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Abstract 
This paper describes MEXEC, an implemented 
micro executive that compiles a device model that 
can have feedback into a structure for subsequent 
evaluation. This system computes both the most 
likely current device mode from n sets of sensor 
measurements and the n-1 step reconfiguration 
plan that is most likely to result in reaching a 
target mode - if such a plan exists. A user tunes 
the system by increasing n to improve system 
capability at the cost of real-time performance. 

1 Introduction 
Over the past decade spacecraft complexity has exploded 
with increasingly ambitions mission requirements. 
Relatively simple flyby probes have been replaced with 
more capable remote orbiters, and these orbiters are slowly 
becoming communications relay satellites for even more 
ambitious mobile landers like the current Mars Exploration 
Rover, the planned Mars Science Lab, and the suggested 
aerobot at Titan. With this increased complexity there is 
also an increased probability that components will break 
and in unexpected ways with subtle interactions. While 
traditional approaches hand-craft rule-based diagnosis and 
recovery systems, the difficulty in creating these rule bases 
quickly gets out of hand as component interactions become 
more subtle. Model-based approaches address this issue, 
but their acceptance has been retarded by the complexity of 
their underlying evaluation systems when compared with a 
simple rule evaluator whose performance is guaranteed to 
be linear in the number of rules [Darwiche, 20001. 

This paper combines ideas from Livingston [Williams 
and Nayak, 19961 with results in knowledge compilation 
for diagnosis [Darwiche, 19981 and planning [Barrett, 
20041 to create MEXEC, a micro executive that is both 
model-based and has an onboard evaluation system whose 
simplicity is comparable to that of a rule evaluator. This 
involves taking a device model and compiling it into a 
structure that facilitates determining both a system's current 
mode and how to reconfigure to a desired target mode in 
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Figure 1 : Online/Offline architecture for MEXEC 

linear time. Thus the system's architecture consists of an 
offline compiler and an online evaluator (see figure 1). 

In addition an online performance guarantee, the global 
system reasoning during compilation handles feedback 
loops without any explicit mechanism. Also, the same 
compiled structure facilitates both mode identification and 
planning. Evaluating it one way computes the most likely 
current mode given n sets of measurements, and evaluating 
it another way computes the best n-1 step reconfiguration 
plan given current and target modes - if such a plan exists. 

This paper starts by defining our device representation 
language and compares it with Livingston's. It next 
presents a simple example device and shows how to 
compile it into an internal representation for linear time 
planning and diagnosis. The subsequent section shows 
how the structure is evaluated for both planning and 
diagnosis. To provide some realism, the implementation is 
described with a number of experiments. Finally the paper 
ends with a discussion of future work and conclusions. 

2 Representing Devices 
MEXEC's device modeling language is a simplified yet 
equally expressive variant of Livingstone's MPL. We 
model a device as a connected set of components, where 
each component operates in one of a number of modes. 
Essentially, each mode defines the relationships between a 
component's inputs and its outputs. More precisely, we use 
five constructs to define: types of connections, abstract 
relations, components with modes and relations between 
inputs and outputs, modules to define multiple component 



subsystems, and the top-level system being diagnosed. The 
following conventions facilitate defining our syntax. 

A word in italic denotes a parameter, like value. 
Ellipsis denotes repetition, like value.. . 
Square brackets denote optional contents, like [value]. 
A vertical bar denotes choice between options, like 
false I true. 

With these conventions the entire language's syntax is 
defined in figure 2, which has constructs to respectively 
define connection types, well-formed formulas with 
arguments, user defined relations, components, modules, 
and a system. Just like Livingstone, system name's 
structure is a connected set of components and modules 
with inputloutput ports, but unlike Livingston these inputs 
and outputs can form feedback loops and are statically 
defined in :connections sensed connections (:sensors) and 
the commanded connections (:affectors). While the wffs in 
components can only refer to variables in local component 
ports, the wffs in :constraint entries can refer variables 
defined in :structure elements as well as locally defined 
variables. 

Another divergence from Livingstone involves the 
modeling of components. While the syntax is similar, the 
semantics revolves around the concept of cost. Essentially 
a mode's cost denotes now unlikely it is irrespective of any 
information, and a transition's cost denotes how unlikely it 
is when its preconditions hold. While getting costs from 
Livingston's probabilities is a simple matter of taking a 
probability's negative log, our formalism makes users 
directly specify costs to reflect that the number specified is 
manually guessed, just like a probability. 

