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Decision Methods Outline

A. A Catalog of DM Methods

O Business Case Analysis / Financial Techniques
O Systems Engineering / Trade Studies Techniques

B. Summary and Observations
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A Catalog of Decision Making Methods in Space
Economics and Systems Engineering

Present Value and IRR
Cost-Benefit Analysis > Business Case Analysis/Financial Techniques

Real Options )
Cost-Effectiveness Analysis
Cost-Utility Analysis

Multi-Attribute Utility Theory (MAUT)
Analytic Hierarchy Process (AHP) )

>~ SE/Trade Study Techniques

Note: Decision processes may use decision analysis (trees), Monte Carlo simulation techniques,
and game theory (e.g., Nash equilibrium) as an overlaid framework for handling uncertainty.

Decision Methods 4
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Present Value and IRR

m Primary application in business case analysis for
commercial and some government investments

m Requires estimation of the stream of costs, C, and
revenues, R (or savings)

(=T
O PV calculation PV(”', T) — Z(Rl‘ — Ct)(l + r)_t
| =0
O IRR calculation ~ JRR =r *such that PV (r*,T) =0

m Treatment of uncertainty?

Decision Methods 5
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Cost-Benefit Analysis

m Given a market failure situation, should a particular
(public) investment be made?

m The foundation of cost-benefit analysis is the Kaldor-Hicks
compensation principle.

m Distributional (equity) issues are not addressed, and so-
called “secondary” or “intangible” benefits are typically
ignored.

m Benefit measures for public investment projects designed
to ultimately benefit consumers are generally based on the
concept of willingness-to-pay.

m Cost-benefit analysis is appropriate when there are market

prices that can be used to mnfer the values of the goods or
services produced by the public investment.

Decision Methods 6



INTERNATIONAL®
} SPACE UNIVERSITY

Real Options Analysis

m Real options valuation is a financial technique for
evaluating investments under conditions of uncertainty,
particularly uncertainty associated with market variables
such as future product demand or the future value of an
asset.

m Option pricing is a well-developed area of financial
engineering, where it deals with the valuation of puts, calls,
and more complex derivatives, but when applied to non-
financial assets, the term “real options” is used.

m [n real options valuation, the general ideas from financial
options pricing theory are used along with some of the
mathematics.

Decision Methods 7



INTERNATIONAL®
SPACE UNIVERSITY

Basic Concepts of Real-Options Valuation

“The future is uncertain . . . and in an uncertain environment, having
the flexibility to decide what to do after some of that uncertainty is
resolved definitely has value. Option-pricing theory provides the
means for assessing that value”

Robert C. Merton
Nobel Lecture, 1998

Decision Methods 8
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Basic Concepts of Real-Options Valuation

m The real-options approach captures the additional value of
managerial flexibility inherent in any phased investment, which
makes it more suitable than older methods.

O Mathematical representation of flexibility to alter course
O Bring market information to bear when its available
O Powerful analytic techniques based on stochastic processes

m The value v of a real (non-income producing) option that pays off
W(T) at future time T is given by the general formula:

v(t,T) = exp( — (T — t)) E[ max(0, W(T))]
where t 1s current time, E denotes the risk-neutral expected value,
and r 1s the riskless discount rate.

Decision Methods 10
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Space Applications of Real-Options TechniQHe

m Making commercial satellites compatible with on-orbit
servicing
Lamassoure, E., Saleh, J., and Hastings, D., “Space Systems

Flexibility Provided by On-Orbit Servicing, Parts 1 and 2, Journal

of Spacecraft and Rockets, Vol. 39, No. 4, pp. 551-570, July-August
2002

m NASA technology evaluation

Shishko, R. Ebbeler, D., and Fox, G. “NASA Technology Assessment
Using Real Options Valuation”, Systems Engineering, Vol. 7, No. 1,
pp. 1-12, February 2004

Decision Methods 11
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Cost-Effectiveness Analysis

m A general approach to the analysis of alternatives (trade
studies) that attempts to quantify selected MoEs and LCC

O Focus on choosing the best alternative from among competing
alternatives, not on whether the project is worth doing

O Should not be confused with Cost-Benefit Analysis

m Heavy reliance on engineering, operations, and cost
models/simulations

B Permits exploration of the tradespace for design
optimization (batch mode)

Decision Methods ‘ 12



INTERNATIONAL®
 SPACE UNIVERSITY

Measures of Effectiveness

m A mission Measure of Effectiveness (MOE) 1s defined as a quantitative
measure of the degree to which the mission’s purpose is achieved.

