
Model Compilation for Real-Time Planning and Diagnosis with Feedback

Anthony Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, MIS 126-347, Pasadena, CA 91 109

anthony.barrett@jpl.nasa.gov

Abstract
This paper describes MEXEC, an implemented
micro executive that compiles a device model that
can have feedback into a structure for subsequent
evaluation. This system computes both the most
likely current device mode from n sets of sensor
measurements and the n-1 step reconfiguration
plan that is most likely to result in reaching a
target mode - if such a plan exists. A user tunes
the system by increasing n to improve system
capability at the cost of real-time performance.

1 Introduction
Over the past decade spacecraft complexity has exploded
with increasingly ambitions mission requirements.
Relatively simple flyby probes have been replaced with
more capable remote orbiters, and these orbiters are slowly
becoming communications relay satellites for even more
ambitious mobile landers like the current Mars Exploration
Rover, the planned Mars Science Lab, and the suggested
aerobot at Titan. With this increased complexity there is
also an increased probability that components will break
and in unexpected ways with subtle interactions. While
traditional approaches hand-craft rule-based diagnosis and
recovery systems, the difficulty in creating these rule bases
quickly gets out of hand as component interactions become
more subtle. Model-based approaches address this issue,
but their acceptance has been retarded by the complexity of
their underlying evaluation systems when compared with a
simple rule evaluator whose performance is guaranteed to
be linear in the number of rules [Darwiche, 20001.

This paper combines ideas from Livingston [Williams
and Nayak, 19961 with results in knowledge compilation
for diagnosis [Darwiche, 19981 and planning [Barrett,
20041 to create MEXEC, a micro executive that is both
model-based and has an onboard evaluation system whose
simplicity is comparable to that of a rule evaluator. This
involves taking a device model and compiling it into a
structure that facilitates determining both a system's current
mode and how to reconfigure to a desired target mode in

Offline Oding - - - - - -

: I Adapters 1
Figure 1 : Online/Offline architecture for MEXEC

linear time. Thus the system's architecture consists of an
offline compiler and an online evaluator (see figure 1).

In addition an online performance guarantee, the global
system reasoning during compilation handles feedback
loops without any explicit mechanism. Also, the same
compiled structure facilitates both mode identification and
planning. Evaluating it one way computes the most likely
current mode given n sets of measurements, and evaluating
it another way computes the best n-1 step reconfiguration
plan given current and target modes - if such a plan exists.

This paper starts by defining our device representation
language and compares it with Livingston's. It next
presents a simple example device and shows how to
compile it into an internal representation for linear time
planning and diagnosis. The subsequent section shows
how the structure is evaluated for both planning and
diagnosis. To provide some realism, the implementation is
described with a number of experiments. Finally the paper
ends with a discussion of future work and conclusions.

2 Representing Devices
MEXEC's device modeling language is a simplified yet
equally expressive variant of Livingstone's MPL. We
model a device as a connected set of components, where
each component operates in one of a number of modes.
Essentially, each mode defines the relationships between a
component's inputs and its outputs. More precisely, we use
five constructs to define: types of connections, abstract
relations, components with modes and relations between
inputs and outputs, modules to define multiple component

subsystems, and the top-level system being diagnosed. The
following conventions facilitate defining our syntax.

A word in italic denotes a parameter, like value.
Ellipsis denotes repetition, like value.. .
Square brackets denote optional contents, like [value].
A vertical bar denotes choice between options, like
false I true.

With these conventions the entire language's syntax is
defined in figure 2, which has constructs to respectively
define connection types, well-formed formulas with
arguments, user defined relations, components, modules,
and a system. Just like Livingstone, system name's
structure is a connected set of components and modules
with inputloutput ports, but unlike Livingston these inputs
and outputs can form feedback loops and are statically
defined in :connections sensed connections (:sensors) and
the commanded connections (:affectors). While the wffs in
components can only refer to variables in local component
ports, the wffs in :constraint entries can refer variables
defined in :structure elements as well as locally defined
variables.

