are used to analyze data sets that lack any supervisory
information such as data labels. They identify major patterns or trends based
on a combination of the assumed cluster structure (e.g., Gaussian distribution)
and the observed data distribution. Recently, semi-supervised clustering methods
have become very popular because they can also take advantage of supervisory
information when it is available. The first work in this area proposed a modified
version of COBWEB that enforced pairwise constraints indicating when two
items were known a priori to either belong to the same cluster (must-link) or
different clusters (cannot-link) [1]. It was followed by constrained versions of the
k-means and EM clustering algorithms [2, 3]. Later work expanded this approach
to accommodate soft constraints (preferences) [4, 5] and to infer new distance
metrics over a given data set, based on the available constraints. Some metric
learning methods are restricted to accommodating must-link constraints only [6],
while others can also accommodate cannot-link constraints [7, 8, 5].

These advances have led to further study of the impact of incorporating
constraints into clustering algorithms, particularly when applied to large, real-
world data sets. Important issues that have arisen include:

1. Given the recent observation that some constraint sets can adversely impact
performance, how can we determine the utility of a given constraint set, prior
to clustering?



2. How can we minimize the effort required of the user, by active soliciting only
the most useful constraints?

3. When and how should constraints be propagated or shared with neighboring
points?

This paper contributes descriptions of each of these open questions. In iden-
tifying these challenges, and the state of the art in addressing them, we highlight
several directions for future research.

2 Open Questions

2.1 Value: How Useful is a Given Set of Constraints?

It is to be expected that some constraint sets will be more useful than others, in
terms of the benefit they provide to a given clustering algorithm. For example,
if the constraints contain information that the clustering algorithm is able to
deduce on its own, then they will not provide any improvement in clustering
performance. However, virtually all work to date values constraint sets only in
terms of the number of constraints they contain. The ability to more accurately
quantify the utility of a given constraint set, prior to clustering, will permit
practitioners to decide whether to use a given constraint set, or to choose the
best constraint set to use, when several are available.

The need for a constraint set utility measure has become imperative with
the recent observation that some constraint sets, even when completely accurate
with respect to the evaluation labels, can actually decrease clustering perfor-
mance [9]. The usual practice when describing the results of constrained cluster-
ing experiments is to report the clustering performance averaged over multiple
trials, where each trial consists of a set of constraints that is randomly generated
from the data labels. While it is generally the case that average performance does
increase as more constraints are provided, a closer examination of the individual
trials reveals that some, or even many, of them instead cause a drop in accuracy.
Table 1 shows the results of 1000 trials, each with a different set of 25 randomly
selected constraints, conducted over four UCI data sets [10] using four different
k-means-based constrained clustering algorithms. The table reports the fraction
of trials in which the performance was lower than the default k-means result,
which ranges from 0% up to 87% of the trials.

The average performance numbers obscure this effect because the “good”
trials tend to have a larger magnitude change in performance than the “bad”
trials do. However, the fact that any of the constraint sets can cause a decrease in
performance is unintuitive, and even worrisome, since the constraints are known
to be noise-free and should not lead the algorithm astray.

To better understand the reasons for this effect, Davidson et al. [9] defined
two constraint set properties and provided a quantitative way to measure them.
Informativeness is the fraction of information in the constraint set that the al-
gorithm cannot determine on its own. Coherence is the amount of agreement
between the constraints in the set. Constraint sets with low coherence will be



Table 1. Fraction of 1000 randomly selected 25-constraint sets that caused a drop
in accuracy, compared to an unconstrained run with the same centroid initialization
(table from Davidson et al. [9]).

Algorithm
CKM [2] PKM [5] MKM [5] MPKM [5]
Constraint Constraint Metric Enforcement and

Data Set enforcement enforcement learning metric learning

Glass 28% 1% 11% 0%
Ionosphere 26% 77% 0% 77%

Iris 29% 19% 36% 36%
Wine 38% 34% 87% 74%

difficult to completely satisfy and can lead the algorithm into unpromising areas
of the search space. Both high informativeness and high coherence tend to re-
sult in an increase in clustering performance. However, these properties do not
fully explain some clustering behavior. For example, a set of just three randomly
selected constraints, with high informativeness and coherence, can increase clus-
tering performance on the iris data set significantly, while a constraint set with
similarly high values for both properties has no effect on the ionosphere data
set. Additional work must be done to refine these measures or propose additional
ones that better characterize the utility of the constraint set.