O For example, how much the mission returns in science data, and what the
resolution and coverage are.

m [t often depends on measures of performance (MoP), or size and
quantity measures of several inputs. (A “Design Vector™)
O Launch vehicle probability of success and injected mass
O EDL reliability
O Instrument performance
O Spacecraft subsystem (power, C&DH, telecomm, etc.) performance.

m Costi1s NOT a Measure of Effectiveness; cost 1s a measure of the
resources foregone.

m Cost-effectiveness is represented by a combination of both --
preferably as the whole Pareto frontier, but sometimes as points on
that frontier.

Decision Methods 13



it
L

Frontier)

Measure of Effectiveness

Project Life Cycle Cost
Level of effectiveness or level of cost usually is an external decision.

Decision Methods

Cost-Effectiveness Frontier (Pareto Optimal
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- Cost-Effectiveness Frontier (Pareto Optimal
Frontier)

Measure of Effectiveness

Project Life Cycle Cost
Level of effectiveness or level of cost usually is an external decision.
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Cost-Effectiveness Frontier (Pareto Optimal
Frontier)

95% Confidence Level

50% Confidence Level

Measure of Effectiveness

Project Life Cycle Cost
Level of effectiveness or level of cost usually is an external decision.

Decision Methods 16
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Cost-Effectiveness Frontier (Pareto Optimal

Frontier)

Measure of Effectiveness

Project Life Cycle Cost
Level of effectiveness or level of cost usually is an external decision.
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Cost-Utility Analysis

m Similar in intention to cost-effectiveness, but uses a utility
function to translate outcomes into a single decision
variable

m Uses basic decision analysis concepts (VN-M utility
theory) for decisions under risk.

m Decision analysis rests on 4 (sometimes 5) axioms
requiring rationality when making decisions under risk.

m Useful when outcomes are uncertain and decision maker
1s not risk neutral

Decision Methods 18
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Cost-Utility Analysis: Technical Aspects

m Alternative with the highest expected utility is preferred
EU)= Z piU(Xi)

. CE = X such that U(X) = E(U) _
m Typically, decision trees are used to represent alternatives
and probabilities of risk events

m Functional form selected for convenience
m Exponential form:

UX)=a-be™ r,b>0

m Parameters are determined by asking decision maker to
compare various “lotteries”

Decision Methods 19
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Mars Risk Model: Decision Tree

m Risk model building
process involves (for
cach option):

0 dentify key risk events

O Develop a decision tree

O Solve tree

O Calculate certainty
equivalent (CE) as risk
metric
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Mars Risk Model: What is the Risk Metric?

®m  Risk metric is “certainty
equivalent” (CE) Risk Profile For Common Launch of Book1

0O Amount (outcome) that makes the e s
decision-maker indifferent between e = -
accepting the “gamble” (shown at 500 = e .
right) or taking with certainty £ 03 = :

O Comparing CEs provides a rational S L

way of selecting alternatives; the - . : 05
higher CE option is always preferred

O Mathematically related to the
concepts of “risk aversion” and “risk

premium’
m  In Mars Risk Model spreadsheet,
CE units are “spacecraft lost”,

hence a less negative number is N
preferred

fai

Decision Methods 22
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Mars Risk Model: Adding Costs

Add costs to develop the Pareto optimal frontier
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Multi-Attribute Utility Theory

m Extends utility concept to situations with multiple, usually
conflicting, decision attributes

m Sclect a set of decision attributes (criteria)
O Recommend between 3 and 10
O Attributes can be quantitative or qualitative

O Getting the right ones can be difficult; need to distinguish among
alternatives and should be orthogonal

m Create weights; different groups might disagree on weights

m Develop individual utility functions for each attribute
O u(best) = 1.0; u(worst) = 0.0
m Calculate total rating (score) for each alternative

Decision Methods 24
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Mars Exploration Rovers Example

Decision
Attributes .