(defvalues ctype ( value.. . )) 
wff-1 :false I :true I (:not wff) I (:and wff. .. ) I (:or wff. .. ) I 

(= cname value) I (== cname cname) I (rname arg.. . ) 
1 arg -t wff 1 cname I value I I (defrelation rname ( parameter. .. ) wf9 I 

(defcomponent stype 
:ports ( (ctype cname). . . ) 
:modes ( (mname [:cost infl [:model wffl) ...) 
:transitions (( {mname I *} - >  mname wff [:cost w t ] )  ...)) 

(defmodule stype 
:ports ( (ctype cname). . . ) 
:connections ( (ctype cname). . . ) 
:structure ( (stype sname ( cname.. . )).. . ) 

[:constraint wff]) 

(defsystem name 
:sensors ( (ctype cname).. . ) 

[:affectors ( (ctype cname). . . )] 
[:connections ( (ctype cname). . . )] 
:structure ( (stype sname ( cname. .. )). .. ) 

[:constraint wff]) 

Figure 2: Syntax of device modeling language 

3 Model Compilation 
i 

To provide an example of a modeled device, consider the 
following system, which has a single siderostat for tracking 
a star within an interferometer. This system is kept as 
simple as possible in order to facilitate its use as a running 
example in the rest of the paper. It starts by defining the 
values and then defines a component using the values and 
finally defines a system in terms of the component. One 
semantic restriction not mentioned in the syntax is that a 
definition cannot be used until after it has appeared. This 
keeps modelers from crafting infinite recursive definitions. 

(defvalues boolean (false true)) 

(defvalues command (idle track none)) 

(def component siderostat 
:ports ( (command in) (boolean valid) ) 
:modes ( (Tracking :model (=  valid true) 

:cost 20) 
(Idling :model (=  valid false) 
:cost 5) 

(unknown :cost 1000) ) 
:transitions 
( (Tracking - >  Idling (=  in idle) ) 
(Idling -> Tracking ( =  in track)) 
( *  - >  unknown :true :cost 1000)))) 

(defsystem tst 
:sensors ((boolean 0)) 
:affectors ( (command c) ) 
:structure ( (siderostat sw (c o) ) ) ) 

3.1 Model to CNF 
Compiling a device model starts by taking a system 
definition and recursively expanding its modules using the 
defmodules until only components remain with an optional 
conjunctive constraint. Since the example lacked any 
defmodules, this step results in a single component called 
"sw" which is a siderostat in the following list, where c is a 
command effecter and o is a Boolean observation sensor 

((siderostat sw (c 0))) 

As the example implies, name substitution occurs 
during the expansion. Inputs and outputs are replaced by 
actual parameter names - i n  and val id  respectively 
become c and o. While not visible in this example, 
components are uniquely named by prefixing each structure 
element name with the cursent module name. For instance, 
if t s t were a module, sw would become t s t * sw, and the 
connection names would be similarly prefixed. This 
naming convention facilitates allowing module constraints 
that refer to connections and modes in substructure. 

After determining components, their mode definitions 
are converted into a Boolean expression. This involves 
building an equation with the following form, where sname 
is the component's name, and each disjunctive entry is for a 
different mode mname with model wff. Within this form, 
notice the subscripts that vary from 0 to n-1. 



For example, if n were one in our example the resulting 
I equation would be the following. 

( :and ( : o r  ( :not (= sw*mode, Tracking) ) 
( =  o t r u e ) )  

( : o r  ( :not (=  sw*mode, I d l i ng )  ) 
( =  o f a l s e ) ) )  

For higher a,  the disjuncts are replicated for each step 
and transition disjuncts are added. Transition disjuncts 
take on the following form, where s n a m e  is the component 
name, X denotes the X" component transition, f r m J t o x  
respectively denote the transition's source/destination, and 
wf f x , ,  denotes its precondition at step i. When f r m x  is 
"*", the f r m x  constraint is dropped to denote that the 
transition is always enabled. 

Finally, these user-defined disjuncts are supplemented 
with system-defined disjuncts for not transitioning at all. 
They look respectively as follows, where the noop 
equation's size depends on the number of transitions in 
order to avoid choosing no transition when some transition 
is enabled. 

( : o r  ( :not (= snameXtransi noop) ) 
( : and ( == snarne*modei ~name*mode,+~) 

( : o r  ( :not  (= sname*mode, frrnx) ) 
( :not  w f f X , = )  ) ... ) ) ) 

Finally, with these constructs the compiler turns the a set 
of components into a single Boolean equation, conjoins 
that equation with the conjunction of :constraint wfh, and 
subsequently flatten the equation into a CNF form. 