Two challenges for future progress in this area are: 1) to identify other con-
straint set properties that correlate with utility for constrained clustering al-
gorithms, and 2) to learn to predict the overall utility of a new constraint set,
based on extracted attributes such as these properties. It is likely that the latter
will require the combination of several different constraint set properties, instead
of being a single quantity, so using machine learning techniques to identify the
mapping from properties to utility may be a useful approach.

2.2 Cost: How Can We Make Constraints Cheaper to Acquire?

A single pairwise constraint specifies a relationship between two data points. For
a data set with n items, there are 1

2n(n− 1) possible constraints. Therefore, the
number of constraints needed to specify a given percentage of the relationships
(say, 10%) increases quadratically with the data set size. For large data sets, the
constraint specification effort can become a significant burden.

There are several ways to mitigate the cost of collecting constraints. If con-
straints are derived from a set of labeled items, we obtain L(L−1) constraints for
the cost of labeling only L items. If the constraints arise independently (not from
labels), most constrained clustering algorithms can leverage constraint properties
such as transitivity and entailment to deduce additional constraints automati-
cally. A more efficient way to obtain the most useful constraints for the least
effort is to permit the algorithm to actively solicit only the constraints it needs.
Klein et al. [7] suggested an active constraint acquisition method in which a



hierarchical clustering algorithm can identify the m best queries to issue to the
oracle. Recent work has also explored constraint acquisition methods for par-
titional clustering based on a farthest-first traversal scheme [11] or identifying
points that are most likely to lie on cluster boundaries [12]. When constraints are
derived from data labels, it is also possible to use an unsupervised support vector
machine (SVM) to identify “pivot points” that are most useful to label [13].

A natural next step would be to combine methods for active constraint ac-
quisition with methods for quantifying constraint set utility. In an ideal world,
we would like to request the constraint(s) which will result in the largest increase
in utility for the existing constraint set. Davidson et al. [9] showed that when
restricting evaluation to the most coherent constraint sets, the average perfor-
mance increased for most of the data sets studied. This early result suggests that
coherence, and other utility measures, could be used to guide active constraint
acquisition.

Challenges in this area are: 1) to incorporate measures of constraint set utility
into an active constraint selection heuristic, akin to the MaxMin heuristic for
classification [14], so that the best constraint can be identified and queried prior
to knowing its designation (must/cannot), and 2) to identify efficient ways to
query the user for constraint information at a higher level, such as a cluster
description or heuristic rule that can be propagated down to individual items to
produce a batch of constraints from a single user statement.

2.3 Sharing: When and How Should Constraints be Propagated to
Neighboring Points?

Another way to get the most out of a set of constraints is to determine how they
can be propagated to other nearby points. Existing methods that learn distance
metrics use the constraints to “warp” the original distance metric to bring must-
linked points closer together and to push cannot-linked points farther apart [7,
8, 6, 5]. They implicitly rely on the assumption that it is “safe” to propagate
constraints locally, in feature space. For example, if a must be linked to b, and
the distance dist(a, c) is small, then when the distance metric is warped to
bring a closer to b, it is also likely that the distance dist(b, c) will shrink and
the algorithm will cluster b and c together as well. The performance gains that
have been achieved when adapting the distance metric to the constraints are a
testament to the common reliability of this assumption.

However, the assumption that proximity can be used to propagate constraints
is not always a valid one. It is only reasonable if the distance in feature space is
consistent with the distances that are implied by the constraint set. This often
holds true, since the features that are chosen to describe the data points are
consistent with the data labels, which are commonly the source of the constraints.
One exception is the tic-tac-toe data set from the UCI archive [10]. In this
data set, each item is a 3x3 tic-tac-toe board that represents an end state for
the game, assuming that the ‘x’ player played first. The boards are represented
with nine features, one for each position on the board, and each one can take on
a value of ‘x’, ‘o’, or ‘b’ (for blank). The goal is to separate the boards into two



x x x
x o o
o

x x o
x o x
o

Board A Board B

Win for X Loss for X

Board C

Win for X

o o x
o x x
x x o

dist(A,B)
dist(B,C)
dist(A,C)

2
8
8

Hamming distances

Fig. 1. Three items (endgame boards) from the tic-tac-toe data set. For clarity,
blanks are represented as blanks, rather than spaces marked ‘b’. The Hamming dis-
tances between each pair of boards are shown on the right.

clusters: one with boards that show a win for ‘x’ and one with all other boards
(losses and draws).