- 1 ]
Alt #1 Alt #2 Alt #3 Alt #4 Al #b Alt #5 At #F Alt #9 Alt #2 Alt #10

Sub-aiiteria Weight
Wiission Launch R.e\ia}.aillity 30%
Reliability/Surivability 40%  |EDL Sunvivability E
Surface Reliability 35%
E[Migsian Duration] 20%
Science Diversity 3% Mum of Sites 50%
Migsion Digtance 30%

Affordability 10% 100%
Downlink Thruput @3db | 80%
Operahility 20% Decision Cyele Time 25%
Command Complexity 26%
Rating

Rating ; = 2 W

u

.,
b 9
A
~
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Mars Exploration Rovers Example
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Experiment 1

Number of Sites _
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Mars Exploration Rovers Example
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Comet Flyby Example

m Scientists want to get close to
obtain better samples, but are
aware of the risks.

m Engineers are concerned
about losing the s/c, so they
want to stand-off.

m Assume a flyby closest
approach between 100 km a
1,000 km of the nucleus are
acceptable to both Project
Engineers and Project
Scientists.

Decision Methods
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Project Manager’s Decision Dilemma

m Different decisions favor different groups
m Individual utility functions need to quantified

m Need to combine the individual utility functions
into a single (SW) function to be “optimized.”

m Largely a “political” decision

Decision Methods 30



Comet Flyby Example: Scientist’s Utility Functi

u(x=1000)=0.0 u(x=100) = 1.0

Most-Preferred

Risk-Free
Intermediate 0.5 Outcomi_ 100

Risk-Free Qutcome ~J
x=750
Least-Preferred

Risk-Free
Outcome
x=1000

Then u(x=750) = 0.5, from above indifference relationship

0.5

Using the constant risk aversion utility function:

u(x) — 1 145(1 . e—0.0023(1000—x))

Decision Methods
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Science Value for Comet Flyby

Assume 1ndifference between science at 750 km and a 50/50
gamble between 100 km and 1,000 km. This yields the
curve for v(x).

200 400 &00 800 1000

Decision Methods 32
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Mission Failure Risk for Comet Flyby

Assume risk increases as (a + b/x), where x is the flyby
closest-approach distance.

0 zoo 400 e00 800 100G
In this figure, p(x) = 0.5 @ 100 km and 0.95 @ 1,000 km.

Decision Methods 33
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Utility Function for Comet Scientists

Expected Science Value= p(x) v(x)

'EDlD. | I*EE.IDI | IEEIIEII | IE!EIIEI. | .lI:IIIID
The maximum Expected Science Value 1s at 315 km.

Decision Methods 34
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Assume the Following Social Welfare Function

S W(UScientistS 2 UEngineerS) — k UScientistS + (1 - k) UEngineerS
= kp(x)v(x) +(1-k) p(x)
0<k<I

A high value of k favors the project scientists; a low
value favors the project engineers in the social
welfare function

Decision Methods 35
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n] 200 400 600 a0o0 1000 8 200 400 600 oo 1000

For k= 0.0, SW Max @ 315 km. Risk = 0.16 For k= 0.5, SW Max @ 400 km. Risk = 0.13
o 0.8
0.6 0.6
0.4 0.4
0.2 0.2
o zo0  s00 &0 son 1000 0 200 400 60D 8O0 1000

For k= 0.9, SW Max @ 658 km. Risk = 0.08 For £k =1.0, SW Max @ 1,000 km. Risk = 0.05

Decision Methods 36
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Optimum Flyby Altitude vs. Risk Factor r

As the Risk Factor & varies from 0 to 1, the optimum flyby
altitude varies from 315 km to 1,000 km.

1000

200

600 t

400 ¢

200 ¢
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Analytic Hierarchy Process (AHP)

m In AHP as in MAUT, a rating (score) is determined for
each alternative.

m As in MAUT, a hierarchy of decision attributes is
developed.

O Decision attributes are evaluated in a series of pair-wise
comparisons

O Comparisons are usually on a qualitative scale, which is then
converted to a quantitative one

m Multiple experts make separate pair-wise comparisons of
the alternatives with respect to each decision attribute.

® An AHP software program then computes the rating.

Consensus may take several iterations, or may not achieve
consistency.