3.2 CNF to DNNF 
Unfortunately finding a minimal satisfying assignment to a 
CNF equation is an NP-complete problem, and more 
compilation is needed to achieve linear time evaluation. 
Fortunately results from knowledge compilation research 
[Darwiche and Marquis, 20021 show how to convert the 
CNF representation into Decomposable Negation Normal 
Form (DNNF). It turns out that this form of logical 
expression can be evaluated in linear time to compute 
either the most likely diagnosis or an optimal a level plan. 

While DNNF has been defined ~reviouslv in terms of a 
Boolean expression, we make a slight extension for 
variable logic equations, where the negation of a variable 
assignment can be replaced by a disjunct of all other 
possible assignments to that same variable. This extends 
the DNNF formalism to constraint satisfaction problems. 

Definition 1: A variable logic equation is in Decom~osable 
Negation Normal Form if (1) it contains no negations and 
(2) the subexpressions under each conjunct refer to disjoint 
sets of variables. 

Just as in the Boolean case, there are multiple possible 
variable logic DNNF expressions equivalent to the CNF 
and the objective is to find one that is as small as possible. 

Since Disjunctive Normal Form is also DNNF, the largest 
DNNF equivalent is exponentially larger than the CNF. 
Fortunately much smaller DNNF equivalents can often be 
found. The approach here mirrors the Boolean approach to 
finding a d-DNNF [Darwiche, 20021 by first recursively 
partitioning the CNF disjuncts and then traversing the 
partition tree to generate the DNNF. 

The whole purpose for partitioning the disjuncts is to 
group those that refer to the same variables together and 
those that refer to different variables in different partitions. 
Since each disjunct refers to multiple variables, it is often 
the case that the disjuncts in two sibling partitions will refer 
to the same variable, but minimizing the cross partition 
variables dramatically reduces the size of the DNNF 
equation. This partitioning essentially converts a flat 
conjunct of disjuncts into an equation tree with internal 
AND nodes and disjuncts of literals at the leaves, where the 
number of propositions appearing in multiple branches 
below an AND node is minimized. 

Mirroring the Boolean compiler, partitioning is done by 
mapping the CNF equation to a hyper-graph, where nodes 
and hyper-arcs respectively correspond to disjuncts and 
variables. The nodes that each hyper-arc connects are 
determined by the disjuncts where the hyper-arc's 
corresponding variable appears. Given this hyper-graph, a 
recursive partitioning using a probabilistic min-cut 
algorithm [Wagner and Klimmek, 19961 computes a 
relatively good partition tree for the disjuncts, and 
generalizing this algorithm by weighting the hyperarcs with 
associated variable cardinalities does even better. See 
Figure 3 for an extremely simple example with two 
disjuncts and three variables whose cardinalities are 2. 
From the equation tree perspective, there is an AND node 
on top above disjuncts at the leaves. The branches of the 
AND node share the variable b, which is recorded in the top 
node's Sep set. 

(and I(or a=f b=t ) l l  ( o r  b=f c = t )  I ) 

a b c  I se;!%, I 
I I 

( o r  a=£ b = t )  I (o r  b=f c = t )  

Figure 3: Example of partitioning a CNF equation 

Once the equation tree is computed, computing the 
DNNF involves extracting each AND node's associated 
shared variables using the equality 

eqn = V (v = c A eqn \ {V = c}), 
cedoma~n(v)  

where eqn\{v=c} is an equation generated by replacing 
disjuncts containing v=c with True and removing 
assignments to v from other disjuncts. If a disjunct ever 
ends up with no assignments, it becomes False. 



More formally, the DNNF equation is recursively 
defined on the equation tree using the two formulas below, 
where the first and second apply to internal and leaf nodes 
respectively. In the first formula, instances(N.Sep,a) refers 
to the set of possible assignments to the vector of variables 
in N.Sep that are consistent with a. For instance, running 
these formulas over Figure 3's tree starts by calling 
dnnJTroot,True), and the instances are b= t  and b=f since 
only b is in root.Sep, and both assignments agree with 
True. In general the number of consistent instances grows 
exponentially with N.Sep, leading to the use of min-cut to 
reduce the size of N.Sep for each partition. 

dnnf ( N ,  a) = 

True if a a disj 

V p if 3p 2 a 7p  
ps disj &a3 ~p 

False Otherwise 

While walking the equation tree does provide a DNNF 
equation that can be evaluated in linear time, two very 
important optimizations involve merging common sub- 
expressions to decrease the size of the computed structure 
and caching computations made when visiting a node for 
improving compiler performance [Darwiche, 20021. In 
Figure 4 there were no common sub-expressions to merge, 
and the resulting DNNF expression appears below. 