Another divergence from Livingstone involves the
modeling of components. While the syntax is similar, the
semantics revolves around the concept of cost. Essentially
a mode's cost denotes now unlikely it is irrespective of any
information, and a transition's cost denotes how unlikely it
is when its preconditions hold. While getting costs from
Livingston's probabilities is a simple matter of taking a
probability's negative log, our formalism makes users
directly specify costs to reflect that the number specified is
manually guessed, just like a probability.

(defvalues ctype (value.. .))
wff-1 :false I :true I (:not wff) I (:and wff. ..) I (:or wff. ..) I

(= cname value) I (== cname cname) I (rname arg.. .)
1 arg -t wff 1 cname I value I I (defrelation rname (parameter. ..) wf9 I

(defcomponent stype
:ports ((ctype cname). . .)
:modes ((mname [:cost infl [:model wffl) ...)
:transitions (({mname I *} - > mname wff [:cost w t]) ...))

(defmodule stype
:ports ((ctype cname). . .)
:connections ((ctype cname). . .)
:structure ((stype sname (cname.. .)).. .)

[:constraint wff])

(defsystem name
:sensors ((ctype cname).. .)

[:affectors ((ctype cname). . .)]
[:connections ((ctype cname). . .)]
:structure ((stype sname (cname. ..)). ..)

[:constraint wff])

Figure 2: Syntax of device modeling language

3 Model Compilation
i

To provide an example of a modeled device, consider the
following system, which has a single siderostat for tracking
a star within an interferometer. This system is kept as
simple as possible in order to facilitate its use as a running
example in the rest of the paper. It starts by defining the
values and then defines a component using the values and
finally defines a system in terms of the component. One
semantic restriction not mentioned in the syntax is that a
definition cannot be used until after it has appeared. This
keeps modelers from crafting infinite recursive definitions.

(defvalues boolean (false true))

(defvalues command (idle track none))

(def component siderostat
:ports ((command in) (boolean valid))
:modes ((Tracking :model (= valid true)

:cost 20)
(Idling :model (= valid false)
:cost 5)

(unknown :cost 1000))
:transitions
((Tracking - > Idling (= in idle))
(Idling -> Tracking (= in track))
(* - > unknown :true :cost 1000))))

(defsystem tst
:sensors ((boolean 0))
:affectors ((command c))
:structure ((siderostat sw (c o))))

3.1 Model to CNF
Compiling a device model starts by taking a system
definition and recursively expanding its modules using the
defmodules until only components remain with an optional
conjunctive constraint. Since the example lacked any
defmodules, this step results in a single component called
"sw" which is a siderostat in the following list, where c is a
command effecter and o is a Boolean observation sensor

((siderostat sw (c 0)))

As the example implies, name substitution occurs
during the expansion. Inputs and outputs are replaced by
actual parameter names - i n and val id respectively
become c and o. While not visible in this example,
components are uniquely named by prefixing each structure
element name with the cursent module name. For instance,
if t s t were a module, sw would become t s t * sw, and the
connection names would be similarly prefixed. This
naming convention facilitates allowing module constraints
that refer to connections and modes in substructure.

After determining components, their mode definitions
are converted into a Boolean expression. This involves
building an equation with the following form, where sname
is the component's name, and each disjunctive entry is for a
different mode mname with model wff. Within this form,
notice the subscripts that vary from 0 to n-1.

For example, if n were one in our example the resulting
I equation would be the following.

(:and (: o r (:not (= sw*mode, Tracking))
(= o t r u e))

(: o r (:not (= sw*mode, I d l i ng))
(= o f a l s e)))

For higher a, the disjuncts are replicated for each step
and transition disjuncts are added. Transition disjuncts
take on the following form, where s n a m e is the component
name, X denotes the X" component transition, f r m J t o x
respectively denote the transition's source/destination, and
wf f x , , denotes its precondition at step i. When f r m x is
"*", the f r m x constraint is dropped to denote that the
transition is always enabled.

Finally, these user-defined disjuncts are supplemented
with system-defined disjuncts for not transitioning at all.
They look respectively as follows, where the noop
equation's size depends on the number of transitions in
order to avoid choosing no transition when some transition
is enabled.

(: o r (:not (= snameXtransi noop))
(: and (== snarne*modei ~name*mode,+~)

(: o r (:not (= sname*mode, frrnx))
(:not w f f X , =)) ...)))