Decision Methods 38
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Summary and Observations

m Variety of DM available; apply the one that best
fits the decision problem

m Have the right mix of skills as part of the analysis
team

m Physics-based models are fairly reliable; costs of
alternatives are the hardest to estimate

m Treatment of uncertainty 1s an important part of
most decision problems in space SE and BCA

m Document analysis assumptions, alternatives, data,
methods, models, and decision results to avoid
unnecessary replication

Decision Methods 40
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xploration:
damental Concepts and Models

Robert Shishko, Jet Propulsion Laboratory,
Californmia Institute of Technology
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Tradespace Exploration Outline

A. Introduction and Fundamental Concepts
O What is a Tradespace?

Project tradespace modeling

Pareto optimality and Pareto frontiers

Iso-effectiveness curves

U N N

Issues in building a Project Tradespace Model

B. Building a Project Tradespace Model for Mars
Science Laboratory

C. Tradespace Visualization
D. Tradespace Mini-Workshop

Tradespace Exploration 2
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Old Problem, New Solution

Traditional Approach Tradespace Modeling
Approach

Result: 4 Result:
| Tradespace
| frontier

Point
design

time

Trade
relationships
identified

tradeoff

< 5 designs 100-1000 designs

Tradespace Exploration 4
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What is a Tradespace?

m A project tradespace 1s a complete, quantitative description of the
alternatives available to a project based on potentially available
technologies, in terms of design and operational inputs, and project
outcomes.

O Inputs:

m System and subsystem (e.g., spacecraft and instrument) performance
ratings, sizes, quantities, etc.

= Operational scenarto parameters, orbits, launch dates, etc.
O Outputs:

m Project/mission Measures of Effectiveness, including mission risks
(chances of mission success),

m Life-cycle costs, including cost risk

m A project tradespace model (PTM) has been used in previous
projects/programs to integrate these considerations.
O Space Station Freedom
O Pluto Flyby
O Europa Orbiter
O Mars Science Laboratory

Tradespace Exploration 5
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Project Tradespace Model (PTM)

m Captures project/system design relationships and
associated [life-cycle cost information

m Calculates project-level implications of design changes for
trade studies (sensitivities)

m Permits rapid exploration of the tradespace neighborhood
for design optimization (batch mode)

Tradespace Exploration ‘ 6
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Measures of Effectiveness

® A mission Measure of Effectiveness (MoE) is defined as a quantitative
measure of the degree to which the mission’s purpose is achieved.

For example, how much the mission returns in science data, and what the
resolution, and coverage are.

m [t often depends on measures of performance (MoP), or size and
quantity measures of several inputs. (A “Design Vector”)
0 Launch vehicle probability of success
O Injection, cruise, and EDL reliability
O Navigation accuracy
O Instrument performance
O Spacecraft subsystem (power, C&DH, telecomm, etc.) performance.

m Cost 1s NOT a Measure of Effectiveness; cost is a measure of the
resources foregone. |

m Cost-effectiveness is represented by a combination of both --
preferably as the whole Pareto frontier, but sometimes as a point on
that frontier.

Tradespace Exploration 7
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Building a Project Tradespace Model (PTM)

m Identify the project/system MoEs and
MoPs

m Identify Life-Cycle Cost (LCC)
drivers

m Determine the “threads of
calculation” needed to quantify these

m [mplement the calculations by
integrating appropriate space system
design, cost, and operations models /
simulations

Tradespace Exploration 8
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Each PTM is custom-built to a project, but contains many reusable elements

Tradespace Exploration 9
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- Cost-Effectiveness Frontier (Pareto Optimal
Frontier)

Measure of Effectiveness

Project Life Cycle Cost

Tradespace Exploration 10
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Iso-Effectiveness Curves

[so-effectiveness curves represent combinations of the input
variables that yield the identical value for a Measure of
Effectiveness. For illustration:

e
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Surface Rover Reliability (90 Days)

e
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| Number of Surface Rovers
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Iso-Effectiveness Curves

Generally each iso-effectiveness curve has only one point
that’s Pareto optimal.
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Iso-Effectiveness Curves

Generally each iso-effectiveness curve has only one point
that’s Pareto optimal.