(or (and b=t c=t) (and b=f a=£) ) 

4 Onboard Evaluation 
To illustrate a less trivial DNNF expression, consider the 
Figure 4 for the siderostat DNNF. Actually this is a slight 
simplification of the generated DNNF in that it was 
generated from a siderostat model that lacked the unknown 
mode - where the omission was motivated by space 
limitations. This expression's top rightmost AND node has 
three children, and each child refers to a unique set of 
variables. From top to bottom these disjoint sets 
respectively are 

{sw*model}, {ol }, and {sw*modeo, sw*transo, 00, cO}. 

Given that DNNF AND nodes have a disjoint branches 
property, finding optimal satisfying variable assignments 
becomes a simple three-step process: 
1. associate costs with variable assignments in leaves; 
2.propagate node costs up through the tree by either 

assigning the min or sum of the descendents' costs to an 
OR or AND node respectively; and 

3. if the root's cost is 0, infinity, or some other value then 
respectively return default assignments, failure, or 
descend from the root to determine and return the 
variable assignments that contribute to its cost. 

Actually, the algorithm is a little more general in that 
step 2 computes the number of min-cost assignments, and 
step 3 can extract any one of them in linear time. 

4.1 Mode Estimation 
Evaluating a DNNF structure to determine component 6 

modes starts by assigning costs to the name*mode, 
variables, where these costs come from the :cost entry 
associated with each mode in the original model, and 
missing cost entries are assumed to be zero. For instance, 
none of the transitions have associated costs in the model, 
resulting in assigning zero to the name*trans, leave 
costs. Finally, sensed values are assigned either zero or 
infinity depending on the value sensed. In this case the 
sensed values for o, and o, were both true. 

5: [sw*modeo = Idling] 
inf: [co = track] 
inf: [oO = false] 

0: [sw*transo = 21 
0: [sw*mode, = Idling] 

0: [oo = true] 
0: [sw*transo = 11 

Figure 4: Evaluating a 2 level DNNF structure to determine the 
siderostat mode from two sets of observations. 

Following the simple propagation step, the associated 
node costs appear above the nodes in Figure 4. Note that 
the cost is of the top level node is 20. This value is used to 
prune the search when descending down the tree to 
determine the assignment to sw*mode,, which is the most 
likely siderostat mode that matches the observations. 

While this approach assumes forgetting of old state 
information, it can be enhanced to either remember the 
most likely last state or a set of likely last states using a 
particle filter approach. Since the only difference between 
such approaches revolves around leaf cost assignments, the 
requisite changes are very manageable. 

4.2 Reconfiguration Planning 
When evaluating a DNNF structure for a reconfiguration 
plan, a cost is assigned to each variable using a number of 
planning dependent preferences. First, not performing an 
action has zero cost. This results in associating zero with 
all leaves that set transitions to noops. Second, leaves 
denoting other transitions are assigned costs that come 
from :cost entries associated with transitions. In the 
example all of these costs are assumed to be zero. Finally 



name*mode, and name*mode, entries are assigned costs 
@ that depend respectively on the current and target mode. 

Those leaf assignments that are consistent with these modes 
will cost zero and inconsistent leaves get an infinite cost. 
For instance, Figure 5 documents the evaluation to take a 
currently tracking siderostat and make it idle. In this case 
the cost is propagated up and then it is used to guide the 
descent to find the desired cost of c,, the effecter variable. 

ink [sw*model = Tracking] 
0: [ol= true] 

0: [oO = false] 
0: [sw*transo = 21 
0: [sw*model = Idling] 

inf: [sw*modeo = Idling] 
0: [sw*transo = noop] 

0: [oO = true] 
0: [sw*transo = 11 

Figure 5: Evaluating a 2 level DNNF structure to compute a 
reconfiguration plan. 