This data set is challenging because proximity in the feature space does not
correlate well with similarity in terms of assigned labels. Consider the examples
shown in Figure 1. Hamming distance is used with this data set, since the features
have symbolic values. Boards A and B are very similar (Hamming distance of
2), but they should be joined by a cannot-link constraint. In contrast, boards A
and C are very different (Hamming distance of of 8), but they should be joined
by a must-link constraint. In this situation, propagating constraints to nearby
(similar) items will not help improve performance (and may even degrade it).

Clustering performance on this data set is typically poor, unless a large num-
ber of constraints are available. The basic k-means algorithm achieves a Rand
Index of 51%; COP-KMEANS requires 500 randomly selected constraints to
increase performance to 92% [2]. COP-COBWEB is unable to increase its per-
formance above the baseline of 49% performance, regardless of the number of
constraints provided [1]. In fact, when we examine performance on a held-out
subset of the data1, it only increases to 55% for COP-KMEANS, far lower than
the 92% performance on the rest of the data set. For most data sets, the held-out
performance is much higher [2]. The low held-out performance indicates that the
algorithm is unable to generalize the constraint information beyond the exact
items that participate in constraints. This is a sign that the constraints and the
features are not consistent, and that propagating constraints may be dangerous.
The results of applying metric learning methods to this data set have not yet
been published, probably because the feature values are symbolic rather than
real-valued. However, we expect that metric learning would be ineffective in this
case.

Challenges to be addressed in this area are: 1) to characterize data sets in
terms of whether or not constraints should be propagated (when is it “safe”
and when should the data overrule the constraints?), and 2) to determine the
degree to which the constraints should be propagated (e.g., how far should the

1 The data subset is “held-out” in the sense that no constraints were generated on
the subset, although it was clustered along with all of the other items once the
constraints were introduced.



local neighborhood extend, for each constraint?). It is possible that constraint
set coherence [9] could be used to help estimate the relevant neighborhood for
each point.

3 Conclusions

This paper outlines several important unanswered questions that relate to the
practice of constrained clustering. To use constrained clustering methods effec-
tively, it is important that we have tools for estimating the value of a given
constraint set prior to clustering. We also seek to minimize the cost of acquir-
ing constraints. Finally, we require guidance in determining when and how to
share or propagate constraints to their local neighborhoods. In addressing each
of these subjects, we will make it possible to confidently apply constrained clus-
tering methods to very large data sets in an efficient, principled fashion.

Acknowledgments. I would like to thank Sugato Basu and Ian Davidson for on-
going discussions on constrained clustering issues and their excellent tutorial, “Clus-
tering with Constraints: Theory and Practice,” presented at KDD 2006. The research
described in this paper was funded by the NSF ITR Program (grant #0325329) and
was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

References

1. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings
of the Seventeenth International Conference on Machine Learning. (2000) 1103–
1110

2. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means cluster-
ing with background knowledge. In: Proceedings of the Eighteenth International
Conference on Machine Learning. (2001) 577–584

3. Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian mixture
models with EM using equivalence constraints. In: Advances in Neural Information
Processing Systems 16. (2004)

4. Wagstaff, K.L.: Intelligent Clustering with Instance-Level Constraints. PhD thesis,
Cornell University (2002)

5. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: Proceedings of the Twenty-First International
Conference on Machine Learning. (2004) 11–18

6. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a Mahalanobis metric
from equivalence constraints. Journal of Machine Learning Research 6 (2005) 937–
965

7. Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-
level constraints: Making the most of prior knowledge in data clustering. In: Pro-
ceedings of the Nineteenth International Conference on Machine Learning. (2002)
307–313



8. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems 15. (2003)

9. Davidson, I., Wagstaff, K.L., Basu, S.: Measuring constraint-set utility for parti-
tional clustering algorithms. In: Proceedings of the Tenth European Conference
on Principles and Practice of Knowledge Discovery in Databases. (2006) 115–126

10. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998)

11. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the SIAM International Conference on Data
Mining. (2004) 333–344

12. Xu, Q., desJardins, M., Wagstaff, K.L.: Active constrained clustering by examining
spectral eigenvectors. In: Proceedings of the Eighth International Conference on
Discovery Science. (2005) 294–307

13. Xu, Q.: Active Querying for Semi-supervised Clustering. PhD thesis, University
of Maryland, Baltimore County (2006)

14. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2 (2002) 45–66