S
el ez e v

B ine e o e : 3
PR Bl T : AT ooy el &
e : s S

st = =

e

snn
SEEEn

T

i

i
B sk e - R

S
R

,_:;‘.,,,,‘.., [
,&"3",‘_. T

=y
e

]
&

Surface Rover Reliability (90 Days)

e EEg R

Number of Surface Rovers

Tradespace: Exploration 13



Surface Rover Reliability (90 Days)

Iso-Effectiveness Curves
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- Cost-Effectiveness Frontier (Pareto Optimal

F l‘OIltlEl') 95% Confidence Level

50% Confidence Level

Measure of Effectiveness

Project Life Cycle Cost

Tradespace Exploration
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e G : -‘2115353}5‘%,5
Effectiveness Frontier (Pareto Optimal
Frontier) in Terms of Probabilities

Probability of Meeting Cost
and Schedule Constraints

Probability of Mission Success

Tradespace Exploration 16
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Deriving the Cost-Effectiveness Frontier
(Pareto Optimal Frontier)

Prob{C(M) < C*}
1

Spacezraft Mass, M Reliabih?ty = exp(-At)

L» Dual-string

\—V Single-string
v

Cruise Time, t
Tradespace Exploration 17
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Deriving the Cost-Effectiveness Frontier
(Pareto Optimal Frontier)

Prob{C(M) < C*}

Space?:raft Mass, M Reliabih?ty = exp(-At)

\—-b Dual-string

\—‘V Single-string
v

Cruise Time, t
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Deriving the Cost-Effectiveness Frontier
(Pareto Optimal Frontier)

Prob{C(M) < C*}

o S EE R

Space<craft Mass, M

\——-b Dual-string

\—* Single-string
v

Cruise Time, t
Tradespace Exploration
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Reliability = exp(-At)
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Deriving the Cost-Effectiveness Frontier
(Pareto Optimal Frontier)

Prob{C(M) < C*}

Spacei:raft Mass, M Reliabih?ty = exp(-At)

N\~ b

\—> Dual-string

\—* Single-string
v

Cruise Time, t
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N Deriving the Cost-Effectiveness Frontier
(Pareto Optimal Frontier)

Prob{C(M) < C*}

Space?:raft Mass, M

A
Cruise Time, t
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Issues in Building a PTM

m The PTM can involve analytic models, geometry-
based models, Monte Carlo, and deterministic
simulations.

[0 Models are abstractions or representations of real-world
processes or structures. In systems analysis, finding
reliable relationships between the system’s inputs (design
vector) and effectiveness (or cost) is never easy.

O Useful models may not exist, or if they do (from previous
work), they come 1n various states of integration readiness

m Identifying appropriate Measure of Effectiveness
can be difficult

m Tradespace dimensionality challenge

Tradespace Exploration 22
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Tradespace Dimensionality Challenge

System/Subsystem Types and Sizes
A

Payload Packages Landing Lat/Long, Ls,

or Orbit Selections

Science Strategies

System Ops Strategies

-
Terrain Launch Vehicles
Scenarios (length, activities, etc.) Mission Risk and Reliability

Tradespace Exploration 23
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Architecture 3

Architecture 4

Architecture 2

Architecture n

Architecture 1

Tradespace Exploration 24
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Project Tradespace Model Summary

m The PTM is a package of linked models used for
analyzing trades among different project/system
architectures/designs and operations concepts/
scenarlos, 1.e., exploring the tradespace.

m The PTM captures the relationships between the
project’s “design vector” (inputs) and the MoFs,
life-cycle cost, and risk-metrics (outputs).

m Helps to define the Pareto frontier.

Tradespace Exploration 25
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Mars Science Laboratory (MSL) Tradespace
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" Mars Science Laboratory (MSL) Tradespace

Model Output Vector

Achieved science data return (Mb/sol)
Achieved site investigations

Traverse distance margin (km)

Flight system margin (kg)

Surface system margin (kg)

Launch vehicle excess capacity (kg)

Power and energy margins (kW and
kWh)

EDL feasibility

DSN availability (%)
Estimated life cycle cost ($)
Cost confidence (%)

Tradespace Exploration
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Measures of Effectiveness

> Measures of Performance

J

} Measures of Cost

29
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Linking Design and Output Vectors Requires Connedt
Islands of Analytical Capability

APGEN |
ROAMS

Terrain (Maker2)
Mobility & Structure
Launch Vehicle Database
Mars Data

MEL/PEL

Instrument Database
MER-based Phase E Workforce Estimator //
Satellite Orbit Analysis Program (SOAP) /
Telecom Link Analysis Tool

DSN Availability Model (TIGRAS)
Upper EDL Model '
Developmental Cost Models ==

Team X Instrument Cost Model

Tradespace Exploration 30
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MSL Tradespace Exploration

m  Enables team to more effectively explore the tradespace to find the best
combination of life-cycle cost and mission effectiveness

m  Shows HQ what is feasible with different funding levels

Science Metric Selection: Science Data Returned (Gb)