While a need to keep this example simple motivating 
not tagging transitions with costs, such tags reflect the 
likelihood of a transition once its preconditions are met. 
Thus, multiple transitions can have consistent preconditions 
and the underlying evaluation will actually adjust the 
preconditions to maximize the likelihood that the triggered 
transitions will result in attaining the target conditions. 
This implies that the planning algorithm finds n step 
solutions to probabilistic planning problems like those of 
BURIDAN [Kushmerick et al., 19941. From this vantage 
point MEXEC's compiled internal structure can be viewed 
as a limited policy for solving POMDP problems if a 
solution can be found in n-1 steps, but this perspective has 
yet to be fully explored. 

5 Implementation and Experiments 
The system is currently implemented in Allegro Common 
LISP with under 500 lines to compute a device's associated 
CNF, under 500 lines to compute a CNF equation's 
associated DNNF, and less than 80 lines to evaluate a 
DNNF equation to find all minimal cost satisfactions. 

In addition to testing MEXEC on various switching 
circuit examples, there has been some work on developing 
and experimenting with models of a Space Interferometer 
Mission Test Bed 3 (STB-3) model [Ingham et al., 20011 
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Figure 6: A simplified schematic of the Formation Interferometer 
Testbed (FIT). The left side of the dotted line represents the 
collector spacecraft and the right side of the dotted line 
represents the combiner spacecraft. 

as well as the Formation Interferometer Test Bed (FIT) 
model, which is an extension on the STB-3 model. While 
STB-3 represents a single spacecraft interferometer, FIT 
represents a separated spacecraft interferometer. As 
illustrated in Figure 6, FIT is composed of combiner (right) 
and collector (left) spacecraft. The collector spacecraft 
precisely points at a star and reflects the starlight beam to 
the combiner spacecraft. While the combiner spacecraft 
also points at the star to collect the starlight, it also 
accurately points at the collector spacecraft in order to 
combine the starlight from the collector spacecraft with its 
own. 

Table 1: DNNF sizes (in nodes) of interferometers with C 
components, V variables, S sensors, and n levels. 

Compiling these two models for instantaneous (n = 1) 
through three step (n = 4) DNNF structures results in the 
generation of Table 1. The initial message to pull out of 
this exercise is that instantaneous DNNF structures, for 
diagnosis only, tend to be extremely compact, but as n 
increases so does the DNNF size. Thus increasing n makes 
the system able to reason over longer durations when either 
diagnosing or planning, but the increased capability comes 
at the cost of longer evaluation times since DNNF equation 
evaluation is linear in equation size. 

Still, work on planning [Barrett, 20041 and strict DNNF 
compilation [Darwiche, 20021 leads one to suspect that the 
scaling issue can be improved. In the case of our empirical 
experiments, the scaling issue already has been improved 
by an order of magnitude. The results reported in [Chung 
and Barrett, 20031 had a 4318 node DNNF structure for the 
FIT model with n = 1. 
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6 Related Work 
While others have made the leap to applying compilation 
techniques to both simplify and accelerate embedded 
computation to determine a system's current mode of 
operation, they are more restricted than MEXEC. First, 
DNNF equation creation and evaluation was initially 
developed in a diagnosis application [Darwiche, 19981, but 
the resulting system restricted a component to only have 
one output and that there cannot be directed cycles 
(feedback) between components. MEXEC makes neither 
of these restrictions. The Mimi-ME system [Chung et al., 
20011 similarly avoided making these restrictions, but it 
lacks hard real-time guarantees by virtue of having to solve 
an NP-complete problem, called MIN-SAT, when 
converting observations into mode estimates. MEXEC 
supports hard real-time performance guarantees. 

The closest related work on real-time reconfiguration 
planning comes from the Burton reconfiguration planner 
used on DS-1 [Williams and Nayak, 19971 and other 
research on planning via symbolic model checking [Cimatti 
and Roveri, 19991. In the case of Burton our system 
improves on that work by relaxing a number of restricting 
assumptions. For instance, Burton required the absence of 
causal cycles (feedback), no two transitions within a 
component can be simultaneously enabled, and that each 
transition must have a control variable in its precondition. 
MEXEC has none of these restrictions. On the other hand, 
our system can only plan n steps ahead where Burton did 
not have that limitation. Similarly, the work using 
symbolic model checking lacked the n-step restriction, but 
it compiled out a universal plan for a particular target state. 
Our system uses the same compiled structure to determine 
how to reach any target state within n steps of the current 
state. 

7 Conclusions 
This paper presented the MEXEC system, a knowledge- 
compilation based approach to implementing an offline 
domain compiler that enables embedded hard real-time 
diagnosis and reconfiguration planning for more robust 
system commanding. This system also enables feedback 
reasoning by virtue of global analysis during compilation. 
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