Finally, with these constructs the compiler turns the a set
of components into a single Boolean equation, conjoins
that equation with the conjunction of :constraint wfh, and
subsequently flatten the equation into a CNF form.

3.2 CNF to DNNF
Unfortunately finding a minimal satisfying assignment to a
CNF equation is an NP-complete problem, and more
compilation is needed to achieve linear time evaluation.
Fortunately results from knowledge compilation research
[Darwiche and Marquis, 20021 show how to convert the
CNF representation into Decomposable Negation Normal
Form (DNNF). It turns out that this form of logical
expression can be evaluated in linear time to compute
either the most likely diagnosis or an optimal a level plan.

While DNNF has been defined ~reviouslv in terms of a
Boolean expression, we make a slight extension for
variable logic equations, where the negation of a variable
assignment can be replaced by a disjunct of all other
possible assignments to that same variable. This extends
the DNNF formalism to constraint satisfaction problems.

Definition 1: A variable logic equation is in Decom~osable
Negation Normal Form if (1) it contains no negations and
(2) the subexpressions under each conjunct refer to disjoint
sets of variables.

Just as in the Boolean case, there are multiple possible
variable logic DNNF expressions equivalent to the CNF
and the objective is to find one that is as small as possible.

Since Disjunctive Normal Form is also DNNF, the largest
DNNF equivalent is exponentially larger than the CNF.
Fortunately much smaller DNNF equivalents can often be
found. The approach here mirrors the Boolean approach to
finding a d-DNNF [Darwiche, 20021 by first recursively
partitioning the CNF disjuncts and then traversing the
partition tree to generate the DNNF.

The whole purpose for partitioning the disjuncts is to
group those that refer to the same variables together and
those that refer to different variables in different partitions.
Since each disjunct refers to multiple variables, it is often
the case that the disjuncts in two sibling partitions will refer
to the same variable, but minimizing the cross partition
variables dramatically reduces the size of the DNNF
equation. This partitioning essentially converts a flat
conjunct of disjuncts into an equation tree with internal
AND nodes and disjuncts of literals at the leaves, where the
number of propositions appearing in multiple branches
below an AND node is minimized.

Mirroring the Boolean compiler, partitioning is done by
mapping the CNF equation to a hyper-graph, where nodes
and hyper-arcs respectively correspond to disjuncts and
variables. The nodes that each hyper-arc connects are
determined by the disjuncts where the hyper-arc's
corresponding variable appears. Given this hyper-graph, a
recursive partitioning using a probabilistic min-cut
algorithm [Wagner and Klimmek, 19961 computes a
relatively good partition tree for the disjuncts, and
generalizing this algorithm by weighting the hyperarcs with
associated variable cardinalities does even better. See
Figure 3 for an extremely simple example with two
disjuncts and three variables whose cardinalities are 2.
From the equation tree perspective, there is an AND node
on top above disjuncts at the leaves. The branches of the
AND node share the variable b, which is recorded in the top
node's Sep set.

(and I(or a=f b=t) l l (o r b=f c = t) I)

a b c I se;!%, I
I I

(o r a=£ b = t) I (o r b=f c = t)

Figure 3: Example of partitioning a CNF equation

Once the equation tree is computed, computing the
DNNF involves extracting each AND node's associated
shared variables using the equality

eqn = V (v = c A eqn \ {V = c}),
cedoma~n(v)

where eqn\{v=c} is an equation generated by replacing
disjuncts containing v=c with True and removing
assignments to v from other disjuncts. If a disjunct ever
ends up with no assignments, it becomes False.

More formally, the DNNF equation is recursively
defined on the equation tree using the two formulas below,
where the first and second apply to internal and leaf nodes
respectively. In the first formula, instances(N.Sep,a) refers
to the set of possible assignments to the vector of variables
in N.Sep that are consistent with a. For instance, running
these formulas over Figure 3's tree starts by calling
dnnJTroot,True), and the instances are b= t and b=f since
only b is in root.Sep, and both assignments agree with
True. In general the number of consistent instances grows
exponentially with N.Sep, leading to the use of min-cut to
reduce the size of N.Sep for each partition.

dnnf (N , a) =

True if a a disj

V p if 3p 2 a 7p
ps disj &a3 ~p

False Otherwise

While walking the equation tree does provide a DNNF
equation that can be evaluated in linear time, two very
important optimizations involve merging common sub-
expressions to decrease the size of the computed structure
and caching computations made when visiting a node for
improving compiler performance [Darwiche, 20021. In
Figure 4 there were no common sub-expressions to merge,
and the resulting DNNF expression appears below.