N

Science Metric

S
I

Project Cost ($M)
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MSL Tradespace Exploration
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INTERNATIONAL®

m  Enables team to more effectively explore trade space to find the best combination
of life-cycle cost and mission effectiveness

m  Shows HQ what is feasible with different funding levels

Science Metric Selection: Science Data Returned (Gb)
@
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Project Cost ($M)
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MSL Tradespace Exploration

m  Enables team to more effectively explore trade space to find the best combination
of life-cycle cost and mission effectiveness

m  Shows HQ what is feasible with different funding levels

Science Metric Selection: Science Data Returned (Gb)
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0.4 ©
&) 5]
a
Project Cost ($M)
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MSL Tradespace Exploration

®  Enables team to more effectively explore trade space to find the best combination
of Iife-cycle cost and mission effectiveness

®  Shows HQ what is feasible with different funding levels

T Science Metric Selection: Science Data Returned (Gb)

o
X

Science Metric

<
-

Project Cost ($M)
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Observations on Building the MSL PTM

INTERNATIONAL®
 SPAGE UNIVERSITY

PTM “components” may not be available inside or outside the
organization

O Develop, adapt, and standardize

O Legacy models typically not “integration-ready”

O Excellent cooperation from tool owners/originators allows fast progress
Most successful application occurs when project tradespace
modeling is a leadership priority

O Design vectors are reasonably well-defined

O Decision criteria (MoEs, LCC) are identified early

Development increases system thinking and raises understanding of
interrelationships

Archives inputs/outputs, assumptions, and captures rationale
Capability to pursue uncustomary trades

Tradespace Exploration 41
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3D Tradespace
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Pareto Surface (Two-Dimensional View)
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Summary

m Tradespace Exploration is part of the SE Process

m A Project Tradespace Model can help identify the Pareto
frontier (i.e., those alternatives that are not dominated)

m Building a Project Tradespace Model requires more up-
front effort, but

O Results in a better understanding of the project-level effects of
design changes

O Helps to identify project disconnects earlier

O Tends to produce more rigorous and consistent results so as to
foster better decisions.

Tradespace Exploration 48
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Tradespace Modeling Challenge for Emerati

What flight rates would meet minimum lunar outpost
operational needs over a variety of scenarios?

Could lunar outpost concepts be changed to avoid
sustainability 1ssues?

What kind of effort would be necessary to construct and
maintain a viable lunar outpost?

Is the architecture suitable for a given scientific,
exploratory, or technology demonstration goal?

How might Constellation architecture requirements be
influenced by the revealed needs of a future outpost?

Tradespace Exploration 50
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Lunar Outpost Design and Output Vectors

Inputs (Design Vector) Outputs (Output Vector)

m  ECLSS closure (%) m  Lunar surface exploration footprint
m  Qutpost location m  Qutpost occupancy (%)
m  Power source type and output m  Outpost EVA time

m  Level of repair (%) m Infrastructure mass

m  Surface crew size m Payload mass

m EVA frequency m Logistics mass

m  Surface stay duration m  Sample return mass

m  Rover system type and performance m  QOutpost completion date
m  Crew flight rate

m  Cargo flight rate

n

Infrastructure flight rate

Tradespace Exploration 51
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Lunar Outpost Systems Analysis

stics Models
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Lunar Qutpost Trade Space Model

" Measures of Effectiveness
= Exploration Mass Delivered (Sci/Engr)
= Exploration Crewtime (EVA)
= Exploration Footprint

"  Major Inputs Affecting MoEs
= (CaLV cargo flights
= [SRU

= Surface mobility
= ECLSS closure

Tradespace Exploration 53
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How a Tradespace Model Fits Into the SE

m PTM development is a collaborative effort by the project team
O Step 1: Determine the most important project design issues/trades

O Step 2: Hold one-on-one meetings with cognizant engineers to develop or identify
appropriate models

O Step 3: Models are linked generally via WBS/PBS elements
O Step 4: Review by team for completeness and consistency

m PTM development process often illuminates interface issues
m The PTM is not static! Ideally as project progresses:
O Team augments scope and increases resolution of the models

O User friendliness increases
O Databases are improved and expanded

m PTM archives trade study results
m  PTM evolves into a capability for future in-situ missions

Tradespace Exploration 55