(or (and b=t c=t) (and b=f a=£))

4 Onboard Evaluation
To illustrate a less trivial DNNF expression, consider the
Figure 4 for the siderostat DNNF. Actually this is a slight
simplification of the generated DNNF in that it was
generated from a siderostat model that lacked the unknown
mode - where the omission was motivated by space
limitations. This expression's top rightmost AND node has
three children, and each child refers to a unique set of
variables. From top to bottom these disjoint sets
respectively are

{sw*model}, {ol }, and {sw*modeo, sw*transo, 00, cO}.

Given that DNNF AND nodes have a disjoint branches
property, finding optimal satisfying variable assignments
becomes a simple three-step process:
1. associate costs with variable assignments in leaves;
2.propagate node costs up through the tree by either

assigning the min or sum of the descendents' costs to an
OR or AND node respectively; and

3. if the root's cost is 0, infinity, or some other value then
respectively return default assignments, failure, or
descend from the root to determine and return the
variable assignments that contribute to its cost.

Actually, the algorithm is a little more general in that
step 2 computes the number of min-cost assignments, and
step 3 can extract any one of them in linear time.

4.1 Mode Estimation
Evaluating a DNNF structure to determine component 6

modes starts by assigning costs to the name*mode,
variables, where these costs come from the :cost entry
associated with each mode in the original model, and
missing cost entries are assumed to be zero. For instance,
none of the transitions have associated costs in the model,
resulting in assigning zero to the name*trans, leave
costs. Finally, sensed values are assigned either zero or
infinity depending on the value sensed. In this case the
sensed values for o, and o, were both true.

5: [sw*modeo = Idling]
inf: [co = track]
inf: [oO = false]

0: [sw*transo = 21
0: [sw*mode, = Idling]

0: [oo = true]
0: [sw*transo = 11

Figure 4: Evaluating a 2 level DNNF structure to determine the
siderostat mode from two sets of observations.

Following the simple propagation step, the associated
node costs appear above the nodes in Figure 4. Note that
the cost is of the top level node is 20. This value is used to
prune the search when descending down the tree to
determine the assignment to sw*mode,, which is the most
likely siderostat mode that matches the observations.

While this approach assumes forgetting of old state
information, it can be enhanced to either remember the
most likely last state or a set of likely last states using a
particle filter approach. Since the only difference between
such approaches revolves around leaf cost assignments, the
requisite changes are very manageable.

4.2 Reconfiguration Planning
When evaluating a DNNF structure for a reconfiguration
plan, a cost is assigned to each variable using a number of
planning dependent preferences. First, not performing an
action has zero cost. This results in associating zero with
all leaves that set transitions to noops. Second, leaves
denoting other transitions are assigned costs that come
from :cost entries associated with transitions. In the
example all of these costs are assumed to be zero. Finally

name*mode, and name*mode, entries are assigned costs
@ that depend respectively on the current and target mode.

Those leaf assignments that are consistent with these modes
will cost zero and inconsistent leaves get an infinite cost.
For instance, Figure 5 documents the evaluation to take a
currently tracking siderostat and make it idle. In this case
the cost is propagated up and then it is used to guide the
descent to find the desired cost of c,, the effecter variable.

ink [sw*model = Tracking]
0: [ol= true]

0: [oO = false]
0: [sw*transo = 21
0: [sw*model = Idling]

inf: [sw*modeo = Idling]
0: [sw*transo = noop]

0: [oO = true]
0: [sw*transo = 11

Figure 5: Evaluating a 2 level DNNF structure to compute a
reconfiguration plan.

While a need to keep this example simple motivating
not tagging transitions with costs, such tags reflect the
likelihood of a transition once its preconditions are met.
Thus, multiple transitions can have consistent preconditions
and the underlying evaluation will actually adjust the
preconditions to maximize the likelihood that the triggered
transitions will result in attaining the target conditions.
This implies that the planning algorithm finds n step
solutions to probabilistic planning problems like those of
BURIDAN [Kushmerick et al., 19941. From this vantage
point MEXEC's compiled internal structure can be viewed
as a limited policy for solving POMDP problems if a
solution can be found in n-1 steps, but this perspective has
yet to be fully explored.

5 Implementation and Experiments
The system is currently implemented in Allegro Common
LISP with under 500 lines to compute a device's associated
CNF, under 500 lines to compute a CNF equation's
associated DNNF, and less than 80 lines to evaluate a
DNNF equation to find all minimal cost satisfactions.

In addition to testing MEXEC on various switching
circuit examples, there has been some work on developing
and experimenting with models of a Space Interferometer
Mission Test Bed 3 (STB-3) model [Ingham et al., 20011

COLLECTOR COMBINER

Wlde
Angle

Polntlng

' Intensity
Gradient
Detector

Laser

Fast Seenng
Mlrmr
Star Tracker

Angle

Delay Line

* Laser Counter ' Fnnge Tracker

Figure 6: A simplified schematic of the Formation Interferometer
Testbed (FIT). The left side of the dotted line represents the
collector spacecraft and the right side of the dotted line
represents the combiner spacecraft.

as well as the Formation Interferometer Test Bed (FIT)
model, which is an extension on the STB-3 model. While
STB-3 represents a single spacecraft interferometer, FIT
represents a separated spacecraft interferometer. As
illustrated in Figure 6, FIT is composed of combiner (right)
and collector (left) spacecraft. The collector spacecraft
precisely points at a star and reflects the starlight beam to
the combiner spacecraft. While the combiner spacecraft
also points at the star to collect the starlight, it also
accurately points at the collector spacecraft in order to
combine the starlight from the collector spacecraft with its
own.

Table 1: DNNF sizes (in nodes) of interferometers with C
components, V variables, S sensors, and n levels.

Compiling these two models for instantaneous (n = 1)
through three step (n = 4) DNNF structures results in the
generation of Table 1. The initial message to pull out of
this exercise is that instantaneous DNNF structures, for
diagnosis only, tend to be extremely compact, but as n
increases so does the DNNF size. Thus increasing n makes
the system able to reason over longer durations when either
diagnosing or planning, but the increased capability comes
at the cost of longer evaluation times since DNNF equation
evaluation is linear in equation size.

Still, work on planning [Barrett, 20041 and strict DNNF
compilation [Darwiche, 20021 leads one to suspect that the
scaling issue can be improved. In the case of our empirical
experiments, the scaling issue already has been improved
by an order of magnitude. The results reported in [Chung
and Barrett, 20031 had a 4318 node DNNF structure for the
FIT model with n = 1.

n&4 -
36354
39705

qi-3iice
STB-3

FIT

av
26
64

7
17

4s
13
12

125
235

ng2
851

1488
5191
7620

6 Related Work
While others have made the leap to applying compilation
techniques to both simplify and accelerate embedded
computation to determine a system's current mode of
operation, they are more restricted than MEXEC. First,
DNNF equation creation and evaluation was initially
developed in a diagnosis application [Darwiche, 19981, but
the resulting system restricted a component to only have
one output and that there cannot be directed cycles
(feedback) between components. MEXEC makes neither
of these restrictions. The Mimi-ME system [Chung et al.,
20011 similarly avoided making these restrictions, but it
lacks hard real-time guarantees by virtue of having to solve
an NP-complete problem, called MIN-SAT, when
converting observations into mode estimates. MEXEC
supports hard real-time performance guarantees.

The closest related work on real-time reconfiguration
planning comes from the Burton reconfiguration planner
used on DS-1 [Williams and Nayak, 19971 and other
research on planning via symbolic model checking [Cimatti
and Roveri, 19991. In the case of Burton our system
improves on that work by relaxing a number of restricting
assumptions. For instance, Burton required the absence of
causal cycles (feedback), no two transitions within a
component can be simultaneously enabled, and that each
transition must have a control variable in its precondition.
MEXEC has none of these restrictions. On the other hand,
our system can only plan n steps ahead where Burton did
not have that limitation. Similarly, the work using
symbolic model checking lacked the n-step restriction, but
it compiled out a universal plan for a particular target state.
Our system uses the same compiled structure to determine
how to reach any target state within n steps of the current
state.

7 Conclusions
This paper presented the MEXEC system, a knowledge-
compilation based approach to implementing an offline
domain compiler that enables embedded hard real-time
diagnosis and reconfiguration planning for more robust
system commanding. This system also enables feedback
reasoning by virtue of global analysis during compilation.

Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The
author would also like to thank Alan Oursland, Seung
Chung, Adnan Darwiche, Daniel Dvorak, and Mitch
Ingharn for discussions contributing to this effort

References
[Barrett, 20041 Anthony Barrett. Domain Compilation for

Embedded Real-Time Planning. In Proceedings of the
Fourteenth International Conference on Automated

Planning & Scheduling, Whistler, British Columbia,
Canada, June 2004. AAAI Press. L

[Chung et al., 20011 Seung Chung, John Van Eepoel, and
Brian Williams. Improving Model-based Mode
Estimation through Offline Compilation. In Proceedings
of the lnternational Symposium on Artificial
Intelligence, Robotics and Automation in Space, St-
Hubert, Canada, June 2001.

[Chung and Barrett, 20031 Seung Chung and Anthony
Barrett. Distributed Real-time Model-based Diagnosis.
In Proceedings of the 2003 IEEE Aerospace Conference,
Big Sky, MT. March 2003.

[Cimatti and Roveri, 19991 Alessandro Cimatti and Marco
Roveri. Confonnant Planning via Model Checking. In
Recent Advances in AI Planning, 5th European
Conference on Planning, Durham, UK: Springer

[Darwiche, 19981 Adnan Darwiche. Model-based diagnosis
using structured system descriptions. Journal of
Artificial Intelligence Research, 8: 165-222.

parwiche, 20001 Adnan Darwiche. Model-based diagnosis
under real-world constraints. AI Magazine, Summer
2000.

[Darwiche, 20021 Adnan Darwiche. A Compiler for
Deterministic Decomposable Negation Normal Form. In
Proceedings of the Eighteenth National Conference on
Artificial Intelligence. 627-634. Edmonton, Alberta,
Canada: AAAI Press.

[Darwiche and Marquis, 20021 Adnan Darwiche and Pierre
Marquis. A Knowledge Compilation Map. Journal of
Artificial Intelligence Research 17:229-264.

[Ingham et al., 20011 Michel Ingham, Brian Williams,
Thomas Lockhart, Amalaye Oyake, Micah Clarke, and
Abdullah Aljabri. Autonomous Sequencing and Model-
based Fault Protection for Space Interferometry, In
Proceedings of International Symposium on Artificial
Intelligence, Robotics and Automation in Space, St-
Hubert, Canada, June 2001.

[Kushmerick et al., 19941 Nicholas Kushmerick, Steve
Hanks, and Daniel Weld. An Algorithm for Probabilistic
Least-Commitment Planning. In Proceedings of the
Twelfh National Conference on Artificial Intelligence,
Seattle, WA: AAAI Press. 1994.

[Wagner and Klirnrnek, 19961 Frank Wagner and Regina
Klimmek. A Simple Hypergraph Min Cut Algorithm.
Technical Report, b 96-02, Inst. Of Computer Science,
Freie UniversitM Berlin. 1996.

[Williams and Nayak, 19961 Brian Williams and P.
Pandurang Nayak. A Model-based Approach to Reactive
Self-configuring Systems. In Proceedings of the
Thirteenth National Conference on Arti!cial
Intelligence, Portland, OR: AAAI Press. 1996.

[Williams and Nayak, 19971 Brian Williams and P.
Pandurang Nayak. A Reactive Planner for a Model-based
Executive. In Proceedings of the Fijleenth International
Joint Conference on Artificial Intelligence, Nagoya,
Japan: Morgan Kaufrnann. 1997.

